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Abstract. We propose a new algorithm for calibrating defini-
tive observatory data with the goal of providing users with
estimates of the data error standard deviations (SDs). The
algorithm has been implemented and tested using Chambon-
la-Forêt observatory (CLF) data. The calibration process uses
all available data. It is set as a large, weakly non-linear, in-
verse problem that ultimately provides estimates of baseline
values in three orthogonal directions, together with their ex-
pected standard deviations. For this inverse problem, abso-
lute data error statistics are estimated from two series of ab-
solute measurements made within a day. Similarly, variome-
ter data error statistics are derived by comparing variometer
data time series between different pairs of instruments over
few years. The comparisons of these time series led us to use
an autoregressive process of order 1 (AR1 process) as a prior
for the baselines. Therefore the obtained baselines do not
vary smoothly in time. They have relatively small SDs, well
below 300 pT when absolute data are recorded twice a week
– i.e. within the daily to weekly measures recommended by
INTERMAGNET. The algorithm was tested against the pro-
cess traditionally used to derive baselines at CLF observa-
tory, suggesting that statistics are less favourable when this
latter process is used. Finally, two sets of definitive data were
calibrated using the new algorithm. Their comparison shows
that the definitive data SDs are less than 400 pT and may
be slightly overestimated by our process: an indication that
more work is required to have proper estimates of absolute
data error statistics. For magnetic field modelling, the results
show that even on isolated sites like CLF observatory, there
are very localised signals over a large span of temporal fre-
quencies that can be as large as 1 nT. The SDs reported here

encompass signals of a few hundred metres and less than a
day wavelengths.

Keywords. Geomagnetism and paleomagnetism (instru-
ments and techniques)

1 Introduction

Geomagnetic field models have drastically improved over
the last decades because of the availability of satellite data
(e.g. Olsen et al., 2006, 2014; Lesur et al., 2008, 2015;
Sabaka et al., 2015; Finlay et al., 2016). Observatory data
are nonetheless necessary because satellites are never sam-
pling the magnetic field at the same point twice, and that of
course limits our ability to separate spatial and temporal vari-
ations of the magnetic field. To the contrary, in observatories
the field is sampled at a single place and its temporal varia-
tions are continuously recorded on timescales ranging from
seconds to decades. Therefore most of the modellers utilise
observatory data to derive their field models – e.g. they are
heavily used in the level 2 products of the European Space
Agency magnetic satellite mission: Swarm (Macmillan and
Olsen, 2013).

When using exclusively observatory data (e.g. Wardinski
and Holme, 2006; Wardinski and Lesur, 2012; Lesur et al.,
2017), or when combining them with satellite data to model
the different contributions to the geomagnetic field, it is al-
ways difficult to estimate the level of noise in the data. This
is because we are unable to model some contributions to
the field that ultimately get into the error budget (e.g. Fin-
lay et al., 2016). However, as the scientific community pro-
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gresses in its modelling effort, it becomes increasingly diffi-
cult to separate genuine magnetic large- or medium-scale sig-
nals in observatory data from drifts and discontinuities gen-
erated by local signals or, possibly, observatory operations.
In order to robustly model the rapid core magnetic field vari-
ations, or describe the external field variations during mag-
netic quiet times, the scientists, engineers or technicians in
charge of observatory operations should provide their data
with estimates of their accuracy. This is of course very chal-
lenging because observatory data are combinations of mag-
netic measurements, where calibration operations – the so-
called baseline estimations, play a crucial role.

The goal of this paper is to describe an algorithm for base-
line estimations that provides information on the observatory
definitive data error statistics. Of course, as input this process
needs an estimation of the accuracies of the different data ac-
quired, and these depend on the observatory setup. The algo-
rithm was applied to provide error estimates for the French
national observatory in Chambon-la-Forêt (CLF) for the year
2016. This time period was chosen because three sets of in-
struments were available on site, recording simultaneously
data for most of the year. It should be noted that the observa-
tory setup has been significantly modified during that same
year, introducing several jumps and difficulties. In the next
section is described the instrument setting in CLF and then,
in Sect. 3, is explained how the noise in each individual data
type collected on site has been estimated. The fourth section
is dedicated to the description of the baseline calculation. Fi-
nally, the results are discussed and our conclusions given in
the last two sections.

2 Observatory setup

Chambon-la-Forêt magnetic observatory (CLF) has been
running since 1936 as a replacement of the Val-Joyeux
(1901–1935) and previously St. Maur (1883–1900) observa-
tories. They had to be closed because of the increasing level
of noise in the data due to the construction of urban electric
train lines nearby the observatories.

In 1936 the instruments used to measure continuously the
magnetic field were photographic recorders of the field di-
rection, but at the beginning of the 1970s, digital instruments
were installed. They became the reference instruments only
in 1986 (Bitterly et al., 1986). Typically they consist in a pair
of magnetometers: a “variometer” made of fluxgates along
three orthogonal axes and an absolute scalar instrument mea-
suring the strength of the field. These instruments are com-
bined with a data recording system that also controls the elec-
tric power provided. The fluxgates and parts of the recording
system are sensitive to temperature variations and possibly
other environmental variables such as humidity. The output
values of the fluxgates are therefore prone to drifts that have
to be accounted for when deriving definitive (i.e. calibrated)
observatory data. The observatory buildings are such that

variations of the temperature are damped, or actively con-
trolled, for the drift of the instruments to remain relatively
smooth and small.

Another characteristic of the variometer is that it is most
accurate on a limited range of values. Therefore, the flux-
gates are traditionally oriented so that they are aligned along
the magnetic north, east and vertical-down directions. The
recorded values have therefore to be rotated in the local
geodetic north, east, down reference frame. This is also part
of the calibration process. In the local geodetic north, east,
down reference frame, the magnetic field components are re-
spectively called X, Y and Z components.

In 1936, the CLF observatory instruments were set in a
vault. This vault was still housing in 2015 two pairs of in-
struments that are referenced here as CL1 and CL2. Their
positions are indicated on the site plan – Fig. 1. The types
and characteristics of the instruments are given in Table 1.
The notation CLx refers to a combination of location, pillar
and instrument, since a modification of any of these elements
changes the characteristics of the measurements. Due to the
ageing of the building, water infiltration became a difficult
issue in recent years. Therefore, two new shelters were es-
tablished to house the magnetometers. CL1 remained in the
same place, in the vault, as a reference. CL2 instruments were
moved to CL4. A new pair of instruments was set in CL3.

The CL1 has been continuously recording the mag-
netic field throughout 2014 to 2016, but pumping (on
17 March 2016 and 26 July 2016) was necessary to keep
the water at low level inside the vault. The pumping gen-
erates only a small amount of noise visible in CL1 data, but
it is likely that the water level itself has an influence on the
recorded values. On 23 September 2016, perturbations in the
data series are associated with building works done to restore
the ventilation system of the vault.

The CL3 instruments were running for more than 6 months
in 2015 – during that time we tested the performances of the
new shelters. The CL3 instruments were set in their final po-
sitions on 8 January 2016 and not further disturbed before
the end of November 2016.

The CL2 set of instruments that were originally in the vault
a few metres away from CL1 were moved to their new po-
sition in CL4 on 17 February 2016. However, it took some
time for the instruments to settle in their new locations. Var-
iometers were re-oriented on 25 March 2016. We consider
that the data are reliable for CL4 from 13 April 2016. The
CL2 instruments up to 17 February 2016 and the CL4 in-
struments from 13 April 2016 are the CLF observatory main
instruments – in between, data have been patched with the
CL3 instrument outputs.

Absolute measurements used to calibrate variometer data
are collected on a pillar roughly mid-way between CL1 and
CL3 – see green labels in Fig. 1. During normal operations,
absolute measurements are made twice a week, during the
quietest days, early in the morning or late in the afternoon
to avoid rapid variations of the magnetic field strength and
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Table 1. List of instruments in place at CLF observatory in 2016. CL1–4 correspond to the different sets of instruments described in the main
text; Abs. is the set of instruments used to acquire absolute data.

Vector (Fluxgate) Scalar (Overhauser)

Type Start End Type Start End

CL1 triaxial fluxgate 03/1990 – SM100 01/2002 –
MAGNOLIA

CL2 VM-391 10/2004 02/2016 SM100 01/2008 02/2016
HOMOCENTRIC

CL3 VM-391 04/2015 12/2016 SM100 04/2015 12/2016
HOMOCENTRIC

CL4 VM-391 02/2016 – SM100 02/2016 –
HOMOCENTRIC

Theodolite Fluxgate Scalar

Abs. ZEISS-010A BARTINGTON SM90

Figure 1. Plan of the Chambon-la-Forêt observatory site. Positions
of the instruments used in this study are indicated. Distances are
shown on the picture side in metres. Roughly 200 m separate CL3
from CL4.

direction associated with ionospheric signals. Again, the in-
struments used are listed in Table 1.

3 Observatory data

In order to estimate baseline values (i.e. calibration param-
eters) that are used to compute definitive observatory data
values, the following data are available:

– Absolute measurements of the declination (Da), incli-
nation (Ia) and strength (Fa) of the magnetic field on
the absolute pillar. These values are measured nearly in-
dependently, and therefore it is assumed that the errors
associated with these data are not correlated.

– Vector variometer data (Xv,Yv,Zv). These data are not
fully independent since the three fluxgates are not ex-
actly orthogonal, but the correlation of the associated
errors is likely to be small and will be neglected here.

– Absolute scalar measurements in the variometer build-
ing (Fv). The errors for these data are clearly indepen-
dent from other data types. It can be noted that these
data are generally not used for the baseline estimations.

Our goal is to use all these data in a large inverse problem,
and derive from them the baseline values together with an
estimate of their variances. To be able to achieve this, we
need first to estimate the raw data error statistics. We describe
how that has been done in the two following subsections.

3.1 Absolute measurement

Absolute measurements are made twice a week in CLF, typi-
cally once in the morning and once in the late afternoon. Dif-
ferent types of errors are associated with these measurements
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– e.g errors in pointing the reference mark, levelling errors,
collimation errors, timing errors and errors associated with
the changes in magnetic field strength and direction during
measurements; the list is not exhaustive. Studying indepen-
dently all these sources of errors is a complex task, so here
we tried to estimate an overall error budget for absolute mea-
surements.

Of course, the acquisition of absolute measurements has
been going on for years and there is a large collection of data
that can be used to estimate their noise level. Measurements
are made of the declination, inclination and total intensity
but are reported in yearbooks (http://www.bcmt.fr/bulletins.
html) as declination, horizontal component and vertical com-
ponent time series. When compared with variometer data
and estimated baselines, these absolute measurements appear
to be contaminated by errors with zero means and standard
deviation (SD) values around 2 arcsec for the declination,
0.2 nT for the horizontal component and 0.1 nT for the verti-
cal component. Estimates of the SD for the total intensity er-
rors are also available, with values around 0.2 nT. Of course,
these values vary along the years and also depend on the
observers and equipment used. It should be first noted that
these errors estimates are correlated and redundant since only
three measurements are really done. Finally, these estimates
rely on strong assumptions on the baseline behaviour (it has
always been assumed that the baseline variations should be
smooth in time). Although these values give us an idea of the
absolute measurement noise level, alternative ways of deriv-
ing error SDs should be investigated.

In this work, the approach used to derive estimates of the
SDs associated with absolute measurement errors rely on the
record of several absolute measurements in a single day and
the hypothesis that baselines have constant values over that
day. To estimate these error SDs it is first necessary to com-
pute for each absolute measurement a difference relative to
variometer data. The daily mean of differences give an idea
of the baseline value for that day. Deviations from that mean
value lead to an estimate of the SD. There are two difficulties
associated with these calculations. The first is due to the ori-
entation of the variometers that is only partially known. To
solve this problem it is assumed that the vertical component
is truly aligned with the local vertical, and we impose that
the daily mean declination given by the variometer matches
the mean observed absolute declination – i.e. we apply a ro-
tation on the variometer data around its Z axis so that the
mean declination differences between absolute and variome-
ter data are zero. The second difficulty is associated with the
time necessary to take absolute measurements: absolute in-
clination data are obtained a few minutes (typically 3 min)
after declination data. Furthermore, it takes a few minutes to
make the four measurements entering in the estimation of the
inclination and declination. Finally, total intensity measure-
ments are made either during the inclination measurements,
or after. These time shifts are corrected by tracking tempo-
ral variations of the horizontal and vertical components of

the variometer data, but they contribute significantly to the
budget error of absolute measurements.

In 2016, we made twice a series of 24 absolute measure-
ments within a 24 h period. The first series, hereinafter Se-
ries 1, started on 29 August 2016 at 15:07, and finished at
14:00 on 30 August 2016. The magnetic activity remained
weak during this period with a Dst index staying between
2 and −7 nT. Over the 24 measurements of this series, two
appeared to be anomalous and have not been used to esti-
mate statistics. They correspond to time intervals when the
magnetic field varied rapidly at CLF observatory. The second
time series, hereinafter Series 2, started on 27 October 2016
at 07:30 and finished the same day at 11:30. The Dst index
stayed between −34 and −45 nT. All 24 measurements are
valid. For both time series we used variometer data from
CL4. Results are summarised in Table 2. The absolute mea-
surements over these 2 days have been made in the same way
as absolute measurements are made throughout the year.

Although the estimated SDs actually represent the cumu-
lated errors of the absolute measurements and those of the
variometer data, in the following these estimates are used
as the SDs of the absolute measurements alone. Further-
more, having less than 50 samples to estimate the SDs is
clearly not enough, and other campaigns of measurements
will have to be organised. In this work, the following val-
ues are used: σDa = 1.4 10−3 deg (i.e. ' 5 arcsec), σIa =
0.6 10−3 deg (i.e.' 2.2 arcsec) and σFa = 0.3 nT. These val-
ues correspond to the estimates derived from Series 2 even if
the field was more active for that day. We made this choice
because for this series the observations were made exclu-
sively during daylight, as is usually the case during normal
observatory operations. Finally, it should be pointed out that
these values are valid only for CLF observatory and can be
used here because the data set of absolute observations is ho-
mogeneous. However, in the algorithm described below there
is no difficulty in introducing different SD values, if that is
necessary, for some of the observations.

3.2 Variometer data

The fluxgates provide data in millivolts (mV). These data
need to be scaled to obtain the usual nanotesla (nT). Fur-
ther, the three orthogonal fluxgates forming the variometer
are not exactly orthogonal, and this has to be corrected using
so-called “non-orthogonality” angles. Scaling values and an-
gles have to be estimated in an independent calibration pro-
cess that we do not consider here. We note that any errors in
these estimates affect the quality of the data and enter in their
error budget, as would do a poor levelling of the variometer
in the process described below.

Variometer and scalar instruments have a very good reso-
lution but the vector components and total intensity data are
only reported with 10 pT resolution. The true level of noise in
the data is, however, much higher. To find SDs for these data
errors, variometer data sets obtained with the different pairs
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Figure 2. Mean differences (in red) and SDs (in blue) of the three components of CL1 and CL2 variometers and associated scalar instruments
for year 2014. The red crosses can be seen as the cumulated baseline values of the CL1 and CL2 instruments.

Table 2. Statistics obtained from series of absolute magnetic data during 2016, assuming constant baselines for all data of a series. The
number of valid data for each time series is N .

Declination Inclination Intensity
Start End N (arcsec) (arcsec) (nT)

Mean SD Mean SD Mean SD

Series 1 29/08 15:07 30/08 14:05 22 2.0 3.1 31.1 1.8 −15.2 0.3
Series 2 27/10 07:30 27/10 11:30 24 2.8 5.0 34.9 2.2 −15.5 0.3

of instruments available on CLF site are compared. These op-
erations are easily done but again it is necessary to make the
hypothesis that baseline values are constant over a day for
all instruments. As for absolute data, variometer data have
to be realigned so that they can be compared. Again it is as-
sumed that vertical components are always truly vertical, and
the Xv and Yv components are rotated so that the measured
declinations are the same for the two compared variometers.
Ultimately, for each magnetic field component of the vari-
ometers, and for the total field intensity, we obtain per day

a mean value of the differences between the studied instru-
ments pair, and a SD.

Figure 2 presents the results obtained for the CL1 and CL2
pair for the year 2014. The obtained mean values can be seen
as the cumulated baseline drifts of the two sets of instru-
ments. These mean values vary relatively smoothly in time,
and are in the range of 3 nT maximum drift per year for the
X and Z components. For the Y component, the variations
remain very small. This is an effect of the way the two var-
iometers are re-aligned. Differences between scalar instru-
ments present a drift in time that does not exceed 100 pT,

www.ann-geophys.net/35/939/2017/ Ann. Geophys., 35, 939–952, 2017
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Figure 3. Mean differences (in red) and SDs (in blue) of the three components of CL3 and CL4 variometers and associated scalar instruments
for year 2016. The red crosses can be seen as the cumulated baseline values of the CL3 and CL4 instruments.

with very small SDs, typically less than 50 pT. However, for
these instruments there is a noticeable tendency to present
large outliers, leading for some days to large SDs (outside
the range of values presented here). Over that year the mean
SDs are 89, 98, 84, 34 pT, for theX, Y , Z components and F
respectively.

The results presented in Fig. 2 differ from those obtained
in 2016 between CL3 and CL4, and presented in Fig. 3. Be-
fore day 104 of that year, the CL4 instruments were not yet in
their optimal settings. It is nonetheless clear that the drifts be-
tween CL3 and CL4 instruments are much larger than those
observed in 2014 between CL1 and CL2. Also, the cumu-
lated baselines that represent the mean differences are no
longer smooth. Finally, the SDs are at least twice as large
than those obtained in 2014. The obtained averaged SDs are
204, 199, 204, 63 pT, for the X, Y , Z components and F re-
spectively.

Intercomparisons between CL1, CL4 and CL3 show that
the large drifts observed are mainly due to CL3 instruments.
However, the increases of the SDs and the roughness of the
cumulated baselines are associated with the increase distance

between sets of instruments. Clearly, the distance between
the absolute pillar and the CL4 set of instruments is one of
the main parameters controlling the noise level in CLF ob-
servatory data. In the remainder of this work, the follow-
ing values are used for the SDs: σXv = σYv = σZv = 0.2 nT,
σFv = 0.06 nT. As for the absolute measurements, the SD es-
timates provided here are valid only for CLF observatory, and
are assumed constant through the year because the same in-
struments, in the same configuration, are used. Of course, as
indicated before, the algorithm presented in the next section
does not preclude modifying the error statistics of some of
the provided data.

4 Baseline estimation

4.1 Theory

Baseline values are quantities that are added to variometer
data to correct for potential drifts of the instruments and ac-
count for the site differences between the variometer building
and the absolute pillar. The definitive data provided to the sci-

Ann. Geophys., 35, 939–952, 2017 www.ann-geophys.net/35/939/2017/
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entific community are nothing else than variometer data that
have been calibrated by adding baseline values, and rotated
to be set in the local geodetic reference frame.

On the other hand, absolute data are snapshot values, con-
taminated by noise, of the direction and strength of the mag-
netic field as measured on the absolute pillar. Absolute data
are declination, inclination and total intensity data that can be
transformed in absolute X, Y , Z data through the relations

Xa = Fa cos(Ia)cos(Da)
Ya = Fa cos(Ia)sin(Da)
Za = Fa sin(Ia).

(1)

Therefore the vectorial relation linking variometer data,
baseline values and absolute data is Xa
Ya
Za

=Rθ

 Xv +Xb
Yv +Yb
Zv +Zb

+ εxyz, (2)

whereXb, Yb,Zb are the baseline values estimated at the time
the absolute data were recorded. Rθ is the rotation matrix
that rotates variometer data in the geodetic reference frame.
Finally, ε is the cumulated noise contributions from the ab-
solute and variometer data. This relation implies that the ab-
solute total intensity data are such that

Fa =
√
(Xv +Xb)2+ (Yv +Yb)2+ (Zv +Zb)2+ ε, (3)

and it follows that the absolute scalar data measured in the
variometer building Fv are such that

Fv =
√
(Xv +Xb)2+ (Yv +Yb)2+ (Zv +Zb)2−Fb+ εF , (4)

where Fb is a site difference, but we refer to it as a baseline
value for the variometer scalar data because it varies with
time – e.g see Figs. 2 and 3. The misclosure error εF is the
cumulated contributions of the Fv,Xv,Yv,Zv data errors. It
is often called 1F by the observers.

In the following, the relations (2) and (4) are used to derive
estimates of the baseline values Xb, Yb, Zb and Fb. To solve
this inverse problem, the same hypothesis as for the SD esti-
mation is considered and it is assumed that a good descrip-
tion of baseline evolution is possible by taking one constant
value per day. During a year there are therefore 365 (or 366
for leap years) unknowns to estimate for each baseline. In
vector notation, all these values are organised in a vector m

of maximum length M = 4× 366.
There are typically two sets of absolute measurements per

week, and one value of Fv every second. There is no need to
have so many Fv values, and to have an inverse problem of
acceptable size, the Fv data are decimated to one value per
day. All these data are collected in a data vector d. It is clear
that the inverse problem is heavily underdetermined.

The relation between m and d is non-linear because of
Eq. (4). An iterative approach is therefore necessary to solve

the problem, and at each step small perturbations of the base-
line values have to be estimated. Then Eq. (2) becomes δXa
δYa
δZa

=
 Xa
Ya
Za

−Rθ

 Xv +X
e
b

Yv +Y
e
b

Zv +Z
e
b


=Rθ

 δXb
δYb
δZb

+ εxyz, (5)

where Xeb,Y
e
b ,Z

e
b are estimates of the baseline values. The

equation corresponding to relation (4) is

δFv = Fv −F
e
v +F

e
b

=
Xv +X

e
b

F ev
δXb+

Yv +Y
e
b

F ev
δYb+

Zv +Z
e
b

F ev
δZb− δFb+ εF ,

(6)

where F ev =

√
(Xv +X

e
b)

2+ (Yv +Y
e
b )

2+ (Zv +Z
e
b)

2 and
F eb is an estimate of the baseline value for Fv . In vector no-
tation these equations correspond to a linear problem:

δd =H · δm+ ε. (7)

This underdetermined problem is solved in the usual way
(see Eq. 41 in Tarantola and Valette, 1982):

δm= CemHt
(
HCemHt

+6d
)−1

δd, (8)

where the superscript t is indicating a transpose matrix. Cem
is the prior covariance matrix of the model perturbation δm,
whereas 6d is the covariance matrix of the data errors. This
solution fits the data to its expected level while minimising
the norm: 8= δmt

·Cem
−1
· δm. Since the problem is under-

determined, the definition of the prior covariance matrix of
the model perturbation has a very strong impact on the so-
lution. The matrices Cem and 6d are described in the next
subsections. The information carried by the data allows up-
dating the prior covariance matrix of the model perturbation
using the relation

Cm = Cem−CemHt
(
HCemHt

+6d
)−1 HCem, (9)

where Cm is the posterior covariance matrix of the model
perturbation δm (see Eq. 42 in Tarantola and Valette, 1982).

Since the inverse problem is non-linear, the matrix H de-
pends on the a priori baseline values Xeb,Y

e
b ,Z

e
b,F

e
b . Re-

grouping these values in the vector me, the iterative process
leading to our best estimate of the baseline values m∗ starts
by choosing an initial vector me and defining the matrix Cem.
Both quantities are updated for the next iteration by estimat-
ing m=me

+ δm and Cm through Eqs. (8) and (9). This it-
erative process stops when the baseline values do not change
significantly from one iteration to the next.

www.ann-geophys.net/35/939/2017/ Ann. Geophys., 35, 939–952, 2017
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4.2 Prior covariance matrix of the baselines

In this section we explain how we set the prior covariance
matrix for the baselines: Cem. When starting this work, it
was planned to derive the prior covariance matrix for the
new baselines from the baselines calculated over the last few
years. However, this appears to be unwise because compari-
son of the CL3 and CL4 data in Fig. 3 suggests that the base-
line curves, which can be seen as the red dots, should not be
smooth. Therefore, our hypothesis is that the baselines are
autoregressive processes of order 1 (AR1 processes). Such a
process follows the recursive equation

Vi+1 = α+βVi + γ, (10)

where the Vi are elements of a time series, α is a constant
and γ is a random variable. The scaling β can be related to
the time decay of an exponential: β = 1− δt

τ
, where δt is the

time interval between two samples of the time series, and τ
is the time decay – see for example Evensen (2003). In this
application τ is set to 50 days. It mainly controls how fast
the time series of the baseline values goes back to its initial
values, set in me, in the absence of absolute data.

The correlation between two points of a time series fol-
lowing an AR1 process is

Ci,j = β
|i−j |. (11)

For the specific case of baseline estimation, there are four
series of baseline values (Xb, Yb, Zb and Fb). Under the hy-
pothesis that these series are not correlated, the prior cor-
relation matrix Cem is block diagonal if the unknowns are
properly organised in the vector δm. In each of these blocks
the correlation coefficients take the form of Eq. (11), but are
scaled such that the prior on the baseline variation amplitudes
corresponds to chosen values. Here, these values are the ob-
served variations of the baseline estimates (the red dots) in
Fig. 2 around their average – i.e. variations are expected to
be of the order of 1 nT for Xb, Yb and Zb. Of course, in
Fig. 2, the variations in the Y component are much smaller
but, as explained in Sect. 3.2, that is likely an effect of the
data processing. For Fb values, the variations should be much
smaller, around 0.5 nT (again, see Fig. 2).

The hypothesis that the different baseline time series are
not correlated may not be valid, particularly if the baseline
variations are due to temperature changes. If the baseline are
correlated, the matrix is no longer block-diagonal. In princi-
ple the covariance matrix should carry the prior information
we have regarding the baselines. The one we used here is par-
ticularly simple as we know little about what should be the
baseline temporal behaviours at CLF observatory.

4.3 Covariance matrix of the data errors

In this section we show how the covariance matrix for the
data errors 6d is defined. In Sect. 3, SD values were set for

the errors inDa , Ia , Fa andXv , Yv , Zv , Fv data. These quan-
tities are listed again below (angle values are given in degrees
but are transformed into radians to be used in the equations):

σDa = 1.4 10−3 deg σIa = 0.6 10−3 deg σFa = 0.3nT
σXv = 0.2nT σYv = 0.2nT σZv = 0.2nT

σFv = 0.06nT

It is assumed that these errors are uncorrelated between
themselves and in time. Therefore, the three-component var-
iometer data Xv , Yv , Zv , measured at a given time, have a
diagonal 3× 3 error correlation matrix Cv in the instrument
reference frame, with σ 2

Xv
, σ 2

Yv
, σ 2

Zv
on its diagonal. In the

geodetic north, east, vertical-down reference frame, this co-
variance matrix is no longer diagonal and is calculated by

Cxyz =Rθ Cv Rt
θ , (12)

where Rθ is defined in Eq. (2).
Similarly, the absolute data Da , Ia , Fa , measured at a

given time, have a diagonal covariance matrix Cadif with σ 2
Da

,
σ 2
Ia

, σ 2
Fa

on its diagonal, but the covariance matrix of the ab-
solute vector element Xa , Ya , Za is such that

Caxyz = T Cadif T
t , (13)

where T is the matrix that transforms small perturbations in
declination, inclination and total intensity, in perturbations of
vector elements:

T =


−Ya −

ZaXa

Ha

Xa

Fa

Xa −
Za Ya

Ha

Ya

Fa

0 Ha
Za

Fa


. (14)

It follows that the 3×3 covariance matrix of errors associated
with δXa,δYa,δZa in Eq. (5) is

Caδxδyδz = Caxyz+Cxyz. (15)

To estimate the variance associated with Eq. (6), we have
first to estimate the variance of F ev errors. The latter is

σ 2
F ev
=

(
(Xv +X

e
b) σXv

F ev

)2
+

(
(Yv +Y

e
b ) σYv

F ev

)2
+

(
(Zv +Z

e
b) σZv

F ev

)2
.

Therefore the variance of δFv errors in Eq. (6) is

σ 2
δFv
= σ 2

Fv
+ σ 2

F ev
. (16)

Since the temporal correlation of the errors is ignored, the
covariance matrix of the data errors 6d is block diagonal,
where, depending upon a proper organisation of the data in
the vector b, the blocks are defined either by Eq. (15) or
Eq. (16).
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Figure 4. Estimated baseline values in black for the X, Y , Z components and F values. The 1σ interval is shown in light blue. Differences
between absolute and variation data are shown in red. Series 1 and Series 2 were made during mjd= 6086 and mjd= 6144 respectively.

4.4 Application

The algorithm described above has been applied to estimate
baseline values associated with CL4 for the year 2016. There
were no CL4 variometer data before 17 February 2016, and
absolute data after 16 November 2016 were not used. These
features give the possibility to describe the effect of the lack
of different types of data on the baseline values and their SDs.

For the iterative process, the initial values for the
Xb, Yb, Zb and Fb baselines were constants set to
−9.0, 0.5, 0.0, −15.6 nT respectively. To align variometer
data to the geodetic local reference frame, the rotation angle
was imposed to θ = 0.272465 deg. There is some freedom on
the way this angle can be defined. In principle, it should be
co-estimated with the baselines such as to minimise the scat-
ter of data. However, with the linearised approach we use
here (see Eqs. 5 and 6), small variations of the baselines or
of the angle cannot be distinguished. The angle value given
here was set such that the mean declination value of the var-
iometer data matches the mean absolute declination values
measured.

Figure 4 shows the calculated baselinesXb, Yb, Zb and Fb,
with their 1σ interval. The latter are always less than 1 nT,

and are reduced to less than 0.3 nT forXb, Yb, 0.23 nT for Zb
and 0.15 nT for Fb when absolute measurements are avail-
able. These baselines are rough compared to those normally
set in CLF observatory. This roughness is controlled by the
data and their associated variances; this is in agreement with
our choice of prior covariance matrix for the model. Choos-
ing a baseline by drawing a smooth curve through the set of
data points may lead locally to differences as large as 1 nT
compared with a rough baseline.

Up to 19 February (mjd= 5893) there are no data avail-
able. The estimated baselines slowly drift from a value close
to their initial values on 1 January (mjd= 5844) to reach the
first values imposed by the data on 19 February. Meanwhile
the associated SDs decrease. The rate of change of the base-
lines during this period is fully controlled by the decay time τ
imposed – here, τ = 50 days. In a more general way, during
a period without absolute data, the baselines tend to fall back
to their initial values, and the SDs increase up to those set to
scale the prior covariance matrix of the model (here 1 nT for
X, Y , Z, and 0.5 nT for F ).

After mjd= 6164 (16 November) no absolute data are
used, but total intensities are still measured in the variome-
ter shelter. These data partially constrain the baselines which
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Figure 5. Estimates of the 1F values (see Eq. 4) for 150 days in
2016. In black is one 1F value per hour, in light blue is their 1σ
interval, and in red are the 1F values that have been minimised
during the optimisation process leading to the baseline values.

slowly change in time in agreement with the prior set through
the covariance matrix of the model. The Y baseline seems not
to be affected by these data. This is not a surprise since the Y
component is very small compared to X and Z components
in CLF observatory and therefore it has only a very small
contribution to the total intensity of the field.

Finally, it should be recalled that the CL4 data used
here are not the observatory main instruments before
13 April 2016 (mjd= 5947) and therefore significant discon-
tinuities are possible. The large jump in the F baseline on the
mjd= 5971 (6 May 2016) is due to a change of the scalar in-
strument.

5 Discussion

The algorithm described and applied in the previous sections
is giving as output a set of baseline values. The time series
of the baseline values is not smooth in time. However, these
values have been derived accounting for absolute and vari-
ometer data errors that have been estimated independently,
so there is no reason to reject this rough baseline. In the
following we verify that the baseline values are appropriate.
First are given the1F values (see Eq. 4) obtained using CL4
data. Second the baseline values are compared with those ob-
tained with the algorithm used in CLF observatory for sev-
eral years. This algorithm is based on smoothing splines Sil-
verman (1985). Then, finally, definitive values obtained with
CL3 and CL4 sets of instruments are compared.

5.1 1F estimates

The 1F estimates – i.e. the misclosure errors defined above
in Eq. (4) – are often used in observatory operations to ver-

ify that the baseline calculations are correct. They also give
an idea of the level of noise in the observatory data. The
baseline values have been calculated for the CL4 data, and
the estimated 1F values are shown in Fig. 5. Values remain
small, less than 0.5 nT, with large variances, but also with a
clear bias. This is not a problem linked with the algorithm
but comes from the fact that only one value per day of scalar
variometer data (Fv) has been used to estimate the baseline.
The values used correspond to 1F estimates that are shown
in red on Fig. 5. For these values, it is clear that there is no
bias, and that1F estimates are very small. This suggests that
it would be more appropriate to use several scalar variometer
data per day to estimate the baselines. However, it is clear
that the estimated 1F are well inside their expected errors.

5.2 Comparison with other baseline estimates

In the algorithm that has been used this last decade in CLF
observatory, the Hb and Zb baseline values are calculated in-
dependently for the magnetic north direction (this is the Xv
direction) and Zv direction, respectively. Then, rather than
estimating the baseline in the Yv direction and applying a ro-
tation of angle θ , a baseline Db is estimated (in degrees) as
a rotation angle around the Zv axis. The relation linking the
variometer reading and baseline values to the absolute values
are

Ha =
√
(Xv +Hb)2+Y 2

v

Da =Db+ tan−1(Yv/(Xv +Hb))

Za = Zv +Zb.

(17)

For each set of absolute data, it is straightforward to derive
baseline values Hb, Db and Zb. Over a year, a smooth spline
is drawn through the cloud of Hb, Db, Zb values to serve
as daily calibration parameter (Silverman, 1985). In this ap-
proach, the continuous recording of the total field intensity in
the variometer house is used to check that the baseline esti-
mates are correct.

In Fig. 6, the baselines calculated using both methods, for
the CL4 set of instruments, are compared. General trends
are similar, but differences are significant and within a range
of [−1 : 0.86] nT for Hb,Zb and [−6 : 11] arcsec for Db. At
several epochs, the baselines based on splines stay for a few
days outside the 3σ interval of the baseline defined by the
new algorithm. These large differences are only due to the
assumption of smoothness that goes with the traditional way
of computing baselines.

The results shown in Figs. 2 and 3 strongly support a rough
baseline. This is not due to the variometer building or to the
instruments themselves, but rather to the distance of the vari-
ometer building to the absolute pillar. The larger the distance,
the rougher the baseline is likely to be. Of course this rela-
tionship is also dependent on the observatory environment.

Following our choice of prior on the baseline, a question
arises on the information carried by observatory data. Most
of the signal recorded can be associated with relatively large-
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Figure 6. Estimated baseline values in black for the H , D, Z components and F values. Their 3σ interval shown in light blue. In red are
shown the provisional baselines as estimated with smooth splines in CLF observatory.

scale sources of the magnetic field variations – e.g. the core,
ionosphere and magnetosphere. Nonetheless, recorded sig-
nals at two places a few hundred metres away differ with
amplitudes of the order of a few nanotesla – see e.g varia-
tions of the red dots in Fig. 3. It is very difficult for mod-
ellers to handle such signals unless they have some idea of
their amplitudes and their frequency content. Such signals
with large amplitudes on yearly timescales would be a dif-
ficulty for modelling rapid variations of the core field. Sig-
nals with significant amplitudes and frequency content of a
few tenths of a hertz would not be a major problem for core
field studies, but may be a limiting factor for external field or
space weather studies. It would be beneficial for the scien-
tific community to better characterise in space and time the
local signals contributing to observatory data. The SDs val-
ues provided here give an idea of the strength of the signals
for spatial and temporal wavelengths of 100–200 m and less
than a day, respectively.

5.3 Comparison of CL3 and CL4 definitive data

The baseline estimation algorithm described in Sect. 4 has
been applied to compute definitive values for the CLF obser-
vatory from both the CL3 and the CL4 set of instruments. In
both cases a SD for the definitive data can be calculated from
the combination of the baseline SDs obtained through our al-
gorithm and the variometer data SDs estimated in Sect. 3.2.
In principle, the two definitive data series obtained from CL3
and CL4 should nearly agree, and the quality of the baseline
calculation can be estimated through the distribution of their
differences.

For these days where both CL3 and CL4 data are available,
the time series were subsampled to one value per hour lead-
ing to two sets of 6777 definitive vector data with the same
time sampling. (The sets are large enough for the statistics ul-
timately obtained to be robust. There is no need to use the full
1 Hz data set.) For each sample, differences between defini-
tive values obtained from CL3 and CL4 data were estimated
together with a SD. Figure 7 presents the histograms of these
differences, divided by their SDs (these ratios have no dimen-
sion). These histograms agree reasonably well with a Gaus-
sian distribution of SD= 0.9. This value is lower than 1, in-

www.ann-geophys.net/35/939/2017/ Ann. Geophys., 35, 939–952, 2017



950 V. Lesur et al.: Error statistics for definitive observatory data

Figure 7. Rescaled histograms of weighted differences between CL3 and CL4 definitive vector data series. The weights used are the inverse
of the estimated difference SDs. In black are shown the corresponding Gaussians for a SD of 0.9. Note that there are no units here since
differences have been divided by their SDs and both are in nanotesla.

dicating that the SDs of differences, and therefore the SDs of
the definitive values, have been slightly overestimated. This
is possibly a consequence of the way SDs have been esti-
mated for the absolute and variometer data, or a consequence
of the relatively small number of absolute data available to
estimate their variances.

In these histograms, the Y component seems to have nearly
the expected distribution. For the X and Z, the main anoma-
lies are associated with an excess of values for slightly neg-
ative scaled differences in the X direction, and slightly posi-
tive scaled differences in the Z direction. This is clearly due
to the magnetic activity. The fact that the baseline is assumed
to be a constant during a day has a strong influence here.
On the same histograms, there is a small bias (< 0.2) that is
due to the last 20 days of the time series where no absolute
data were used (the baselines are then only controlled by the
Fv values). Also, after mjd= 6178 there are still CL4 vari-
ation data – and therefore a small control on the baseline,
whereas there are no further CL3 variation data. The absence
of control on the baseline affects the baseline SDs and makes
baseline drifts possible. It therefore generates the bias in the
distributions of differences shown here. The deviations from

the expected Gaussian distribution show the necessity to have
a good control on the baseline evolution through regular ab-
solute data measurements.

6 Conclusions

A new algorithm for producing calibrated definitive obser-
vatory data has been described. The algorithm sets a large
inverse problem for the estimation of the baselines where all
available data – i.e. absolute data, variometer data and scalar
data acquired in the variometer building – are used as input.
To proceed, data error SDs have been estimated. The SDs are
realistic for the variometer data (σXv = σYv = σZv = 0.2 nT,
σFv = 0.06 nT), but more work is required for the absolute
data. For the latter, the data set from which the error statis-
tics are estimated is, for now, too small. Furthermore, our
estimates of these absolute data SDs also account partly
for the variometer data errors. Overall, the absolute data er-
ror SDs (σDa = 5 arcsec, σIa = 2.2 arcsec, and σFa = 0.3 nT)
are probably overestimated as the statistics for the baseline,
output of the inversion process, are also slightly overesti-
mated.
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Another important input to our algorithm is the prior co-
variance matrix of the baselines. To build it, we assumed
that the baselines are stochastic auto-regressive processes of
order 1 (AR1). These processes were tuned by choosing a
decay time τ = 50 days. This roughly corresponds to poste-
rior least-squares estimates of this quantity although the four
baselines do not give exactly the same value. The choice of
an AR1 process for a baseline is supported by the observed
daily mean differences between three sets of variometer in-
struments. Ultimately, our obtained baselines are not smooth
in time.

As an output to our algorithm, each day a baseline value
is set for the X, Y , Z directions, and F scalar data. These
values are associated with a large baseline covariance matrix
that is far from being diagonal – i.e. the baseline estimates
are correlated in time. In a more mathematical view, our so-
lution is actually a set of acceptable baseline values defined
by a Gaussian distribution characterised by a mean and a co-
variance. The variance associated with one baseline value for
a given day depends mainly on the density and quality of ab-
solute data recorded in the few previous and following days.
With systematically two absolute measurements per week,
the baseline SDs for CLF observatory are less than 0.3 nT
in the horizontal components, and slightly less for the ver-
tical component. This variance drops to 0.15 nT for the F
baseline. It is possible to combine these estimates with those
of the variometer data SDs to derive definitive data SDs.
These stay under 0.4 nT in the horizontal components, less
than 0.3 nT in the vertical component. Clearly, at CLF ob-
servatory, the data errors are far from reaching the maxi-
mum of 5 nT error set in the INTERMAGNET standard (see
page 29 of the INTERMAGNET technical manual v4.6 at
http://www.intermagnet.org/publications/intermag_4-6.pdf).

The variance estimates are representative of the level of
noise for the CLF observatory site, assuming constant base-
lines in a day. As explained above, baselines are not vary-
ing smoothly in time due to the distance between different
data recording systems. This is an indication that there are
relatively strong signals at short spatial wavelengths on the
observatory site. These signals have a temporal wavelength
longer than a day. Therefore they are not due to short-lived
disturbance as, for example, a passing large vehicle. Such
signals, like other very small scale signals in the data (where
very small is 100–200 m in space, and less than a day in time)
are accounted for in the error statistics of the baseline, and
therefore of the definitive data. It is of course difficult in a
global description of the magnetic field to handle such sig-
nals, or even larger-scale signals. There is, however, no con-
sensus in the scientific community on what are the spatial
and temporal minimum wavelengths under which observa-
tory signals should be described as noise. These minimum
wavelengths are probably not the same depending on the
geophysical phenomenon studied. Therefore, It should be an
objective of the scientists in charge of observatories to in-

vestigate the small-scale spatial and temporal content of the
geomagnetic signal in the vicinity of the observatory site.
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