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3Univ Lyon, Université Lyon 1, Ens de Lyon, CNRS, UMR 5276 LGL-TPE, F-69622, Villeurbanne, France

Accepted 2018 September 14. Received 2018 September 3; in original form 2018 March 27

S U M M A R Y
One of the main goals of archeomagnetism is to document the secular changes of Earth’s
magnetic field by laboratory analysis of the magnetization carried by archeological arte-
facts. Typical techniques for creating a time-dependent model assume a prescribed temporal
discretization which, when coupled with sparse data coverage, require strong regularization
generally applied over the entire time-series in order to ensure smoothness. Such techniques
make it difficult to characterize uncertainty and frequency content, and robustly detect rapid
changes. Key to proper modelling (and physical understanding) is a method that places a min-
imum level of regularization on any fit to the data. Here we apply a transdimensional Bayesian
technique based on piecewise linear interpolation to sparse archeointensity data sets, in which
the temporal complexity of the model is not set a priori, but is self-selected by the data.
The method produces two key outputs: (i) a posterior distribution of intensity as a function
of time, a useful tool for archeomagnetic dating, whose statistics are smooth but formally
unregularized and (ii) by including the data ages in the model of unknown parameters, the
method also produces posterior age statistics of each individual contributing datum. We test the
technique using synthetic data sets and confirm agreement of our method with an integrated
likelihood approach. We then apply the method to three archeomagnetic data sets all reduced
to a single location: one temporally well-sampled within 700 km from Paris (here referred to as
Paris700), one that is temporally sparse centred on Hawaii, and a third (from Lübeck, Germany
and Paris700) that has additional ordering constraints on age from stratification. Compared
with other methods, our average posterior distributions largely agree, however our credible
intervals appear to much better reflect the uncertainty during periods of sparse data coverage.
Because each ensemble member of the posterior distribution is piecewise linear, we only fit
oscillations when required by the data. As an example, we show that an oscillatory signal,
associated with temporally localized intensity maxima reported for a sparse Hawaiian data
set, is not required by the data. However, we do recover the previously reported oscillation of
period 260 yr for the Paris700 data set and compute the probability distribution of the period of
oscillation. We further demonstrate that such an oscillation is unresolved when accounting for
age uncertainty by using a fixed age and with an artificially inflated error budget on intensity.

Key words: Archaeomagnetism; Magnetic field variations through time; Inverse theory;
Statistical methods; Time-series analysis.

1 I N T RO D U C T I O N

Archeomagnetism, in a broad sense, is the study of Earth’s mag-
netic field over the last ∼10 000 yr, conducted by analysis of the
magnetization carried by archeological artefacts, lake sediments
and volcanic records. Archeomagnetic reconstructions allow in-
sight into how the Earth’s magnetic field has altered over time (e.g.
Korte et al. 2011; Licht et al. 2013; Nilsson et al. 2014; Pavón-
Carrasco et al. 2014), useful not only for supplying constraints on

the process by which the field is generated in the fluid outer core,
but also for archeomagnetic dating of artefacts (Le Goff et al. 2002;
Pavón-Carrasco et al. 2011).

One of the principal challenges of reconstructing the archeomag-
netic field is data sparsity, in both space and time. Archeological
features such as ancient kilns and pottery that record the magnetic
field from when they last cooled are relatively rare, and localized
to those ancient human settlements where remains were unearthed.
The data set also may be very sparse or particularly poorly dated over
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certain periods (sometimes referred to as dark ages), a reflection of
either lack of data collection or simply that there are few remaining
artefacts suitable for analysis. Scarcity is a particular problem for
analysis of localized transient phenomena, which appear to punctu-
ate the quasi-steady ancient magnetic field, such as archeomagnetic
jerks: sharp changes in the local direction of the field over timescales
of about one century associated with an intensity peak (Gallet et al.
2003), and geomagnetic spikes: large, rapid changes in the local
intensity over a few decades (e.g. Shaar et al. 2011). In rare cases,
some data sets offer a well-dated stratified sequence (Schnepp et al.
2009; Shaar et al. 2011; Kostadinova-Avramova et al. 2014) which
add significant constraints to the behaviour of the archeomagnetic
field through time.

Models of the archeomagnetic field may be global, regional or
reduced to a single location (in the latter case, by using the virtual
axial dipole approximation). All studies to date have used some form
of prescribed smooth dependence in time to accommodate temporal
changes of the field. The most widely used framework adopts two
means of smoothing: first by using a temporal expansion in terms of
cubic spline functions centred on a set of knot points, and secondly
by reducing the temporal complexity of the model by a penalization
method (Korte & Constable 2003; Lanos 2004; Thébault & Gallet
2010; Hervé & Lanos 2017; Tema et al. 2017). A prescription of the
knot points in advance places an a priori constraint on the solution,
for dynamics on timescales more rapid than the closest spacing can-
not be accommodated. Furthermore, the penalization of temporal
complexity (often the second time derivative of the radial field at
the core–mantle boundary) is applied uniformly over the model,
which means that some periods will be oversmoothed and some
undersmoothed. A sliding-window with linear regression (Lanos
et al. 2005) is an alternative to these methods, where the window
duration may be a function of the temporal distribution of data (Le
Goff et al. 2002). It is possible to remove temporal smoothing all
together by adopting a stochastic process representation of the ge-
omagnetic field (Hellio et al. 2014), although this procedure is still
subjective as the parameters of this process (the covariances) need
to be prescribed.

Transdimensional Bayesian methods offer an attractive alterna-
tive, in which the models are not regularized but allow the data to
self-select model complexity, here the number and position of inter-
nal knot points (also known as internal vertices or change points).
Despite the freedom of this procedure to choose an unlimited num-
ber of degrees of freedom leading to overfitting and highly complex
models, in fact owing to the natural parsimony of the Bayesian
framework the models are inherently smooth and large scale, and
admit fine-structure only where required by the data (Sambridge
et al. 2013). Rather than resulting in a single time-dependent so-
lution, the Bayesian modelling produces a posterior distribution,
numerically approximated by an ensemble of models sampled us-
ing a Markov chain, whose shape and variance gives important
information about the behaviour of the solution and confidence that
should be placed in it. Such transdimensional methods have been
widely applied across the geosciences, in applications such as Earth-
quake rupture (Dettmer et al. 2014), geomagnetic reversals (Ingham
et al. 2014), seismic imaging (Bodin et al. 2012), climate studies
(Hopcroft et al. 2007), 2-D seafloor resistivity (Ray et al. 2014),
inversion for gravitational anomalies (Luo 2010) and inference of
abrupt changes in geochemical records (Gallagher et al. 2011).

An additional benefit of using a Bayesian procedure is that poorly
known quantities (on which the posterior distribution depends),
that would otherwise need to be fixed at some arbitrary level in
a traditional inversion approach, can be co-estimated (Malinverno

& Briggs 2004; Bodin et al. 2012; Hervé & Lanos 2017). This
has a particular benefit for archeomagnetism for which data ages
can be difficult to assess. Archeological data are typically assumed
uniformly distributed between two dates determined by typology
or historical reference; in contrast, volcanic data are dated using
radiocarbon techniques and in this work their errors are assumed
normally distributed with zero mean and a given standard deviation,
conforming to the databases from which they are extracted. By
including the data ages as additional or hyperparameters, a Bayesian
formulation of the problem allows us to sample both the data ages
and the model description in the same way, producing marginal
posterior distributions for the data ages themselves (Lanos 2004;
Hellio et al. 2014; Schnepp et al. 2015; Hervé & Lanos 2017)
alongside that of the archeomagnetic intensity model. In this way,
data with different intensities but the same mean estimated age may
be judged by the posterior distribution to be associated with distinct
ages. Such a scheme differs fundamentally from a typical global
modelling approach in which apparently contemporaneous data,
rather than being treated as distinct, are averaged to a single value
(Korte & Constable 2018). Furthermore, in terms of archeomagnetic
dating, this fully integrated approach that we adopt here should be
contrasted with typical methods of dating in which the magnetic
signature of a datum is matched against a separately produced time-
dependent model of the geomagnetic field (e.g. Pavón-Carrasco
et al. 2011; Hervé & Lanos 2017; Lanos & Philippe 2017): here the
age distributions are a component of the model output.

In this paper, we apply the transdimensional Bayesian framework
to three time-series of archeomagnetic intensity, chosen to represent
very different situations regarding the nature and quality of the
archeomagnetic data sets available at a regional scale (in particular,
their age distribution and uncertainties, consistency between the
data, number of data), which are described in Section 2. In Section 3,
we summarize the Bayesian method; more detail is included in
the Appendices. Section 4 describes important benchmarks of the
method against synthetic data sets. Sections 5–7 show the results
of our method applied to the three archeomagnetic data sets, whose
results are further discussed in Section 8 with reference to results
from other methods.

2 T H R E E E X E M P L A R DATA S E T S

Archeomagnetic data includes measurements of either (or both of)
intensity (i.e. magnitude) and direction (inclination, declination).
For this initial exploration of the method, we will focus only on
intensity variations. Below, we give an overview of the three chosen
data sets; more details (e.g. on the specifics of data selection) can
be found in Appendix A. These data sets are shown in Fig. 1, which
shows not only the individual data (blue points) but the temporal data
density (green histogram). For each data set, the magnetic intensity
of each datum is assumed to be normally distributed, with a mean
and standard deviation estimated from laboratory analysis as shown
by the vertical error bars; the interpretation of the horizontal error
bars is described in turn for each data set.

(1) Paris700: The first data set, Paris700, relies on stringent
selection criteria (see Genevey et al. 2013), has quasi-uniform tem-
poral resolution from about 1000 BC to 2000 AD and comprises
data collected from within 700 km from Paris. Its 154 entries are
all reduced to the latitude of Paris (48.9◦N) using the virtual axial
dipole moment (VADM) approximation. The data age errors are
assumed uniformly distributed within given ranges (shown by the
horizontal error bars in Fig. 1(top panel).
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2010 P.W. Livermore et al.

Figure 1. The three exemplar data sets that will be analysed by the Bayesian method in this paper: Paris700 (top panel); Hawaii (middle panel) and Lübeck-
Paris700 (bottom panel). The data points are shown as blue circles with error bars indicating the uncertainty as described in the text. The red data points obey
a strict ordering in age. The data-density is shown by the green histograms using 20 bins of equal width for each data set.

(2) Hawaii: To examine the effect of data sparsity and non-
uniform sampling on our method, we consider a second data set
of Hawaiian intensity measurements taken from the Geomagia.v3
database (Brown et al. 2015) over the past 4500 yr. Here, we adopted

minimalist (i.e. loose) selection criteria and this case therefore cor-
responds to extracting a local data set from the global database in
a relatively blind manner. All 134 retained entries are reduced to
the latitude of Kilauea volcano (19.42◦N). The data are shown in
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Transdimensional archeomagnetic analysis 2011

Fig. 1(middle panel), where the horizontal error bars indicate one
standard deviation in radiocarbon-determined age. Note that recent
‘historical’ lava flows are assigned a normally distributed age un-
certainty of 0.5 yr. The density of data is heavily weighted towards
the most recent times.

(3) Lübeck-Paris700: Finally, some archeomagnetic data sets
contain stratified data whose ages obey a strict ordering in time. We
investigate a third data set, comprising the (unstratified) Paris700
data (restricted between 900 and 2000 AD) with 22 stratified data
with otherwise poorly constrained ages from Lübeck, Germany
(Schnepp et al. 2009), reduced to Paris using the VADM approx-
imation, for the period ∼1300 AD to ∼1750 AD. The data (un-
stratified: blue; stratified: red) are shown in Fig. 1(bottom panel)
where all ages are uniformly distributed in time with additional
strict ordering constraints where relevant.

3 T H E T R A N S D I M E N S I O NA L
B AY E S I A N A L G O R I T H M

3.1 Bayesian inference

Bayesian inference is a procedure by which the knowledge of model
parameters is improved from the prior information, expressed in
terms of probability distributions, by the introduction of data. The
result is not simply a single optimized model that fits the data,
but rather the posterior distribution, characterized by an ensemble
of models, which describes the probability of the unknown model
parameters given the observed data. In this way, the posterior dis-
tribution not only describes the most likely value (i.e. the mode of
the distribution), but also diagnostics such as credible intervals (the
analogue of confidence intervals). The analysis rests upon Bayes’
theorem:

p(m|d) = p(d|m) p(m)

p(d)
, (1)

where m is the model and d is the collection of data. Expressed
in words, the posterior (on the left-hand side) for the model given
the data, is proportional to the product of the likelihood (the first
term in the numerator) and the prior; the term in the denominator
is termed the evidence (which does not depend on the model m)
and although useful for choosing between physical models, will not
enter into our analysis. The posterior distribution then depends on
several key elements: the model parametrization, the likelihood and
the prior. We will describe each in turn.

3.2 The model

The principal part of any individual model is the representation of
intensity change with time, which we parametrize using continuous
piecewise-linear functions defined over a period [tstart, tend]. The
reason for our choice of linear, rather than higher order temporal
dependence (e.g. cubic splines) is that we wish to assert minimal
smoothness on the posterior. Any curvature within the posterior
must be required by the data and cannot be an artefact of our
parametrization. The piecewise linear regression function, g, is in-
terpolated from the value of the intensity at the endpoints Fstart and
Fend, along with the age tj and intensity Fj with 1 ≤ j ≤ k of any of
the k internal change points. The number of internal change points,
k ≥ 0, is a free parameter of this transdimensional model. We note
that although every model individually is piecewise linear, taking
ensemble statistics yields a smoothed evolution that gives a good
description of magnetic field variability.

In this study, we will assume that the errors on both the data
intensities and ages are known. However, because outliers are com-
mon in archeomagnetic data sets, a fuller treatment could include
these errors as hyperparameters (Malinverno & Briggs 2004). Key
to our algorithm is an appropriate handling of the data ages, on
which the model depends. There are multiple possibilities of how
we can treat them. First, we could treat the ages as known and
error-free, and simply increase the error budget in the intensity un-
certainty as a proxy for a combined error estimate (e.g. Ingham
et al. 2014). Second, we could use a bootstrap method to repeatedly
draw possible ages from their given distributions (e.g. Thébault &
Gallet 2010). Third, we could incorporate the unknown data ages
into an ‘integrated likelihood’, in which the data ages are entirely
absent from the model vector (Sambridge 2016). Fourth, we can
include the data ages as hyperparameters into our model vector. In
this work, we adopt the last approach in our age-hyperparameter (or
AH) method: not only does this handle the age uncertainties in an
identical manner to the uncertainty in the other model parameters,
but after recovery of our posterior distribution, the marginal distri-
butions of the data ages can be readily computed. For the sake of
completeness, however, we will confirm some of our calculations
using an integrated likelihood approach (IL; see Section 4.3).

It is worth remarking that our incorporation of data ages as hyper-
parameters conflicts with the usual division between model-space
and data. To an archeomagnetist, the data are the set of measure-
ments of intensity along with the data ages. Yet, in isolation, the
data ages are not informative about the distribution of the tempo-
ral variation of intensity. Therefore, we partition the intensity and
ages—absorbing the ages into the unknown model vector and treat-
ing the ‘data’ (d of eq. 1) as simply the set of Ndata intensity values,
denoted here as F1,F2, . . . ,FNdata .

We write the model vector as

m = [f, k, a]T ,

where T indicates transpose, and m is a column vector of size 2k + 3 +
Ndata, where f = (Fstart, Fend, F1, F2, . . . , Fk, t1, t2, . . . , tk) describes
the 2k + 2 vertices of the piecewise linear time-dependence, and
a = (a1, a2, . . . , aNdata ) are the ages of the Ndata data. When adopting
the integrated likelihood, the model is simply m = [f, k]T. Fig. 2
shows a cartoon of a low-dimensional model with two data points
and three internal vertices.

Two aspects of notation are worthy of comment. The first is that
although we have used both t and a to denote an age, this allows
us to distinguish between the ages of the change points tj and the
data aj. Second is that we have used the calligraphic symbol F j to
denote the data (laboratory determined intensity) and F to denote
the intensity value of a model vertex.

3.3 The likelihood

Any specific realization of the model m prescribes the data ages
a along with the set of internal vertices required to define the
piecewise-linear regression function, g, that describes intensity vari-
ation with time. To define a likelihood, for the jth datum we compute
the difference between its intensity F j and the value of the regres-
sion function g(aj) evaluated at its age. Because of the assumed
normally distributed errors on the data F j , and because we assume
errors independent between measurements, the likelihood of all the
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Figure 2. Cartoon of a low-dimensional model over a fixed period [tstart, tend] constrained by two archeomagnetic data, with given intensities F1,F2 and
unknown ages a1 and a2. The intensity variation is described by a piecewise-linear interpolation between the three internal vertices (ti, Fi) and the two endpoint
intensities Fstart and Fend. The arrows indicate how the Monte Carlo method allows each parameter to change.

data intensities being realized is proportional to e−φ , where

φ = 1

2

Ndata∑
j=1

[
g(a j ) − F j

]2
/σ 2

j , (2)

where σ j is the given estimate of the standard deviation. We note
that, because only the ratio of likelihoods is relevant, the constant
of proportionality never enters the analysis. In Sections 5 and 6, for
the Paris700 and Hawaii data sets, the distribution of residuals will
confirm the assumption of normally distributed intensity errors.

The integrated likelihood approach of Sambridge (2016) is a
generalization of the formula above to the case where the data ages
are formally unknown but have a known distribution. By integrating
(2) over all its possible values, it is possible to calculate a likelihood
weighted by the age distribution; see Section 4.3 for further details.

3.4 The choice of prior distributions

A keystone of Bayesian methods is the description of the prior
information as a probability distribution that characterizes what is
known or supposed about the model before the introduction of data.
The data ages are independent of the rest of the model, and by
conditioning on the value of k, we can write the prior as

p(m) = p(a) p(f |k) p(k).

We assume that p(k) is a uniform distribution over the interval [0,
kmax], where kmax is prescribed (we typically take kmax = 50), that is

p(k) =
{

(kmax + 1)−1, 0 ≤ k ≤ kmax,

0, otherwise.
(3)

Given a value of k, the intensity at each vertex Fj and its corre-
sponding age tj is assumed mutually independent, thus

p(f|k) = p(t|k)
k+2∏
j=1

p(Fj |k),

where j = 1, 2, . . . k indexes the internal intensity coefficients, and
we have adopted the notational convenience Fk + 1 = Fstart and Fk + 2

= Fend. We assume that the prior distribution of each intensity value

Fj is uniform:

p(Fj |k) =
{

(F̃max − F̃min)−1, F̃min ≤ Fj ≤ F̃max,

0, otherwise,
(4)

where F̃max and F̃min are prescribed values (typically taken to be
100 μT and 30 μT).

For the purposes of model development, it is expedient to assume
that the vertex ages are distributed uniformly from a choice of N
equally spaced ages between tstart and tend (Bodin & Sambridge
2009). This means that the joint probability distribution of the vertex
ages (in which their order is irrelevant) is

p((t1, t2, . . . , tk)|k) =
[

N !

k!(N − k)!

]−1

.

However, for infinitely large N (that will describe our final model,
see Appendix A), we convert from a discrete to a continuous vari-
able; the prior distribution of each vertex age, tj, becomes indepen-
dent, uniformly and identically distributed:

p(t j ) =
{

(tend − tstart)−1, tstart ≤ t j ≤ tend,

0, otherwise.
(5)

For unstratified data, each datum age is supposed independent so
that

p(a) =
Ndata∏
j=1

p(a j ). (6)

For a datum of index j that is archeologically dated, its age is uni-
formly distributed between given dates [amin

j , amax
j ] and has a prior

distribution of

p(a j ) =
{

(amax
j − amin

j )−1, amin
j ≤ a j ≤ amax

j ,

0, otherwise,
(7)

whereas for normally distributed ages (e.g. from radiocarbon dating)
the prior distribution is

a j ∼ N (μ j , λ
2
j ) (8)

where μj and λj are the given mean and standard deviation. For
a subset of data that is stratified, the corresponding set of ages
are not independent and must obey a constraint of the form aj <
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Transdimensional archeomagnetic analysis 2013

aj + 1 < · · ·. Formally, such a constraint will alter the mathematical
structure of the prior distribution as given above, but because of
the methodology by which we sample the posterior distribution this
structure never actually enters our analysis. For the data ages, we
only actually need to be able to draw from their prior distribution;
practically, after drawing ages according to (7) or (8), we simply
discard any set of ages that violates any required age ordering, and
redraw. It is further noteworthy that although we will focus on data
whose ages are solely either uniformly or normally distributed, it is
straightforward to consider a mixture of age distributions.

We note that despite specifying each model vertex intensity Fj

to have a uniform distribution, in general the associated prior for
the linearly interpolated intensity g(t) (for given arbitrary t) is not
uniformly distributed. The reason why the uniform characteristic
does not carry over to g(t) is because it only attains values close
to its bounds of F̃max and F̃min when both of the vertices used in
determining g(t) by linear interpolation also have extreme intensity,
a situation which has small probability compared to the probability
of a single vertex being extreme. This can be seen more formally in
the simple case of k = 0 (no interior vertices). The distribution of
intensity at the middle of the age range tmid = (tend + tstart)/2 is simply
the average of the two endpoint intensity distributions, that is, one
half of the sum of two identically uniformly distributed random
variables, which takes the form of a triangular distribution that has
a peak value of (F̃max + F̃min)/2. Thus g(tmid) is not uniform, in
contrast to both g(tstart) and g(tend), which are uniform. For arbitrary
k this picture is more complicated, but a similar reasoning applies.
In this way, our mean, median, mode, and credible intervals in the
figures below are not exactly the mean, and median of the posterior
model p(m|d), but rather of the posterior projected in the space of
g(t).

Finally, it is of note that several authors (e.g. Green 1995;
Hopcroft et al. 2007) use order statistics in their prior, in order
that the change points are spread out. Here, we do not want to as-
sume this, as in fact we are interested in features for which there is
rapid time-dependence and therefore we want to allow clustering of
vertices. Many of our prior distributions are uniform and may not
in fact encode zero information despite assigning all values within
their range the same probability (Jaynes 2003).

3.5 The AH-RJMCMC sampling algorithm

Having defined the prior and likelihood, all that remains is to charac-
terize the posterior distribution, which we undertake numerically by
drawing a sufficiently large set of samples using the reverse-jump
Monte Carlo Markov Chain algorithm (RJMCMC; Green 1995).
The resulting Markov chain of models, in which each model de-
pends only on its predecessor, represents a random walk through
the space of all permissible models; its distribution converges to
the posterior distribution. The chain is built iteratively by either
adding a duplicate of the current last model m or adding a proposed
model m

′
, a perturbation to m, which is drawn from a distribution

of alternative models q(m
′ |m). The decision of whether to add m

or m
′

to the chain is based on an acceptance test. The underlying
methodology does not require any particular choice of q, but rather
different choices of q will simply alter the speed of convergence to
the posterior distribution (Green 1995).

In our algorithm, which is based on that of Bodin & Sambridge
(2009) and Gallagher et al. (2011), the model m

′
differs from m

by one of several possible perturbations, as depicted in Fig. 3 (see
also Fig. 2) grouped by type. These perturbations depend on a set

of user-specified parameters: σ change, σ birth, σ move and β that are
discussed later.

For perturbations of type 1, the intensity value of a randomly cho-
sen internal vertex is perturbed from its current value by a random
amount distributed as N (0, σ 2

change). Perturbations of type 2 alter the
temporal arrangement of the vertices. For a perturbation 2a, the age
of a randomly chosen vertex is altered by the addition of a normally
distributed perturbation, N (0, σ 2

move). For a perturbation 2b (vertex
birth), a new vertex is proposed randomly (according to a uniform
distribution) within the temporal limits of the model, with an inten-
sity that is distributed N (0, σ 2

birth) relative to its linearly interpolated
value based on the current vertex distribution. Perturbation 2c de-
scribes vertex death, where a vertex is removed from the model.
Lastly, perturbation 3 describes the resampling of �Ndata/β	 ages
within their given prior distributions where �x	 denotes the floor
(i.e. the integer part of) x. The specific details of each move type
and their associated acceptance criteria mirror those of Bodin &
Sambridge (2009) and are described in Appendix B.

Each run is initialized with a model with a random number of ver-
tices, described by coefficients f and a randomly chosen from their
given prior distributions. Diagnostic statistics of the distribution of
the posterior intensity and the marginal distribution of the data ages
are computed ‘on-the-fly’, usually adopting thinning (e.g. analysing
only every 100th chain member in order to minimize the effect of
any temporary localized confinement in model space of the chain).
The algorithm is run until the posterior distribution (as indicated by
the computed diagnostics) converges, which typically occurs after
about 1–5 × 106 model proposal iterations; the compute time for
this is a matter of a few seconds on a single-core desktop com-
puter. In accord with standard practice, we discard the first 50 000
iterations as ‘burn-in’ in order to remove dependency on the initial
model. We note that our method, in which the model vector contains
the data ages, is considerably (i.e. thousands of times) faster than
an implementation (which we tried in a development phase) of the
two-stage approach of Hellio et al. (2014): in which the ages were
drawn in an outer loop by a Monte Carlo method, and the posterior
distribution of intensity was then determined within an inner loop
assuming fixed ages.

The rate of convergence of the Markov chain (and hence that
of the posterior distribution) is affected by the choice of model
proposal. Slow convergence will occur if either the proposed models
are too different from any current model (they are unlikely to be
accepted and the Markov chain will change only infrequently), or
if they are too close to the current model (the chain will never
effectively explore distant parts of model space). The proposal q
depends on σ change, σ move, σ birth, β, which are adjusted to attain
suitable acceptance ratios of about 15–50 per cent (Roberts 1996).
Typical values are, respectively, 20 μT, 200 yr, 8 μT, 20, which give
acceptance ratios (for model perturbation types of 1, 2a, 2b, 2c, 3)
of 19, 11, 14, 14, 21 per cent for the Paris700 data set reported in
Section 5.

In addition to reporting diagnostics such as histograms of vertex
position, we also compute the relative entropy, or Kullback–Leibler
divergence (e.g. Press et al. 2001), a quantification of the difference
between the posterior p(g(t)|d) and prior distributions p(g(t)) of
intensity variation (or in other words, a measure of information
gain from the data):

DK L (t) =
∫

p(g(t)|d) ln

(
p(g(t)|d)

p(g(t))

)
dg(t).

As we remarked earlier, the prior on the intensity evolution is not
immediate from the prior information on the internal vertices; here,

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/215/3/2008/5101441 by C

N
R

S user on 30 Septem
ber 2019



2014 P.W. Livermore et al.

Figure 3. Cartoon showing the five possible perturbations (unfilled symbols) to the current model (black symbols). In type (1), the intensity at a vertex is
changed; in (2a) the age of a vertex is changed; in (2b) a vertex is born; in (2c) a vertex is removed; in (3) a subset of the data ages are resampled. The equal
spacing of the black symbols is for graphical purposes only: in general they are spaced unequally.

we compute it by running the AH-RJMCMC algorithm with the
likelihood set to 1. As a side note, this procedure of amending the
likelihood should (and does) recover the prior distribution on each
of the variables that we have specified.

If DKL is close to zero, it means that the posterior and prior
distributions are very similar, so that the data add little informa-
tion. Conversely, a high value of DKL means that the prior and
posterior are significantly different. The relevance of this quantity
here is that all Bayesian inferences are dependent on the choice of
prior. If the KL divergence is low, then we might have little con-
fidence in the robustness of the posterior distribution for it would
likely alter if we changed the prior. On the other hand, a high
value of DKL would render the posterior largely invariant of the
choice of prior. As shown in Sections 5–7, high values of DKL occur
when the posterior distribution is tightly focused, signifying strong
constraints from the data relative to the assumed broad uniform
prior.

4 S Y N T H E T I C - DATA T E S T S

4.1 Recovery of known underlying behaviour

In order to test the AH-RJMCMC methodology, we created syn-
thetic versions of the Paris700 and the Hawaii data sets, termed
Synt-Paris700 and Synt-Hawaii, both based on the smooth inten-
sity variation of the coupled-Earth (CE) dynamo model (Aubert
et al. 2013). The particular time window in the CE model was
chosen such that the magnitude of variation of intensity was com-
parable to the observations, and is time-shifted in order that it is
defined over the same age ranges as the observational data sets. It
is worth remarking that the CE model time is scaled to terrestrial
ages through considerations of the secular variation (Lhuillier et al.
2011), and any resemblance to existing intensity changes at either
location is fortuitous. The CE model was sampled at the appropri-
ate latitude/longitude location and, crucially, according to the same
age distributions as the Paris700 and Hawaii data sets themselves.
Pseudorandom noise is added in both intensity and age (according
to their assumed forms) to mimic errors in the real data sets. We are
now in a position to test the recovery of intensity evolution from
noisy data, from either well-sampled or sparsely sampled data sets.

Fig. 4 shows diagnostics of the AH-RJMCMC method applied
to the Synt-Paris700 data set. The top row shows the posterior dis-
tribution of intensity characterized by its (time-dependent) average,

median and modal values, alongside the 95 per cent credible inter-
vals in filled orange; in the middle row is a density plot of the in-
tensity distribution. Of primary importance is that for almost all the
time window (except a small deviation around 1000 AD) the ‘true’
evolution (shown in black) largely agrees with the mode, median
and average of the posterior distribution. Indeed, the true evolution
is contained within the 95 per cent credible intervals (and the re-
gions of highest intensity density), which gives us great confidence
that the method can recover the underlying evolution. Fig. 4(bottom
panel) shows the vertex position histogram with the KL divergence
overlaid in red. The histogram shows strong evidence for a change
in linear slope around 1400 AD and 1700 AD which occurs during a
period of densely sampled data. There are several other ages which
favour a change in slope, although their probability is smeared out
and consequently not so high due to lower confidence from more
sparsely sampled data. High values of the KL divergence in 500–
1800 AD correspond to periods when the posterior distribution
differs markedly from the prior and here takes the form of a tightly
focused intensity density. It is worth noting, however, that high KL
does not necessarily mean that the posterior better describes the true
evolution, for in this example the deviation of 1000 AD is contained
within this high KL period.

Fig. 5 shows similar diagnostics but for the Synt-Hawaii data set.
It is notable that despite the poor data coverage at early times, the
method generally returns a good recovery of the intensity evolution.
The asymmetric distribution of data (sparse at earlier times, dense at
later times) means that the posterior distribution (shown for example
either by the 95 per cent credible intervals or the intensity density)
becomes very focused post 500 AD and has a high KL divergence.
As with the previous synthetic data set, the posterior distribution
does not follow the true evolution exactly: there are some discrep-
ancies during short-period oscillations of the true evolution. Here,
these are at 1400 BC, 800 AD and 1700 AD, and are caused by either
poor sampling or because there is insufficient evidence to exclude
a linear fit. Also of note is that, for the discrepancy around 1400
BC, the uncertainty bounds are relatively narrow compared with the
Hawaiian data set (Fig. 13) despite being sampled at the same times
and with the same assumed errors on age and intensity. This is be-
cause the synthetic data happen to be consistent with a single linear
segment (which in our framework will always be preferred if the
data allow), whereas for the Hawaiian data set any linear evolution
fits poorly. Although the absence of the true solution feature within
the 95 per cent credible intervals may be viewed as a limitation of
the method, it is really a reflection of the fact that the non-linear
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Transdimensional archeomagnetic analysis 2015

Figure 4. Recovery of the intensity variation for the Synt-Paris700 data set. Top panel: the posterior distribution depicted by the average, median, and modal
curves with 95 per cent credible intervals shown in filled orange; the true (synthetic) variation is shown in black. The data highlighted in green boxes are
referenced in Fig. 6. Middle panel: density plot of the posterior distribution, overlaid by the true variation (thin black line). Bottom panel: combined plot of a
histogram of the vertex position showing the most likely ages for change in linear slope, with the Kullback–Leibler divergence in red (right-axis).

feature is not sampled at all so it is unsurprising that it is not present
in the posterior.

Overall, for both data sets, the method recovers the intensity
evolution of the CE-model very well. It is important to note that,
by design, the method fits a posterior distribution of minimum
curvature (being based on piecewise-linear segments). Thus any
oscillatory behaviour in the posterior necessarily must be required
from the data, and cannot be an artefact of the model. Conversely,
minor and/or rapid oscillations of the true evolution which may

either be poorly temporally sampled or lie within the error tolerance
of a best-fitting linear-interpolation will not be present in the AH-
RJMCMC posterior.

4.2 Marginal age distributions

Since the AH-RJMCMC method samples the joint distribution of
the model space, we can derive the (joint) posterior distribution of
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2016 P.W. Livermore et al.

Figure 5. Recovery of the intensity variation for the Synt-Hawaii data set. Top panel: the posterior distribution depicted by the average, median, and modal
curves with 95 per cent credible intervals shown in filled orange; the true (synthetic) variation is shown in black. Middle panel: density plot of the posterior
distribution, overlaid by the true variation (thin black line). Bottom panel: combined plot of a histogram of the vertex position showing the most likely ages for
change in linear slope, with the Kullback–Leibler divergence in red (right-axis).

any single variable, or subset of variables, by marginalization. Of
particular interest is to examine the joint posterior distribution of the
age and intensity of any given datum, which is simply achieved by
collecting ‘on the fly’ the age aj (specified within each model) and its
associated intensity, g(aj), interpolated from the vertex information
of the model.

Fig. 6 shows two such joint distributions for the two data 119
(left) and 154 (right) of the Synt-Paris700 data set that were chosen
to represent two extremes; these data are highlighted with green
boxes in Fig. 4. The joint distribution is shown as green hexagons

[dark(light) shading means higher(lower) values]. The marginal dis-
tributions of both age and intensity for each datum are shown on
the top and right axes; for reference, the uniform prior distribu-
tion on age, and the assumed normally distribution of intensity,
are shown in transparent orange. The noisy “observed” datapoint
is shown in purple, while the true values are shown by the red
triangle.

On the left the marginal posterior age distribution is comparable
to the prior, so the Synt-Paris700 data offers no new information
about the datum’s age beyond what is already assumed in the prior.
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Transdimensional archeomagnetic analysis 2017

Figure 6. Joint posterior probability distribution of the age and intensity for the two data of index 119 and 154 of the Synt-Paris700 data set, as highlighted
with green boxes in Fig. 4. Green hexagonal bins show the posterior joint probability distribution, while the marginal distributions for age and intensity are
shown above and to the right (in green); semi-transparent orange shows the prior on the data age, and also the assumed normal distribution of intensity. The
true age and intensity of the data is shown in red while the synthetic ‘observation’ is shown by the purple triangles (with error bars).

Although the posterior distribution of intensity is centred on ap-
proximately the same value as the datum, it has a much smaller
standard deviation.

By contrast, on the right the marginal posterior age distribution
is heavily skewed, the datum being much more likely to have an age
at the earlier end of the range [400, 500] BC. Indeed, the true value
falls close to the peak of the joint distribution, at around 500 BC.
Thus other data within the data set add significant constraints on
the likely age of this particular datum because we fit the data set
as a whole. In this example, the distribution of posterior intensity
is comparable to that of the observed datum but shifted upwards in
value.

4.3 Model consistency

In this section, we briefly address two aspects of model consistency.
First is to check that our diagnostics of the posterior distribution
(average, mode, median) do actually reflect the properties of the
posterior distribution itself. Fig. 7 shows 1000 individual models
that are spaced equally along the Markov chain (red lines) for the
Synt-Paris700 example, plotted alongside the average model (black
line) that is comparable to the other diagnostics (Fig. 4). It is appar-
ent that the average variation does indeed follow the evolution of
the ensemble.

The second issue is more subtle. In our method, we have accom-
modated the imprecise knowledge of the archeomagnetic data ages
by including them as hyper-parameters, a, in our model vector m =
[f, k, a]T. For our focus on archeomagnetism, this is a natural way to
proceed because the marginalized posterior distributions of the data
ages (which are of significant scientific value) are straightforward
to compute. However, it is worth noting that this is not the only
way of setting up the model. For example, rather than including the
data ages in the model vector and using a likelihood based on a
weighted misfit in intensity, we could swap these around: an alter-
native would have been to adopt the model vector m̃ = [f, k, F]T

where F = (F1,F2, . . . ) are the data intensities, and use a likeli-
hood based on the misfit of the uniformly distributed data ages. The
fact that these two model setups are different is a manifestation of
the asymmetry of the way in which the data is handled. Ideally, the
ages and intensities of the archeomagnetic data should be handled
in the same way (i.e. symmetrically), reflecting the fact that there is
no objective reason to treat errors in age any differently than those
in intensity. Of course, because the uncertainties in the ages and
intensities do not necessarily obey the same distribution type, we
cannot expect the implementation of the algorithm to be symmetric.

Sambridge (2016) describes an ‘integrated likelihood’ method,
handling 2-D data with known error distributions symmetrically
by a piecewise-linear MCMC algorithm, in which the uncertainties
in age are integrated out. He considers only the case where both
variables are described by a joint normal distribution; in Appendix C
we include details of the mathematical extension of his methodology
to our focus on uniformly distributed ages and normally distributed
intensities.

Using the integrated likelihood method has the advantages that
(i) it treats uncertainty in both intensity and age in a symmetric way,
and (ii) the model vector mIL = [f, k]T does not contain the data
ages: therefore the model space that must be sampled has many
fewer dimensions and convergence (in terms of the length of the
Markov chain) may be more rapid although each forward model
evaluation may be slower because of the additional marginalization
over age uncertainty.

Fig. 8 compares the converged posterior distributions from
the age-hyperparameter and integrated-likelihood methods, using
Markov chains of length 106 and 105, respectively beyond their
burn-in period of 5 × 104. The fact that the methods closely agree
gives us significant confidence in our methodology; it is apparent
that the asymmetry in our method does not affect the final result.
Computationally, for a given chain length, the integrated likelihood
method is about a factor of 10 slower than the age-hyperparameter
model. However, in this example this is balanced by requiring a
Markov chain about 10 times shorter and so both examples shown

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/215/3/2008/5101441 by C

N
R

S user on 30 Septem
ber 2019



2018 P.W. Livermore et al.

Figure 7. An ensemble of 1000 individual models (equally spaced along the Markov chain) in grey, compared to the ensemble statistics, for the AH-RJMCMC
method applied to the Synt-Paris700 data set.

Figure 8. A comparison of the posterior distribution of intensity for the integrated likelihood IL-RJMCMC and the age hyper-parameter AH-RJMCMC
methods based on the Synt-Paris700 data set. The 95 per cent credible intervals for the AH-RJMCMC method are shown in filled orange, while the green lines
show the same credible interval for IL; the ensemble averages are shown in red/blue. The underlying real (synthetic) variation is shown in black.

above take about the same amount of time to run: approximately 5
seconds on a modern desktop computer.

5 A P P L I C AT I O N T O T H E PA R I S 7 0 0
DATA S E T

We now apply the age-hyperparameter methodology to the Paris700
data set; the key results are shown in Fig. 9. As for synt-Paris700,
the average, median and mode follow each other closely, and post
0 AD have a focused intensity density giving confidence in the
posterior. Other diagnostic plots are given in Appendix D, which
includes confirmation of the assumption of normally distributed
intensity errors. The time variation after 500 AD is broadly similar
to Genevey et al. (2016), which is not surprising given the dense-
sampling of the secular variation and the small scatter.

There are several data points which do not fit the general trend,
which include a low intensity value (about 40 μT) around 100 BC.
To gauge the effect of outlying results, Fig. 10 shows the effect of
removing data (including the result around 100 BC) whose mean
intensity lies outside the 95 per cent credible interval (evaluated
at each datum’s mid-point age) and re-running the AH-RJMCMC

algorithm. With the outliers removed, at ages 200–300 BC, the
posterior distribution differs markedly: the temporary dip in the
intensity is now removed and values extend no lower than about 50
μT during this period.

One important feature of the posterior shown in Fig. 9 is a periodic
signal contained within the envelope of relatively narrow 95 per cent
credible intervals, most evident post 500 AD. Importantly, as noted
in Section 4, because our model favours minimal curvature, the ex-
istence of such a signal cannot be attributed to anything other than
the influence of the data themselves. This signal was identified in a
similar data set by Genevey et al. (2016) who showed, by analysing
the power spectral density (PSD) of their best-fitting curve, max-
imum power at approximately a 256-yr period. Here, we apply a
similar procedure but to the entire posterior distribution to produce
a probabilistic assessment of frequency content.

From the ensemble of 106 models that we generate from the AH-
RJMCMC method, we take 1000 models (equally spaced along the
Markov chain) and for each we perform the following analysis in
order to determine the PSD as a function of period:
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Figure 9. The time-dependence of the posterior intensity distribution for the Paris700 data set as determined by the AH-RJMCMC method. Top panel: the
average, median, and modal curves with 95 per cent credible intervals shown in filled orange. Middle panel: density plot of the posterior distribution. Bottom
panel: combined plot of a histogram of the vertex position showing the most likely ages for change in linear slope, with the KL divergence in red (right-axis).

(i) Isolation of the time series for the window 500–1900 AD
(note that the models themselves are defined over a broader range,
but this age range is strongly constrained by the data).

(ii) Removal of the linear trend.
(iii) Application of a forward-backward Butterworth filter using

cut-off frequencies of 400 yr−1 and 40 yr−1 to isolate the periods of
interest.

(iv) Computation of the PSD using the method of Welch (1967).

Fig. 11(left-hand panel) shows the PSD as a function of period
for each ensemble member (thin black line), with the PSD for the
median, modal and average model shown in colour. The average of

the set of 1000 individual PSD curves is shown in orange. We note
that the average PSD agrees well with the PSD of the average (blue),
a result that is not expected to be true in general unless all curves
share a similar frequency content. There is a strong indication of a
dominant period of 260–280 yr. Fig. 11(right-hand panel) shows a
normalized histogram of the period corresponding to the maximum
PSD for each of the 1000 representative models, with the best-
fitting normal distribution shown in black (mean 269 yr, standard
deviation 9 yr) that fits the general behaviour very well. We note
that our preferred period of 269 yr is within 1.5 standard deviations
(and thereby consistent with) the approximate 256 yr signal found
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Figure 10. Comparison of the posterior distribution of intensity variation obtained with the Paris700 data set (top panel) and a refined data set with outliers
removed (bottom panel).

Figure 11. Power spectral density as a function of period for the AH-RJMCMC method applied to the Paris700 data set, restricted to the period 500–1900
AD. Left-hand panel: shown in thin black is the PSD for each of the 1000 representative ensemble members; the PSD for the median, mode and average are
shown as green, red and blue, respectively, while orange shows the average of the 1000 individual PSD curves. Right-hand panel: a normalized histogram of the
period corresponding to the maximum PSD, with the best-fitting normal distribution (using only periods 200–300 yr) shown in black (mean 269 yr, standard
deviation 9 yr).

by Genevey et al. (2016). It is worth mentioning that, for their
computations, Genevey et al. (2016) subtracted a non-linear trend
(that differs from our use of a linear trend), which may explain
the small difference in the period. We note that the shape of the
histogram is converged using 1000 models, and that the plot of
PSD is another example of projecting the model m onto a different
space.

It is also of interest to compare our method of handling errors both
in intensity and age with more common methods of treating the ages
as known and increasing the error budget for the intensity. Fig. 12
shows our AH-RJMCMC method applied to the Paris700 data set in
the top panel, compared with the same method applied to three other
variants of the same data set: assumed age errors of zero (with the
age being defined by the mid-point age of the interval), age errors
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Figure 12. A comparison of posterior distributions of intensity using variants of the Paris700 database. From top to bottom: a reproduction of our AH-RJMCMC
method applied to Paris700 (Section 5); the same as above but with assuming the ages are known to be exactly their midpoint values; as above with twice the
intensity error budget; assuming known ages with a minimum intensity error of 5 μT.

of zero with twice the error budget on intensities, and age errors
of zero with a minimum intensity error of 5 μT (as assigned by
Korte & Constable (2011) to all intensity data for the construction
of global field models). There are two key aspects of note. First,
comparing the top two panels of the figure shows that assuming
fixed ages causes rapid changes in the posterior intensity (which are
absent when the ages are allowed to be free parameters), particularly
for relatively sparsely sampled epochs (here clearly identified pre 0
AD). Second, either in doubling the intensity error budget or setting
a minimum threshold of 5 μT results in the smoothing out of most
fluctuations: of importance is that the periodic signal previously
identified post 500 AD is absent in the bottom two panels. A similar
result would likely hold were we to draw fixed ages from the given
uniform distribution as in a bootstrap method, rather than using their
midpoint values. This corroborates other studies (e.g. Genevey et al.
2016; Hellio & Gillet 2018) that have highlighted the mismatch in
time variability between regional and global models, because of the
necessity to include additional smoothing for the global case.

6 A P P L I C AT I O N T O T H E H AWA I I DATA
S E T

We now turn our attention to the data set of the Hawaiian area ex-
tracted from Geomagia.v3 (Brown et al. 2015) that is much more
sparse in time, and which has data ages and intensities both nor-
mally distributed. We adopt an extended prior for the intensity to

be uniform in the range 10–100 μT because of the greater range of
intensities in the data, and also increased the maximum number of
internal vertices to 100. The increased scatter in the data (compared
with Paris700) means that a converged posterior requires a longer
Markov-chain. The results are summarized in Fig. 13, with a chain
length (before thinning) of 5 × 106 after burn-in. Other diagnostic
plots are given in Appendix E, which includes confirmation of the
assumption of normally distributed intensity errors.

As with previous models, the average, median and mode have
a very similar time dependence. However, as expected, the more
scattered data set gives less confidence in the posterior distribu-
tion, reflected in its much broader credible intervals and less fo-
cused density. Where the data is particularly sparse or scattered, the
95 per cent credible interval range is about 30–80 μT (for exam-
ple, at very early times), similar to the range of the prior on the
intensity of the model vertices. Apart from for the very recent data
dated to the 19th and 20th centuries thanks to direct observations,
the width of the credible interval range does not extend much be-
low 20 μT. This should be contrasted with the posterior from the
Paris700 data set, which has a typical credible interval width of just
5 μT. In terms of KL divergence, typical values for the Hawaiian
data set are between 0 and 1 for much of the age window, which
is much less than the comparable diagnostic of the Paris700 data
set (of about 2, for the period post 0 AD). Thus compared with
Paris700, the Hawaiian data do not add as much information to the
prior.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/215/3/2008/5101441 by C

N
R

S user on 30 Septem
ber 2019



2022 P.W. Livermore et al.

Figure 13. The posterior intensity variation for the Hawaii data set. Top panel: the average, median, and modal curves with 95 per cent credible intervals shown
in orange. Middle panel: density plot of the posterior distribution. Bottom panel: combined plot of a histogram of the vertex position showing the most likely
ages for change in linear slope, with the KL divergence in red (right-axis).

One aspect of interest is the quasi-periodic behaviour identifiable
in the top panel of Fig. 13 post 500 AD. Fig. 14 shows the same
power spectral density analysis of Section 5 applied here, for the
period 500–2000 AD. The scatter of the lines in the left-hand plot
is a reflection of the poorly constrained ensemble of model curves
(owing to the sparse data distribution), and in this case the average
of the spectra is not similar to the spectra of the average model. Nev-
ertheless, the spectra of the average, modal and median diagnostics
for the posterior all have a maximum at around 325 yr. The right plot
shows a histogram of the periods of the PSD maxima, with a very
broad but bimodal structure with peaks loosely defined at around
210 and 330 yr. Thus the sparsity of the data set has an associated

very broad spread in the possible models that fit the data, and this
analysis does not identify any specific period. Furthermore, we note
that the Hawaiian curves established by de Groot et al. (2013) and
Tema et al. (2017) using different and more severe selection criteria
do not show the same quasi-periodic features (see discussion).

7 A P P L I C AT I O N T O T H E
LU B E C K - PA R I S 7 0 0 DATA S E T

Our final application of the AH-RJMCMC methodology is to the
Lübeck-Paris700 data set that contains data with ordered age con-
straints. Fig. 15 shows a summary of the posterior intensity varia-
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Figure 14. Power spectral density as a function of period for the AH-RJMCMC method applied to the Hawaii data set, restricted to the period 500–2000 AD.
Left-hand panel: the PSD for each of the 1000 representative ensemble members are shown by thin black lines; the PSD for the median, mode and average are
shown as green, red and blue respectively, while orange shows the average of the 1000 individual PSD curves. Right-hand panel: a normalized histogram of
the period corresponding to the maximum PSD.

tion with time. For the majority of the time window, the posterior is
highly focused and well constrained by the data (with a KL diver-
gence of at least 2).

Of primary interest is the inclusion of stratified data, in particular,
the 10 archeomagnetic data all of age 1665 ± 85 AD but which obey
strict ordering constraints. Although each of these data are consis-
tent with (within error tolerance) the quasi-periodic fit to the un-
stratified data (Fig. 16), the posterior age distributions will be highly
skewed as, for example, the datum of least intensity is most likely to
have an age at the extreme upper end of the interval of [1580,1750].
Fig. 16(a) shows the stratified sequence of posterior ages for the
10 data each coloured differently, with the nominal midpoint age
of 1665 AD marked as the vertical dashed line. The posterior ages
differ markedly from the uniform prior (shown by the flat coloured
rectangles). The posterior estimates of the age and intensity of each
datum (given by the average of the relevant marginal posterior dis-
tributions) are shown in Fig. 16(b) using the same colour scheme.
Each of the original data are marked at their midpoint age of 1665
AD (with error bars) with the posterior estimate marked as a solid
square of the same colour. Thus, for example, the topmost datum
(shown as blue) when treated as part of the entire data set, has an
age which is most likely to be shifted earlier in time than 1665
AD and to a smaller value of intensity than its original estimated
value. Such shifts are also shown in Fig. 17 that shows the joint age-
intensity posterior probability distribution for the two end-members
(red, sky-blue) of Fig. 16(a). On the left we see that the posterior age
is on the lower-most extreme of the prior age interval, and has an
associated posterior intensity which is more focused than the distri-
bution describing the intensity error but centred on a similar value.
On the right, the posterior age is at the extreme upper end of the prior
interval, and has an intensity distribution which has a greater mean
and a much smaller spread than the laboratory-determined intensity
error.

It is worth remarking that, although all the data have a highest
probability that is shifted relative to their nominal original age
and intensity estimates, the stratified data are not passive in the
process of model determination, but rather themselves contribute
to the overall posterior distribution. This process therefore differs
fundamentally from using a given secular variation curve as a means
to estimate age (Le Goff et al. 2002; Pavón-Carrasco et al. 2011).
Although applied here to stratified archeological data, the same
technique could also be used to improve knowledge of the dating
of sedimentary sequences, probably with interesting consequences
for global field modelling.

8 D I S C U S S I O N A N D C O M PA R I S O N T O
O T H E R M E T H O D S

In this paper, we have presented a transdimensional Bayesian
method that can infer the time dependence of intensity evolution; it
has four key elements. First, we co-estimate marginal distributions
for data ages as well by treating these as unknown model parameters.
Second, by averaging over a large ensemble of model realizations
with differing parameter values and complexity, diagnostics (such
as the average and credible intervals) of the posterior distribution
are temporally smooth, yet formally unregularized. Third, because
our method is based on linear interpolation, oscillations in the pos-
terior distribution are only present when absolutely required by the
data, and thus our method presents a powerful tool to probe oscilla-
tory behaviour. Finally, our method is very fast (taking a matter of
seconds) and the code is publicly available.

With these points in mind, it is now instructive to compare the
results of our method to those obtained from two well-known and in-
dependently developed approaches of determining archeomagnetic
intensity evolution. The first we consider is the sliding window
method of Le Goff et al. (2002), in which the intensity evolu-
tion is defined within windows of variable duration (M. Le Goff,
personal communication). The second is the Bayesian scheme de-
veloped by Lanos (Hervé & Lanos 2017; Hervé et al. 2017; Lanos
& Philippe 2017). Like our scheme, it co-estimates data ages us-
ing a similar Monte-Carlo approach, but assumes a cubic spline
(rather than linear) dependence of intensity with time, and achieves
a smooth evolution by regularizing using a ‘shrinkage’ parameter
(Tema et al. 2017) rather than (transdimensional) model averaging.
The differences between the results from all these methods reflect
not only the different methodologies, but also specific user choices.
For Bayesian methods (here, our AH-RJMCMC method and that
of Lanos and colleagues) the posterior depends on the chosen prior
distributions, although for our model this dependence can be quanti-
fied (see the Kullback Leibler divergence described in Section 3.5).
For the sliding window method, a choice needs to be made on the
factors controlling the duration of the window.

Fig. 18(a) shows our AH-RJMCMC method compared to the slid-
ing window scheme for the Paris700 data set. Although the average
curves largely agree, there are distinct differences, particularly pre
0 AD and around 750 AD where either the data are relatively scat-
tered or are outlying to the general trend. In particular, the single
data point of 40 μT around 200–300 BC causes a large oscillation
in our AH-RJMCMC average, yet the sliding window results are
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Figure 15. The posterior intensity variation for the Lübeck-Paris700 data set. Top panel: the average, median and modal curves with 95 per cent credible
intervals shown in orange. Middle panel: density plot of the posterior distribution. Bottom panel: combined plot of a histogram of the vertex position showing
the most likely ages for change in linear slope, with the KL divergence in red (right-axis).

more similar to our AH-RJMCMC method where we have rejected
outliers (see Fig. 10) where the oscillation is absent. In both meth-
ods, the uncertainties are mainly smaller during times of dense data,
but larger during times of data sparsity.

Fig. 18(b) shows our AH-RJMCMC method compared to the
Bayesian method of Lanos using a French data set described in
Hervé et al. (2017) (which is almost identical to our Paris700 data
set within the common time interval). During times of dense data
coverage (50 BC onwards) the two methods agree in both their
average and credible intervals. However, pre 50 BC there are some
significant differences in the average models, in particular at 600

BC, 300 BC and 100 BC, probably due to the rejection of the nearby
data points in the method of Lanos and colleagues. Furthermore,
pre 50 BC the 95 per cent credible intervals are not in agreement.
In our method, periods of large uncertainty generally correspond
to periods of sparse data coverage. In contrast, the curve of Hervé
et al. (2017) appears to have a credible interval width that varies
only relatively slightly in time, even during periods of sparse data
(see, in particular, the period close to 1000 BC). Thus their credible
interval width does not appear to have a simple link with data
sparsity. Similar conclusions can be drawn when comparing the
two Bayesian methods but on the Hawaiian data set of Tema et al.
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(b)(a)

Figure 16. (a) Posterior age distribution for the 10 data with identical midpoint age but which obey stratification constraints; the associated prior distributions
are shown as the coloured rectangles. (b) For each of these 10 data, a comparison of the midpoint age estimate (coloured circle with error bars) with their
corresponding posterior (average) estimates (coloured squares). Both plots use the same colour scheme.

Figure 17. Joint posterior probability distribution with marginals of the data age and intensity for the two end-member cases of the 10 stratified data all with
midpoint age 1665 AD. The left-hand plot shows the distribution of the datum plotted in red in Fig. 16, while the right-hand plot shows the datum plotted in
sky blue in Fig. 16. Green denotes the posterior, orange the prior distribution on age and the normally distributed likelihood for intensity.

(2017), shown in Fig. 19(a). In this case, comparable data gaps of
1500 yr between [4500,6000] BC and [1000, 2500] BC have very
different credible interval widths: respectively, enormous (off scale)
and narrow. For the same periods, our AH-RJMCMC method gives
broad credible intervals whose widths are comparable with each
other.

An important issue concerns treatment of data points that do not
fit with the general trend: of particular note in the Paris700 data set
(e.g. Fig. 18a) are those defining an intensity peak that may have
occurred around 250 BC, and the single point defining an intensity
low around 100 BC. Although it is not possible to know definitively
whether such data represent the true geomagnetic field evolution or
simply have a greater error than assumed, there are two methods
by which such data can be handled. First, we can define and re-
move outlying data; we followed this approach in Section 5, where
we pragmatically defined an outlier by assessing if the single point
defined by the datum’s midpoint age and intensity lay outside the

95 per cent credible interval of the posterior distribution calculated
using the full data set. According to this definition, the single point
having a low intensity value around 100 BC is outlying, whereas
the data cluster around 250 BC are not. We remark that a small
difference in age would place the datum around 100 BC inside the
95 per cent credible interval. Indeed, perhaps a more robust defini-
tion of outliers might be to proceed probabilistically, by calculating
the probability, p, of any given datum (with its assumed distribution
of errors in both age and intensity) falling outside the 95 per cent
posterior credible interval bounds. Data for which p is greater than
some given threshold value (say) 95 per cent (so that there would be
only a 5 per cent probability that the true intensity and age values of
the datum came from within the 95 per cent credible interval) could
be labelled as outliers; such a procedure would likely result in only
a few, if any, data being marked as outlying in the Paris700 data
set. A second approach that proceeds within the Bayesian frame-
work is to keep all the data but allow the data intensity errors to
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(a)

(b)

Figure 18. (a) Comparison of methods on the Paris700 data set: AH-RJMCMC compared with the sliding window method of Le Goff et al. (2002). (b)
Comparison of our AH-RJMCMC method and the Bayesian method of Lanos and colleagues, using a French data set (Hervé et al. 2017).

be hyperparameters, whose posterior distribution is an output of
the algorithm (e.g. Malinverno & Briggs 2004). Data that do not
follow the general trend will then be associated with larger values
of intensity error and therefore given less weight (e.g. Thébault &
Gallet 2010; Licht et al. 2013).

The cluster of one or two data points around 250 BC in our study
gives a local maximum in the posterior intensity. Interestingly, in
both the methods of Lanos and Le Goff, this peak is totally missing,
likely the consequence of inherent smoothing since the timescale
of this feature is roughly the same as the one characterizing the
different peaks over the past 1500 yr (see Fig. 18a and Genevey
et al. 2013, 2016). Although more data are obviously required to
better constrain its existence, there is no reason to believe that such
a feature could not have occurred around 250 BC. In passing, we
note that our approach, which relies on a piecewise-linear temporal
interpolation, is well suited to detect rapid fluctuations of the geo-
magnetic field, such as archeomagnetic jerks (Gallet et al. 2003) or
geomagnetic spikes (Shaar et al. 2011).

Next, we comment on the power of our method to assess periodic
behaviour, which is only permitted as part of the solution where
required by the data. For the Paris700 data set, the fact that our
method shows a dominant periodic signal (see Section 5) of about
270 yr is therefore a strong conclusion. Indeed, it is notable that this
period is in agreement with the period of about 260 yr deduced by
Genevey et al. (2016), despite the differences between approaches

(in particular, in the long-term trend assumed), adding weight to the
robustness of this observation.

Conversely, our method can also be used to assess whether a data
set is compatible with the absence of a periodic signal. We explore
one such example of the sparse Hawaiian data set (Tema et al. 2017)
that is similar to that presented in this paper but with more stringent
selection criteria. It is worth recalling that our own data set can be
viewed as a blind (though reasonable) use of a global database or
a data compilation. Tema et al. (2017) identified four consecutive
peaks in the intensity evolution from 2000 BC to 2000 AD. Fig. 19(a)
compares results from our method with that of Lanos (see Fig. 6c
of Tema et al. 2017). Although our method fits a quasi-oscillatory
signal post 0 AD, we do not find evidence for the final oscillation
around 1500 AD: this is because the data are actually consistent with
linear behaviour and do not require an oscillation. In this respect,
the curve derived from the AH-RJMCMC method appears quite
similar to that proposed by de Groot et al. (2013) constructed using
another Hawaiian data selection. Following an application of our
method, Fig. 19(b) shows the mean posterior value of each data age
and corresponding intensity, and shows that a linear dependence
is compatible by shifting the data within their error bounds. In a
parallel study, a similar assessment of testing whether data can be
shifted (within error bounds) to fit an overall trend was recently
performed by Korte & Constable (2018) to assess geomagnetic
spikes, although in a more ad hoc and non-probabilistic fashion.
Overall, we find that this Hawaiian data set is entirely consistent
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(a)

(b)

Figure 19. Comparison of Bayesian methods on the Hawaiian data set of Tema et al. (2017). (a) results from our AH-RJMCMC method compared with the
Bayesian method of Lanos and colleagues (Tema et al. 2017); (b) the shift in age and intensity from their original mean values (semi-transparent black) to the
mean posterior values (blue).

with a much less oscillatory signal with no obvious period (our red
curve).

We end by commenting briefly on the use of our AH-RJMCMC
tool for archeomagnetic dating of a datum of some given intensity.
In our approach, we would add this datum (with broad uniform un-
certainty on age) to the data set, and run the AH-RJMCMC model.
The posterior marginal age distribution is then part of the model
output. This is to be contrasted with a more standard approach, in
which the datum is compared to a reference curve. Both the AH-
RJMCMC method described here, and the method of Lanos and
colleagues, can perform either calculation. Although our approach
of ‘all data together’ differs from the standard method of distin-
guishing a reference data set from a comparative datum, it has two
advantages. First is that, within a Bayesian formulation, noisy data
should not be removed from the problem but instead accounted for
with their large uncertainties. In our method, this is implemented
by using a very broad prior distribution on the datum age. Second
is that separating the problem into two steps requires an arbitrary
choice. How do we decide what is too noisy to be accounted as
‘reference data’? Taking everything together is an integrated ap-
proach that combines all pieces of information, and that avoids this
arbitrary distinction.
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A P P E N D I X A : DATA

A1 Paris700

We first consider the application to a well-studied data set from
a region, of radius 700 km, centred on Paris, France, in order to
compare our results with previous work. The data were selected
using the same quality criteria as those previously considered by
Genevey et al. (2013, 2016). Our compilation focuses on the past
three millennia and includes all the data selected by Genevey et al.
(2016; and references therein), to which we added data obtained by
Chauvin et al. (2000), Hammond et al. (2017), Hervé et al. (2011,
2013, 2016), Kapper et al. (2015) and Kovacheva et al. (2009). It
comprises 154 entries, which were all reduced to the latitude of
Paris (48.9◦N) using the virtual axial dipole moment (VADM) ap-
proximation. The magnetic intensity of each data point is assumed
to be normally distributed, with a mean and standard deviation esti-
mated from laboratory analysis. The age of each datum is unknown
but assumed uniformly distributed within a given historically dated
interval.

All data points were acquired using the experimental method de-
veloped by Thellier (1959) or using one of its variants (Coe 1967;

Aitken et al. 1988; Yu et al. 2004). At least 2 partial-thermoremanent
magnetization (p-TRM) checks were carried out during the experi-
ments to assess the absence of alteration of the magnetic mineralogy
during the thermal treatment. Each archeointensity result relies on
the average of at least three intensity values regardless of whether
this average was performed at the fragment level or at the frag-
ment group level. The standard deviation of the averaged intensity
values does not exceed 15 per cent of the corresponding means. A
correction of the anisotropy effect on TRM acquisition was made
for the archeological artefacts most prone to this effect (i.e. pottery
and tiles; Genevey et al. 2008). Furthermore, when the effect of
the cooling rate on TRM acquisition was not analysed, we chose
to apply a correction of 5 per cent-decrease to the archeointensity
data (see discussion in Genevey et al. 2008). We did not consider a
selection criterion on age uncertainties.

Finally, to remain consistent with the data selection criteria in
Hervé et al. (2017) we omit the datum 412.5 ± 125 BC reported in
Hervé et al. (2013).

A2 Hawaii

To examine the effect of data sparsity on our method, we consider
a data set of Hawaiian intensity measurements taken from the Ge-
omagia.v3 database (Brown et al. 2015). Each data point has both
an intensity and age that are assumed normally distributed; the age
estimate comes from radiocarbon analysis except for the most re-
cent data whose ages are constrained by historical observations.
For the latter data, we arbitrarily fixed the age standard deviation
σ = 0.5 yr. Our approach here relied on much less selective cri-
teria, which nevertheless led to a data set much more sparse than
the Paris700 compilation. We retained the results whose quality is
supported by an alteration test, regardless of the nature of this test,
and which possess uncertainties in both intensity and in age. Be-
tween about 9000 BC and 4500 BC most available data lack age
uncertainties, and we have therefore focused on the past 4500 yr. We
complemented the compilation with the data sets recently obtained
by de Groot et al. (2013) and Cromwell et al. (2015). All 134 data
points are reduced to the latitude of Kilauea volcano (19.42◦N).

A3 Lübeck-Paris700: an example of stratification

We combined the Paris700 data set (between 900 AD and 2000 AD)
with the stratified data set from Lübeck, Germany (Schnepp et al.
2009), whose data ages are not independent and must obey a strict
ordering in time. These archeointensity data were obtained from
a long series of superimposed bread oven floors in a bakery that
was in activity from ∼1300 AD to ∼1750 AD. Although Lübeck
is 800 km (marginally more than 700 km from Paris), we reduce
these measurements to the latitude of Paris by assuming that the
non-dipole field effect was negligible between the two regions.

A P P E N D I X B : T H E A H - R J M C M C
A L G O R I T H M

B1 Model overview

Our aim is to sample the joint posterior probability distribution of
the model (the intensity as a function of time, alongside the data
ages), given the data (the intensity values), which is described in
Section 3 in the main text. Here we present in detail the method
we use to sample from (and therefore characterize) the posterior
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distribution. For completeness, however, we first briefly summarize
the modelling framework.

The model is defined within the age interval [tstart, tend], which
needs to be large enough to span the temporal distributions (with
uncertainty) of all data; otherwise some realizations of the data
ages will be outside the model space. In the case of uniformly
distributed ages, this is straightforward; for normally distributed
ages, we ensure that the model boundaries lie at least 2 standard
deviations from each datum mean-age.

The posterior is parametrized by the model vector m = [f, k, a]T,
where f is the vector containing the endpoint intensities and the k
internal vertex intensities and ages:

f = (Fstart, Fend, F1, F2, . . . , Fk, t1, t2, . . . , tk),

and a are the data ages. The posterior requires a prescription of the
likelihood (assumed normal, see Section 3.3) and prior distributions.

The prior distributions on the vertex intensities and num-
ber of vertices k are assumed independent and uniform, Fj ∼
U(F̃min, F̃max), k ∼ U(0, kmax). Without stratigraphy constraints,
the ages are assumed independent and either uniformly or normally
distributed a j ∼ U(amin

j , amax
j ), or a j ∼ N (μ j , λ

2
j ), where μj and λj

are the given mean and standard deviation. If a subset of the ages
have stratigraphy constraints, then they are assumed to be indepen-
dently distributed yet ordered: aj < aj + 1 < . . . . In practice, this is
handled by drawing the ages independently and discarding a set of
draws if the stratification constraints are violated. For ease of model
development, the vertex ages are assumed confined to an equally-
spaced discrete set of N values between the temporal limits of the
model [tstart, tend]; the joint prior distribution of the vertex ages (in
which their order is irrelevant) is then

p((t1, t2, . . . , tk)|k) =
[

N !

k!(N − k)!

]−1

.

Our algorithm is to assemble a Markov chain, whose distribution
converges to the posterior distribution we seek. To add a new model
to the Markov chain, we propose a new model m

′
which differs from

the current model m by virtue of one of several possible moves with
given probability:

(1) Change the value of the intensity (Fj) of a randomly selected
vertex j (prob 1/3)

(2) Alter the age-distribution of vertices (prob 1/3) by either

(a) Move in age: change the age (tj) of a randomly selected vertex
j (prob 1/9)

(b) Birth: create a new vertex (prob 1/9)
(c) Death: remove a vertex (prob 1/9)

(3) Resample a randomly chosen subset of ages in a (prob 1/3)

B2 Proposals

Each of these proposals is given in more detail below.

B2.1 Change the value of intensity

For move type (1), we perturb

F ′
j = Fj + z,

where z ∼ N (0, σ 2
change), where σ change is a user-specified standard

deviation. Note that

p(F ′
k |Fk) = 1

(2π )1/2σchange
exp

[
− (F ′

k − Fk)2

2σ 2
change

]

which is equal to p(Fk |F ′
k). Thus this move is symmetric.

B2.2 Move in age

For move type (2a), we alter the age tj of vertex j where j is randomly
selected

t ′
j = t j + y

where y represents a temporal shift to one of the unoccupied dis-
crete set of ages (of which there are N − k). However, in the limit
(N → ∞) that we will eventually take, all positions are unoccu-
pied with probability 1 and so we may model age as a continuous
variable and draw y ∼ N (0, σ 2

move) where σ 2
move is user-specified.

Again, because of the symmetry of the distribution,

p(t ′
j |t j ) = p(t j |t ′

j )

and the move is symmetric.

B2.3 Birth

For move (2b), we give birth to a new vertex by randomly selecting
an unoccupied epoch and assigning an intensity value; we also
increase k by 1. In the discrete case, there are N − k available
choices of age, which in the continuous limit becomes a uniform
distribution. The value of intensity we give the point is not arbitrary,
but a perturbation away from its interpolated value from the current
model. Suppose we choose t ′

j which lies between tj and tj + 1. Then
we set

F ′
j = F∗

j + r,

where r ∼ N (0, σ 2
birth), and F∗

j is the value found using a linear
interpolant between tj and tj + 1. We then need to augment the model
vector by F

′
j and t

′
j . The proposed model vector differs then from

the current model by just two additional parameters: all other values
(aside from k) remain the same.

B2.4 Death

For move (2c), we remove at random one of the vertices (with its
associated intensity value) from the current model, and reduce k
by 1. The proposed model therefore has two fewer parameters than
the current model—all remaining parameters (aside from k) are
identical.

B2.5 Resample ages

A subset of the ages in a of size �Ndata/β	 (with β a user-specified pa-
rameter) is resampled according to the prior distributions (uniform
or normal). This move is symmetric.

B3 Acceptance probabilities

Having defined a new proposal m
′
, we need to decide on whether

to accept it or not. For fixed-dimension MCMC modelling (i.e. k
constant) we define

α = min

(
1,

p(d|m′) p(m′) q(m|m′)
p(d|m) p(m) q(m′|m)

)

that is the ratio of the products of the likelihood, prior, and proposal
probability. This ratio is then compared with a randomly drawn
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uniform variable r ∈ U[0, 1]. If α > r then the model is accepted, if
not it is rejected.

For the general transdimensional case, Green (1995) showed that
the proposal ratio can be written as

q(m|m′)
q(m′|m)

= j(m|m′)qm′→m(u′)
j(m′|m)qm→m′ (u)

|J |.

Here, j(m|m′
) is the jump probability: the probability that the al-

gorithm chooses to select proposal m from model m
′
. The pdfs

qm′→m(u′) and qm→m′ (u) give the probability of the random vari-
ables needed to make the proposal; note that, for example, qm′→m(u′)
can depend only on the current state m

′
of which u

′
is a perturba-

tion. Finally, J is the Jacobian of transformation. When making a
proposal, if any of the random variables drawn lie outside their prior
distribution then p(m

′
) vanishes and the acceptance ratio is 0: the

proposal is never accepted.

B3.1 Moves of fixed dimension

If k is unaltered, then since both moves (1), (2a) and (3) are sym-
metric i.e. q(m|m′) = q(m′|m), the prior distributions cancel out
and α is simply the minimum of 1 and the ratio of the likelihoods:
e−(φ′−φ), where φ is defined in eq. (2).

B3.2 Birth

For a birth move, suppose that model m has dimension k and m
′

dimension k + 1. Then the ratio of priors is

p(m′)
p(m)

= p(k + 1) p(t1, t2, . . . , tk+1) p(a)
∏k+1

j=1 p(Fj )

p(k) p(t1, t2, . . . , tk) p(a)
∏k

j=1 p(Fj )

=
[

N !
(k+1)!(N−[k+1])!

]−1

[
N !

k!(N−k)!

]−1
(F̃max − F̃min)−1

= k + 1

N − k
(F̃max − F̃min)−1. (B1)

We now need to consider the ratio of the proposal probabilities.
For birth, the jump probability is 1/3, and we further need to draw
a specific additional age from the unoccupied ages (probability (N
− k)−1) and then draw an intensity from its assumed normal dis-
tribution centred on the interpolated value with probability q(F ′

j ).
The model vector is simply augmented with the new age and inten-
sity, and the transformation (described by the Jacobian J) is simply
a relabelling of indices; therefore J = 1. The ratio of transition
probabilities is then

q(m|m′)
q(m′|m)

=
1
3 (k + 1)−1

1
3 (N − k)−1q(F ′

j )
, (B2)

where

q(F ′
j ) = 1√

2πσ 2
birth

e−(F ′
j −F∗

j )2/2σ 2
birth . (B3)

The acceptance ratio is then

α = min

[
1, e−(φ′−φ) k + 1

N − k
(F̃max − F̃min)−1

1
3 (k + 1)−1

1
3 (N − k)−1q(F ′

j )

]

= min

[
1, e−(φ′−φ) (F̃max − F̃min)−1 q(F ′

j )
−1

]
.

Note that if instead of drawing the new value from a Gaussian
distribution q(F ′

j ) we proposed a new value from the uniform prior

distribution U [F̃min, F̃max], we would have terms that would cancel
out and α would then depend only on the ratio of likelihoods.

B3.3 Death

For the acceptance probability of the death of vertex j, suppose
that model m has dimension k and m

′
dimension k − 1. The jump

probability is 1/3 and the doomed vertex (from k equally probable
choices) needs to be removed; there is no requirement to generate
any new variables. Each of the ratio of the priors and the proposals
are simply the reciprocal of those for birth with k replaced by k −
1.

α = min

[
1, e−(φ′−φ)

(
F̃max − F̃min

)
q(Fj )

]
(B4)

where q(Fj) is given by (B3). We finally note that none of the
acceptance ratios depend on N, or on the choice of prior distribution
for the data ages (which cancels out in all cases). We therefore take N
to be infinitely large, converting each vertex age into an independent,
continuous, uniformly distributed random variable.

A P P E N D I X C : A N I N T E G R AT E D
L I K E L I H O O D F U N C T I O N

At the heart of the Bayesian method is a likelihood function, which
gives the probability of an observed intensity value F given an
assumed underlying model. If the datum’s age is assumed error-
free and the true intensity value is y, the likelihood is

p(F |y) = 1√
2πσ

exp

[
− (F − y)2

2σ 2

]
. (C1)

However, because the datum’s age itself is not known precisely,
we need a method of incorporating its uncertainty into the modelling
process. In the principal method we consider in this paper, these
effects are accommodated by including the data ages into the model
vector m = [f, k, a]T, and then successively resampling a according
to the specified prior distribution. For our problem, this is a natural
way to proceed, because the marginalized posterior distributions of
the data ages (which are of significant scientific value) are trivial to
compute. However, it is worth noting that this is not the only way
of setting up the model: rather than including the data ages in the
model vector and using the intensities in the likelihood, we could
swap these around. Thus in an alternative model, we might use the
model vector m = [f, k, F]T where F = (F1,F2, . . . ) are the data
intensities, and use for the likelihood the uniform distribution on
data age. The fact that these two model setups are different is a
manifestation of the asymmetry of the way in which the data is
handled. Ideally, the data ages and intensities, both accompanied
with a specific error distribution, should be treated symmetrically
as they enter on the same footing.

Sambridge (2016) describes a method in which 2-D data with
known error distributions are treated symmetrically by a piecewise
linear MCMC algorithm. He considers only the case where both
variables are described by a joint normal distribution: here, we
extend his methodology to our focus on uniformly distributed ages
and normally distributed intensities.

The keystone of Sambridge (2016) is a definition of the likelihood
that expresses the probability of realizing a particular datum d =
(F, a), where F is its intensity and a is its age, given a model curve
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c (here, the piecewise linear description of intensity with time).
This can be written as an integral over the whole curve in intensity-
time space, considering a general source point q on the curve c
parametrized by arc length:

p(d|c) =
∫

c
p[d|q(s)]p[q(s)]ds. (C2)

Each choice of q represents a different and equally probable [and
thus p(q(s)) is uniform] realization of the datum’s true intensity
and age. It is worth noting that the choices of (i) parametrising
c in terms of arclength, rather than age or intensity (as we could
have done in our case) and (ii) assuming that all values of q are
equally probable, produces a method which is symmetric in the
variables.

There are two ingredients required in the above. First, because
each choice of q is assumed equally probable, we can calculate
p[q(s)] = C by integrating over the whole curve:
∫

c
p[q(s)]ds = C L = 1,

where L is the total arclength of the curve of interest; hence C =
1/L.

Second, we need to be able to evaluate the likelihood of realizing
the data d assuming the true value is at q(s). We assume a normally
distributed intensity F ∼ N (Fq , σ

2), where Fq is the intensity at q,
and uniform in age a ∼ U[T0, T1]. We will always consider a model
curve c that includes the entire age interval [T0, T1], and because
the datum age probability is zero outside this interval, in (C2) we
can restrict attention to ages within [T0, T1]. Suppose there are j line
segments that we need to consider, each with a start and terminal
age. We will consider each in isolation, and add their contributions
together.

We can parametrize the jth linear segment of the model by a new
variable 0 ≤ θ ≤ 1, where s = ljθ and lj is the arclength of the
segment. Hence ds = l j dθ and the contribution to (C2) is

l j

L

∫ 1

0
p(d|q(θ ))d θ =

∫ 1

0

l j√
2π σ L (T1 − T0)

× exp

[
− (F − Fq (θ ))2

2σ 2

]
dθ,

where Fq(θ ) is the intensity at q(s(θ )). Now,

F − Fq (θ ) = F − [(1 − θ )F0 + θ F1] = a − θb,

where F0 and F1 are the start and end values of the intensity in the
segment, a = F − F0 and b = F1 − F0. Hence the contribution can
be written

l j√
2π σ L (T1 − T0)

∫ 1

0
exp

[
− (θ − θ̄ )2

2σ 2
θ

]
dθ, (C3)

where using the notation of Sambridge (2016), θ̄ = a/b and σθ =
σ b−1. Note that in Sambridge (2016), his eq. (A9) the definition of
σ θ has a typographic error.

The contribution is thus

l j

√
2σθ√

2π σ L (T1 − T0)

√
π

2

[
erf(t2) − erf(t1)

]

where t2 = (1 − θ̄ )(
√

2σθ )−1, and t1 = −θ̄ (
√

2σθ )−1.
Summing up over all the line segments,

p(d|c) = 1

2 L (T1 − T0)

∑
j

l j

b j

[
erf(t2,j) − erf(t1,j)

]
.

Assuming that the data (indexed by i = 1, 2, . . . Ndata) are inde-
pendent, the combined likelihood is then

Ndata∏
i=1

1

2 L (T1,i − T0,i )

∑
j

l j

b j,i

[
erf(t2,j,i) − erf(t1,j,i)

]
. (C4)

It is interesting to consider the limit of small error in age in
eq. (C3), corresponding to the case of F0 = F1 = Fq(θ ), in which
there is only a single line segment (as the age interval is too small
to contain more than one). In this limit the likelihood collapses to

1√
2π σ (T1 − T0)

exp

[
− (F − F0)2/2σ 2

]
,

which recovers the usual normal likelihood (C1), albeit normalized
by the (infinitesimal) time duration.

Finally, we note that numerically, it is easiest to use the log-
likelihood, rather than the likelihood itself. In cases where t1 and t2

are large (where the model is a very poor fit to the data), the log
likelihood is numerically challenging to compute since both error
functions are −1 to machine precision with a difference of zero. In
this case, we can set the likelihood (for this datum) to be a prescribed
small number (for example, 10−50). Note that this case only arises
when the model is a very poor fit to the data, which can occur on
initializing the algorithm with a randomized model, but practically
will never enter the MCMC sampling beyond ‘burn-in’.

A P P E N D I X D : S U P P L E M E N TA RY P L O T S
F O R T H E PA R I S 7 0 0 DATA S E T

Fig. D1 shows other diagnostics of the AH-RJMCMC method ap-
plied to the Paris700 data set that supplement those given in Sec-
tion 5. The top row shows the misfit against iteration (i.e. the index
of the Markov-chain) and a normalized histogram of the number of
internal change points. The burn-in period (marked by the red bar) is
sufficiently long for the misfit to drop to close to its lowest value, and
the range of change points (fixed between 1 and 50) is large enough
to capture the distribution of vertices, which peaks at around 40.
Finally, the bottom panel of Fig. D1 shows a normalized histogram
of the difference between the intensity values from Paris700 and the
average posterior evaluated at the data mid-point ages weighted by
the data intensity errors: 	F/σ = (

g(a j ) − F j

)
/σ j for each datum

j (see Section 3.3). The close similarity of the histogram and the
standard N (0, 1) distribution gives us confidence in the assumed
normal distribution of intensity error.
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Figure D1. Supplementary diagnostics for the AH-RJMCMC method applied to the Paris700 data set. Top left-hand panel: misfit against Markov-chain index
where the red bar indicates the end of the burn-in period. Top right-hand panel: normalized histogram of number of internal change points. Bottom left-hand
panel: histogram of weighted residuals of the data set and the average posterior compared with the normal distribution N (0, 1) in red.

A P P E N D I X E : S U P P L E M E N TA RY P L O T S
F O R T H E H AWA I I DATA S E T

Fig. E1 shows other diagnostics of the AH-RJMCMC method ap-
plied to the Hawaii data set that supplement those given in Section 6.
The top row shows the misfit against iteration (i.e. the index of the
Markov-chain) and a normalized histogram of the number of inter-
nal change points. The burn-in period (marked by the red bar) is
sufficiently long for the misfit to drop to close to its lowest value,

and the range of change points (fixed between 1 and 100) is large

enough to capture the distribution of vertices, which peaks at around
50. Finally, the bottom figure shows a normalized histogram of the
difference between the intensity values from Hawaii and the average
posterior evaluated at the mid-point ages weighted by the data set
intensity errors: 	F/σ = (

g(a j ) − F j

)
/σ j for each datum j (see

Section 3.3). The close similarity of the histogram and the standard
N (0, 1) distribution gives us confidence in the assumed normal
distribution of intensity error.
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Figure E1. Supplementary diagnostics for the AH-RJMCMC method applied to the Hawaii data set. Top left-hand panel: misfit against Markov-chain index
where the red bar indicates the end of the burn-in period. Top right-hand panel: normalized histogram of number of internal change points. Bottom left-hand
panel: histogram of weighted residuals of the data set and the average posterior compared with the normal distribution N (0, 1) in red.
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