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Abstract 

 The LA-ICP-MS method is becoming increasingly popular for uranium 

determinations in fission track dating of apatite, zircon or titanite. This is because the 

approach has several advantages over the classical external detector method (EDM), 

including faster sample throughput, simultaneous acquisition of additional data (such 

as U-Pb age information and trace element abundances), while removing the need for 

neutron irradiation. Two different approaches are used to determine U contents in LA-

ICP-MS fission track dating: an absolute dating approach, or a zeta-based 

determination analogous to the classical EDM. Absolute age dating by LA-ICP-MS 

potentially suffers from small but systematic deviations in apatite U contents, which in 

turn propagate through to minor systematic deviations in the accuracy of absolute 

fission track age determinations. A zeta-based approach typically requires time-

consuming counting of large numbers of zeta-standard grains (usually Durango 

apatite) so as to yield a precise zeta factor for every LA-ICP-MS session containing 

unknowns. The modification of the zeta-based approach proposed here has two major 

advantages. Firstly, it employs just one large primary LA-ICP-MS session to determine 

a precise primary zeta factor on a large number of counted Durango primary zeta 
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grains. During subsequent secondary LA-ICP-MS sessions with unknowns, no further 

fission track counting of the primary zeta standard is required. This is because we 

reanalyse a subset of the primary zeta grains to calculate a session-specific zeta 

fractionation factor, which is related to variations in the instrumental operating 

conditions (primarily plasma tuning) between primary and secondary LA-ICP-MS 

sessions. This enables us to ‘reuse’ the primary zeta factor, and thus avail of its 

precision derived from the large spontaneous track count. The second advantage is 

that reusing the primary zeta grains by applying a session-specific zeta fractionation 

factor allows us to verify that background and drift corrections applied during the 

secondary LA-ICP-MS session were fully appropriate. This method has been 

successfully tested by dating samples of known apatite fission track age, by comparing 

EDM and LA-ICP-MS data from the same sample and by participating in a round robin 

test between international fission track laboratories where ‘blind’ fission track dating of 

two unknown samples was undertaken. Our LA-ICP-MS apatite fission track dating 

approach is also easily modifiable for fission track dating of zircon or titanite if suitable 

age standards are employed. 

 

Keywords: Fission track dating, LA-ICP-MS, zeta method, trace element analysis, 

apatite 

 

1-Introduction 

Fission track dating is based on the spontaneous fission decay of 238U which 

produces linear defects (fission tracks) in the lattices of uranium-bearing minerals and 

glasses. These fission tracks are then enlarged using a standardized chemical etching 
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process so they can be observed under an optical microscope (Price and Walker, 

1962). The technique is widely applied to apatite, zircon and titanite because these 

minerals contain sufficient uranium (typically > 10 ppm) to generate a statistically useful 

quantity of spontaneous fission tracks over geological time. Pioneering development 

of the fission track method was undertaken in the 1960s and 1970s (summarised in 

the seminal book on nuclear tracks in solids by Fleischer et al., 1975), and established 

the basis for a new thermochronometer utilizing the age equation below: 

𝑡 =
1

𝜆𝑑
𝑙𝑛 (1 +

𝜆𝑑

𝜆𝑓

𝜌𝑠

[ 𝑈238 ]𝑅𝜂
)         (1) 

where d is the total decay constant of 238U, f is the spontaneous fission decay 

constant of 238U, s is the spontaneous track density on an internal prismatic crystal 

surface (i.e. the number of tracks per unit area), [238U] is the present-day abundance 

of 238U atoms per unit volume, R is the etchable length, and  is the etch efficiency 

factor. The etch efficiency factor accounts for not all of the tracks intersecting the 

etched surface being effectively made countable by the etching process; it can vary 

from one mineral phase to another, one crystal plane to another, and from one direction 

to another within an etched surface.  

Up until the end of the last century, the only practical method way to estimate 

[238U] was by neutron irradiation of 235U within the target mineral phase to induce new 

fission tracks. The fission track community experimented with several methods to 

relate this induced track density to [238U] during the 1970s and early 1980s (see 

Gleadow, 1981 for a review of the existing approaches at that time). By the early 1990s, 

the fission track community had largely adopted a  (zeta) calibration approach 

(Hurford and Green, 1983; Hurford, 1990), with the majority of workers employing the 

external detector method (EDM). The EDM has several advantages over other 

based calibration methods (such as the population method), including its ability to 
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produce single grain ages. The EDM involves placing a detector (a low U dielectric 

material such as a muscovite sheet) in intimate contact with the previously-etched 

fission track mount or dosimeter glass prior to irradiation; after irradiation the detector 

is then etched and its induced track density determined. The  method has the 

advantage of eliminating the need to determine the values of certain parameters which 

are difficult to establish experimentally (e.g. f and the thermal neutron fluence,  

This can be achieved by recasting the age equation below (eq. 2) in terms of the  

calibration factor by dating samples of known age: 

𝑡 =
1

𝜆𝑑
𝑙𝑛 (1 + 𝜆𝑑𝜁𝜌𝑑

𝜌𝑠

𝜌𝑖
)         (2) 

where d, s and i are the densities, respectively, of countable induced tracks in a 

dosimeter glass of known U concentration, spontaneous tracks in the sample, and 

induced tracks in the detector.  

Despite these inherent advantages, the EDM has drawbacks as it requires (i) 

the irradiation of the samples, unknowns and dosimeter glasses (and their associated 

muscovite external detectors) by thermal neutrons in a nuclear reactor which is both 

time consuming and logistically complicated as it involves the production, transport and 

handling of radioactive samples, (ii) the assumption of intimate contact between the 

external detector and the grain surfaces being dated, and (iii) the use of hazardous 

hydrofluoric acid to etch the muscovite external detectors. 

 

2- LA-ICP-MS fission track dating 

LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometry) has 

been used for more than 30 years for in situ elemental analysis of solid samples, with 

limits of detection now approaching the ppb level at the high mass end of the periodic 
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table. Following the pioneering work of Cox et al. (2000), Hasebe et al. (2004) 

demonstrated the feasibility of the LA-ICP-MS method for U concentration 

determinations in fission track dating. Hasebe et al. (2004) used an absolute fission 

track dating approach that calibrated the U content in the unknown grains against two 

standard glasses of known U concentration (NIST 610 and 612, Jochum et al., 2011). 

44Ca was used as an internal elemental standard (assuming Ca is essentially 

stoichiometric in the targeted apatites) to correct for variations in ablation volume. 

Although LA-ICP-MS is typically a very forgiving analytical method for matrix 

differences between apatite and NIST glasses when internal standardization is used 

(e.g. Chew et al., 2016), minor matrix effects at the percent range are still present for 

a variety of elements. The absolute fission track dating approach is thus susceptible to 

minor (< 5-10%) systematic deviations in apatite U contents which propagate through 

to minor systematic deviations in the accuracy of absolute fission track age 

determinations by LA-ICP-MS (see section 5.2 for further discussion). 

Hasebe et al. (2004) also suggested that a -based approach analogous to the 

EDM was possible. Donelick et al. (2005) adopted such a -based LA-ICP-MS 

approach, with 43Ca employed as an internal elemental standard and thus the single 

grain apatite fission track age equation becomes: 

𝑡𝑖 =
1

𝜆𝑑
𝑙𝑛 (1 + 𝜆𝑑𝜁𝐼𝐶𝑃

𝑁𝑠,𝑖

Ρ𝑖Ω𝑖
)         (3) 

where ICP is the zeta calibration factor based on LA-ICP-MS age standard, s,i is the 

number of counted spontaneous fission tracks for grain i, i is the area over which 

tracks were counted on grain i and i (uppercase Greek letter rho) is the 238U/43Ca ratio 

of grain i.  

The associated standard error on a single grain age is given by: 
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𝑠𝑡𝑖 = 𝑡𝑖 [
1

𝑁𝑠,𝑖
+ (

𝑠Ρ𝑖

Ρ𝑖
)
2

+ (
𝑠𝜁𝐼𝐶𝑃

𝜁𝐼𝐶𝑃
)
2

]

1
2

        (4) 

where sICP is the standard error on ICP and si is the analytical error of the LA-ICP-

MS measurement of i. 

 

3- The ICP factor determination and use 

As for the EDM, the primary zeta factor ICP is determined empirically by 

employing an apatite fission track reference material of known age and rearranging the 

age equation as follows (Donelick et al., 2005): 

𝜁𝐼𝐶𝑃 =
𝑒𝜆𝑑𝑡𝑠𝑡𝑑−1

𝜆𝑑 ∑𝑁𝑠,𝑖 ∑Ρ𝑖Ω𝑖⁄
          (5) 

where tstd is the accepted age of the reference material. The associated standard error 

is: 

𝑠𝜁𝐼𝐶𝑃 = [
𝜁𝐼𝐶𝑃
2

∑𝑁𝑠,𝑖
+ 𝜁𝐼𝐶𝑃

2
∑(𝑠Ρ𝑖Ω𝑖)

2

(∑Ρ𝑖Ω𝑖)
2 + (

𝜎𝑡𝑠𝑡𝑑(𝑒
𝜆𝑑𝑡𝑠𝑡𝑑)

∑𝑁𝑠,𝑖 ∑Ρ𝑖Ω𝑖⁄
)
2

]

1
2

      (6) 

where tstd is the uncertainty on the age standard. 

However, due to changes in plasma tuning conditions between different LA-ICP-

MS analytical sessions, the ICP factor must be determined anew for every session. 

Given that the uncertainty on the ICP factor is primarily dependant on the number of 

counted spontaneous fission tracks (s) in the age standard, an unreasonably large s 

(>2500) would have to be counted at every LA-ICP-MS session to achieve a 

reasonable uncertainty (below 2% for example). Therefore ICP can become a large 

source of uncertainty. We present here a methodology that builds on Donelick et al. 

(2005) and Chew and Donelick (2012) and that allows for a determination of a precise 
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ICP factor during one large primary LA-ICP-MS session. This ICP factor is ‘re-used’ 

during subsequent secondary LA-ICP-MS sessions with unknowns by revisiting a 

subset of the primary zeta grains that were analysed during the large primary LA-ICP-

MS session. 

 

3.1 Data acquisition 

The analytical protocol described below was developed in 2012 in Trinity 

College Dublin (TCD). Although the analytical conditions and instrumentation have 

changed with time, there has been no noticeable impact on the accuracy or precision 

of the method, and most LA-ICP-MS laboratories with modern quadrupole ICP-MS and 

UV laser systems can employ their own analytical conditions and instrumentation yet 

still follow our general analytical protocol. In both our laboratories (TCD and 

Geoscience Rennes) the ablated sample aerosol is carried by He and then mixed with 

Ar make-up gas and a small volume of N2 to enhance signal sensitivity and reduce 

oxide formation. Instrument tuning is performed before each primary and secondary 

LA-ICP-MS session on NIST 612 glass to minimize fractionation for U/Pb 

geochronology, with the aim of producing Th/U ratios close to the atomic ratios of the 

glass (ca. 1.01), low oxide production rates (ThO+/Th+ < 0.15%) while optimising the 

43Ca and 238U signal intensities. Priority during tuning is normally given to signal 

intensities at the high mass end of the periodic table if simultaneous U-Pb 

geochronology is being undertaken. This is because radiogenic Pb isotopes in apatite 

typically exhibit very low abundances (often < 1ppm) while most trace elements which 

are petrologically significant in apatite at the lower mass end of the periodic table (e.g. 

Cl, Mn, Sr) are present at higher concentrations. 
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The element suite selected by the analyst is dependent on the application and 

can be varied accordingly. For example, for detrital apatite fission track analysis 

employing simultaneous U-Pb and trace element analysis, between 25 - 30 isotopes 

may be acquired including 238U, 232Th and 208,207,206,204Pb, the REE + Y, 88Sr, 55Mn, 

43Ca and 35Cl. 35Cl is always analysed (analytical protocol following that of Chew et al., 

2014) as this element is a kinetic parameter in many fission track annealing models 

(e.g. Green et al., 1986). For a large element suite employing between 25 - 30 isotopes 

the total sweep cycle is typically ca. 450ms.  

We employ a single spot ablation per counted area, with parameters that have 

changed with time both within and between our two laboratories; initial experiments 

employed a laser repetition rate of 5Hz with an analysis time of 45s, a 30s washout 

and a fluence of 3J/cm2. With improvements to the laser cell washout, the laser 

repetition rate was increased to 7Hz with 30s acquisition time and a 15s washout. 

These parameters are still employed at Géosciences Rennes, while in TCD a repetition 

rate of 15Hz with 18s acquisition time and a 7s second washout is now typically 

employed. The laser repetition rate, total shot count and fluence were optimised to 

yield a pit depth of about 15 µm, with a typical laser ablation spot size of 30 or 35 µm 

which is always kept constant within a given LA-ICP-MS session. The ablation depth 

of 15 µm yields sufficient signal for U-Pb geochronology while not yielding a too high 

pit aspect ratio which would exacerbate downhole fractionation in U-Pb geochronology 

(cf Woodhead et al., 2004, Donelick et al., 2009). Issues that can arise from siting a 

single spot analysis on an apatite grain with potential U zoning are discussed in section 

5.5. 

The raw isotope data in both laboratories are reduced with Iolite (Paton et al., 

2011). The U/Ca ratio determination for fission track dating employs a slightly modified 
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version (Trace Elements FTD) of the Trace Elements DRS (Woodhead et al., 2007), 

and which is provided in the supplementary material. Although a user can easily use 

their own data reduction protocols (e.g. other software packages or an in-house 

spreadsheet), Iolite can comfortably handle long (> 6h) LA-ICP-MS sessions with 

additional functionality such as the generation of depth-weighted U/Ca values as 

described below. NIST 612 is used as primary reference material to correct for LA-ICP-

MS session drift. LA-ICP-MS systems drift slowly during extended analytical runs due 

to deposition on the cones, gradual expulsion of atmospheric gases from the laser cell 

and changes in the electrical properties of the interface and ion lens system which can 

result in lower signal intensities with time. Normalization relative to a stoichiometric 

internal standard isotope in the reference material (typically 43Ca or 44Ca in apatite) 

removes much of the effects of session drift; nevertheless minor residual drift in Ca-

normalised elemental abundances may still remain and necessitates drift correction. 

In this study ‘semi-quantitative’ standardisation is employed (a term employed within 

Iolite to denote baseline correction followed by normalization of unknowns relative to 

the drift-corrected reference material). Semi-quantitative normalization allows for 

optimal drift correction as separate spline fits can be applied to both the 238U and 43Ca 

channels. The modifications in the Trace Elements FTD DRS produce both (1) a U/Ca 

channel produced by dividing each time slice of the final U ppm and Ca ppm channels 

to correct for variations in ablation volume (i.e. a time-resolved U/Ca ratio) and (2) a 

depth-weighted U/Ca value for fission track dating. The depth weighting follows Chew 

and Donelick (2012), where a spherical depth-weighting function is applied so that U 

concentration data close to the grain surface is weighted more heavily than U 

concentrations at depth down to a distance of 8 µm (broadly half a fission track length) 

below the apatite grain surface. 
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3.2 Primary LA-ICP-MS (‘zeta’) session 

We employ a Durango crystal which was crushed and sieved to 200 - 300 µm 

as our primary zeta reference material; it is also possible to use a large c-axis parallel 

slab from a single Durango crystal and analyse individual sub-areas on it. Each c-axis 

parallel zeta shard is counted at 500x magnification with a 50x dry objective and 10x 

oculars to maximise the size of the counted area (i) and thus the number of counted 

spontaneous fission tracks (Ns). As Durango apatite is gem quality and largely devoid 

of defects counting using a 50x objective is possible, although we do zoom in using a 

100x objective to discriminate between small defects and vertical tracks. A 100x 

objective is employed for all unknowns. Both Durango and unknowns are counted 

using TrackWorks® (Autoscan Systems) which records precise coordinates and either 

2D images (or 3D stacks) of the grains. Precise coordination and high-resolution 

images are required to ensure the position of the laser ablation spot overlaps the 

counted area. Typically 80 to 100 shards of Durango are analysed during a large 

primary LA-ICP-MS session. Each counted area on a shard is typically large enough 

(c. 2×10-4 cm2) to subsequently accommodate between 15 – 25 laser ablation spots. 

These include three laser ablation spots for the primary LA-ICP-MS session (i.e. the 

zeta factor determination) and the shard can then be revisited during subsequent 

secondary LA-ICP-MS session with unknowns.  

It is assumed that the 238U/43Ca ratio on the scale of the counted shard is 

constant; laser ablation mapping of our Durango zeta standard (Dur-DCa) 

demonstrates that it is relatively homogenous and any minor U zoning present is on a 

significantly larger scale than that of an individual shard (Chew et al., 2016). During 

the primary LA-ICP-MS session NIST 612 standard glass analyses are interspersed 
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with Durango shard analyses (typically three NIST 612 analyses followed by 10 

Durango shards) to calculate background- and drift-corrected U/Ca ratios. The data 

are then exported and an in-house excel spreadsheet (Tables S2 and S3 in the 

Supplementary Material) is used to calculate the primary zeta factor ICP and its error 

sICP. This spreadsheet can employ a linear regression through the background- and 

drift-corrected U/Ca ratios to flatten any residual drift that is not corrected by 

normalisation to NIST 612. This step is typically not necessary and also assumes that 

a large suite of shards is analysed during the primary LA-ICP-MS session, as intra-

shard U/Ca variations in a small dataset would otherwise influence the linear 

regression. The U/Ca ratio is then converted to a 238U/43Ca ratio using the natural 

isotopic abundances of U and Ca, while the Pi value (the 238U/43Ca ratio from the 

primary LA-ICP-MS session) for each counted shard is the weighted mean of three 

different primary laser ablation spots (equation 7 below). This enables potential 

238U/43Ca zoning in each shard to be assessed.  

ΡPi =
∑ΡPi,x sPi,x

2⁄

∑sPi,x
−2           (7) 

where Pi,x is the 238U/43Ca ratio of an individual Durango zeta shard, sPi,x is the 

associated standard error and x corresponds to primary laser ablation spots 1, 2, and 

3. 

The associated standard error is: 

sPi = [
1

∑sPi,x
−2 ]

1
2

           (8) 

Then the primary zeta factor ICP and its error sICP are calculated using 

equations 5 and 6, respectively. Fig. 1 shows the results for one primary LA-ICP-MS 

session on three sets of analyses of 94 shards. The 238U/43Ca ratio is variable from 
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one shard to another but each shard shows good internal homogeneity with mean and 

median standard deviations of c. 2.0% (maximum c. 5%), while the analytical 

uncertainty on 238U/43Ca ratio of a single analyses is typically around 1.2%, validating 

our assumption of minimal 238U/43Ca zoning within each shard. 

 

3.3 Secondary LA-ICP-MS sessions with unknowns 

The main purpose of the Durango zeta approach detailed here is that the 

primary zeta factor ICP can be employed in all subsequent secondary LA-ICP-MS 

sessions involving the analysis of unknowns. This avoids the time-consuming counting 

and analysis of many Durango shards for every secondary LA-ICP-MS session which 

would be otherwise required to yield a relatively precise zeta factor.  

In this study, secondary LA-ICP-MS sessions with unknowns typically employ 

four Durango shard analyses and three NIST 612 analyses (for a drift correction) for 

every 20 unknowns, with each grain sampled by a single spot ablation. Following data 

reduction (which in this study employed the Trace Elements FTD DRS in Iolite) the LA-

ICP-MS session data are exported and we use an in-house excel spreadsheet 

(provided in the Supplementary Material) to calculate a session-specific zeta 

fractionation factor (s) that is subsequently applied in the age equation. 

Χ𝑠 =
Ρ𝑃̅̅ ̅̅

Ρ𝑆̅̅ ̅̅
          (9) 

whereP is the arithmetic mean of Pi (the weighted mean 238U/43Ca ratio of each 

Durango shard from the primary LA-ICP-MS session) andS is the arithmetic mean of 

the U/Ca ratio of the same Durango shards determined during the secondary LA-ICP-

MS session. The zeta fractionation factor corrects for systematic variations in 238U/43Ca 

ratios, as it can differ by up to 10% between sessions (section 5.2). This is related to 
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variations in the analytical conditions (primarily related to the tuning of the ICP-MS 

instrument) between the primary LA-ICP-MS session and a given secondary LA-ICP-

MS session and converts the U/Ca values exported from the Iolite DRS to a 238U/43Ca 

ratio. Critically this also means that our analytical protocol is not susceptible to minor 

(< 5-10%) systematic deviations in apatite U contents which hinder the absolute fission 

track dating LA-ICPMS approach (section 5.2), our approach simply assumes that the 

relative differences in 238U/43Ca ratios between Durango primary zeta grains are 

constant between sessions. Additionally, employing this zeta fractionation factor allows 

the Durango primary zeta grains and their associated primary LA-ICP-MS session 

238U/43Ca ratios to be used subsequently on a different instrumental setup. 

The zeta fractionation factor s is applied to the measured U/Ca ratio of each 

Durango shard in a secondary LA-ICP-MS session to obtain Ci (the converted 

238U/43Ca ratio for Durango grain i). 

Ρ𝐶𝑖 = Χ𝑠(𝑈 𝐶𝑎⁄ )𝑖          (10) 

The 238U/43Ca ratios of each Durango shard i can then be directly compared with their 

corresponding values from the primary LA-ICP-MS session using equation (11) below 

and the variation in this ratio for each shard is plotted (Fig. 2). 

𝑅𝑖 = Ρ𝑃𝑖 Ρ𝐶𝑖⁄            (11) 

This ratio should approximate unity for every Durango shard, and any variation in this 

ratio should not be related to its laser ablation spot number during a secondary LA-

ICP-MS session with unknowns. If this ratio shows systematic variation during such a 

session it is likely that the drift correction was inappropriate (Fig. 2), and may result 

from an unsuitable spline fit being applied to the NIST 612 reference materials during 

the initial data reduction of the secondary LA-ICP-MS session. If the comparison of the 

Durango shards from a secondary LA-ICP-MS session with their corresponding values 
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from the primary LA-ICP-MS session appears appropriate (typically within a ± 5% 

range; Fig. 2) then the session-specific zeta fractionation factor (s) is applied to all 

the unknown grains analysed during the secondary LA-ICP-MS session. If a one shard 

shows more significant deviation, it may imply U zonation in this part of the shard. This 

shard therefore is excluded from the calculation of the fractionation factor (s) and 

would not be reused afterwards in subsequent sessions. The associated standard error 

of s is also calculated (equation 12) and is propagated through to the final age 

calculation of unknowns. 

𝑠Χ𝑠 = Χ𝑠 [
∑(𝑅𝑖−𝑅̅)

2

𝑁−1
]

1
2
          (12) 

whereR is the arithmetic mean of Ri and N is the number of analysed Durango shards. 

4 Age calculation of unknowns 

The zeta calibration factor s calculated using the Durango primary zeta grains 

is then applied to the depth-weighted U/Ca ratio of the unknown grains to get the i 

(converted 238U/43Ca ratio) of each unknown grain: 

Ρ𝑖 = Χ𝑠 (
𝑈

𝐶𝑎
)
𝑤,𝑖

          (13) 

The standard error is given by 

𝑠Ρ𝑖 = Ρ𝑖 [(
𝑠(𝑈 𝐶𝑎⁄ )𝑖

(𝑈 𝐶𝑎⁄ )𝑖
)
2

+ (
𝑠Χ𝑠

Χ𝑠
)
2

]

1
2

        (14) 

The single grain ages are then calculated using equations 3, and the pooled age of the 

sample is calculated following Donelick et al. (2005): 

𝑡𝑝𝑜𝑜𝑙𝑒𝑑 =
1

𝜆𝑑
𝑙𝑛 (1 + 𝜆𝑑𝜁𝐼𝐶𝑃

∑𝑁𝑠,𝑖

∑Ρ𝑖Ω𝑖
)        (15) 

The associated standard error on the pooled age is given by: 
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𝑠𝑝𝑜𝑜𝑙𝑒𝑑 = 𝑡𝑝𝑜𝑜𝑙𝑒𝑑 [
1

∑𝑁𝑠,𝑖
+

∑(𝑠Ρ𝑖Ω𝑖)
2

(∑Ρ𝑖Ω𝑖)
2 + (

𝑠𝜁𝐼𝐶𝑃

𝜁𝐼𝐶𝑃
)
2

]

1
2

      (16) 

To assess if the pooled age equation is appropriate (i.e. if all the grains belong 

to the same population) we follow the formulation of the chi-squared homogeneity test 

of Galbraith (2010): 

𝜒𝑠𝑡𝑎𝑡
2 = ∑(𝑧𝑖

2 𝜎𝑖
2⁄ ) −

∑(𝑧𝑖 𝜎𝑖
2⁄ )

2

∑1 𝜎𝑖
2⁄

        (17) 

where zi = ln(ti) and i=seti/ti with seti defined as the standard error on the age that 

takes into account only the analytical uncertainties and ignores the uncertainties on 

the zeta factor and on the zeta fractionation factor (Vermeesch, 2017). The p-value 

can then be calculated; a p-value > 0.1 implies no evidence against the null hypothesis 

that the grains are a single population, between 0.05 and 0.1 implies very weak 

evidence of multiple populations being present; between 0.01 and 0.05 moderately 

strong evidence against the null hypothesis and < 0.01 strong evidence that multiple 

populations are present. If the p-value calculated for the sample is too low to use the 

pooled age, a central age (Galbraith and Laslett, 1993) can be calculated using for 

example QTQt (Gallagher, 2012) or IsoplotR (Vermeesch, 2018). The latter software 

package can also be used to deconvolute different potential age populations.  

          It should be noted that the chi-squared test is applied to a pool of apatite single-

grain ages to assess whether these ages are consistent with being from a single grain-

age population. When it is suspected that a pool of apatite single-grain ages may be 

derived from more than one source (e.g. different detrital populations), it is 

recommended to use independent data (e.g. trace element analyses, Dpar values or 

multi-kinetic data) to sort analyses into different coherent populations, and then apply 

the chi-squared test. In old and slowly cooled terranes, a small difference in apatite 

chemistry in either crystalline bedrock or detrital samples can also lead to the ‘failure’ 
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of the chi-square test. However this compositional heterogeneity can then be exploited 

using multi-kinetic modelling approaches on separate apatite populations to increase 

the thermal sensitivity of the apatite fission track technique to from c. 50 to 175 °C (e.g. 

Schneider and Issler, 2019, McDannell et al., 2019). The LA-ICP-MS apatite fission 

track dating approach lends itself well to assessing trace element chemical variations 

in apatite as the technique permits acquisition of independent data (e.g. U-Pb age 

information, trace element or Cl abundances) during fission track analysis to sort the 

data into separate coherent populations.  

5 Discussion 

The various topics discussed below primarily cover issues related to apatite fission 

track dating using our LA-ICP-MS protocol; they are not intended to represent a 

comprehensive discussion on apatite fission track dating in general. These topics 

include sample preparation, absolute U concentration determinations by LA-ICP-MS 

and the issues of zero track grains and U zoning in LA-ICP-MS protocols, and are 

accompanied by tests of our methods. 

5.1 Sample preparation and reusing the Durango zeta material 

Typically, between 80 and 100 Durango shards are counted and analysed in the 

primary LA-ICP-MS session for reuse later in secondary LA-ICP-MS sessions with 

unknowns. Between 15 – 25 laser ablation spots can fit on each shard, and a suite of 

80 – 100 Durango shards would allow approximately 7000 to 10000 separate single-

grain fission track ages to be determined (assuming 4 Durango zeta shard analyses 

for every 20 single-grain unknowns). Once the Durango zeta material is used up, we 

have successfully employed the following strategy to reuse the mount further. The 

three reference points on the sample mount (the central portion of three SEM target 
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grids) are ablated by the LA system using a small laser ablation spot (c. 25 µm) down 

to a depth of c. 50 µm. The mount is then gently repolished down by a depth of c. 20 

µm to remove the ablation pits of previous analyses and can then be reused. Given 

the evidence for the U-homogeneity over the counted area on the Durango shards (cf 

Chew et al., 2016), significant variations in U content down to a depth of c. 20 µm are 

considered negligible. 

We strongly advocate the use of epoxy-only grain mounts for LA-ICP-MS fission 

track dating (cf Donelick et al., 2005). Epoxy-only grain mounts have the advantage 

over epoxy-on-glass mounts in that all the grains are at approximately at the same 

exposure level following grinding and polishing (assuming the grains are roughly of 

similar size). This is clearly beneficial for repolishing and reusing Durango zeta mounts, 

but is also key to ensuring minimal loss of grains during ablation of unknowns. If all the 

grains are at approximately at the same exposure level, a mount can be polished down 

ensuring a large fraction of the apatite grains is not polished down too far yet still 

reveals internal surfaces with 4π geometry. We recommend removing approximately 

one-third of the grain which ensures a significant proportion of the grain is still firmly 

embedded in the epoxy resin. Subsequent HNO3 etching to reveal fission tracks also 

etches (and thus loosens) the margins of the grain in the epoxy mount, and grains 

where over half the grain has been ground away are much more likely to be lost during 

ablation. For a representative sample of plutonic apatites (typical grain sizes of 75 to 

200 µm) we estimate that the grain loss rate for a well-prepared epoxy-only grain mount 

is <10%, whereas in an epoxy-on-glass mount up to half the grains could be lost during 

ablation. 
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5.2 The problem of apatite U content determinations: implications for absolute apatite 

fission track dating by LA-ICP-MS 

 Accurate trace element concentration measurements by LA-ICP-MS are 

extremely difficult to achieve, but are essential for absolute apatite fission track dating 

by LA-ICP-MS. Absolute elemental concentrations by LA-ICP-MS are typically 

undertaken using internal standardisation, where elemental concentrations in the 

sample are normalized using an isotope of invariable concentration across the sample 

(an ‘internal elemental standard’), and compared to internal-standard normalised 

elemental concentrations in a matrix-matched reference material. In apatite, Ca is 

typically stoichiometric and so 43Ca or 44Ca are commonly employed as an internal 

elemental standard, but as there is no apatite reference material which is homogenous 

with respect to trace element abundances, NIST standard glasses (612 or 610) are 

typically employed instead.  

Chew et al. (2016) presented several thousand apatite trace element analyses 

by LA-ICP-MS on two crushed Durango crystals using NIST 612 glass as an external 

reference material and 43Ca as internal elemental standard. Aliquots of several 

hundred shards from both Durango crystals were also analysed by solution ICP-MS. 

Analysis of the Chew et al. (2016) dataset shows that LA-ICP-MS U concentration 

measurements derived from session-wide averages (c. 50 Durango shards) typically 

(but not always) reproduce within  5% of the U concentration as determined by 

solution ICP-MS on aliquots of the same crushed crystal, and therefore NIST 612 is a 

reasonably forgiving matrix for apatite trace element analyses. 

However systematic variations in absolute apatite U concentration 

measurements by LA-ICP-MS between analytical sessions remain problematic. In 

Figure 3A, the U/Ca ratio is plotted against the U content (in ppm) for 42 Durango zeta 
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grains from the same DUR-DCa crystal analysed by Chew et al. (2016) for three 

separate analytical sessions. The apatite U content is again determined by using NIST 

612 glass as an external reference material and using internal standardisation. During 

the two runs of a primary zeta session acquired during the same day, the U ppm vs 

U/Ca ratios are virtually identical. The third run was performed on the same shards 

several months later during an unknown session. Individual analyses from the latter 

session clearly lie on a different U ppm vs U/Ca linear array (Fig. 3A), with the mean 

U ppm value being offset by about -3.8% and U/Ca by about -7.8% from the average 

of the first two zeta runs (Fig. 3B). Figure 3C shows the deviation of several session 

averages of U ppm and U/Ca from the mean of the first two zeta runs. There is a 

correlation between the session mean U ppm and U/Ca values (Inset Fig. 3D); with 

changes in the U/Ca fractionation from session to session inducing changes in the 

mean U ppm value when normalised to NIST612 standard glass, with a > 15% range 

observed between the maximum and minimum U ppm values (Fig. 3C). For this 

reason, we do not recommend reporting U ppm values for LA-ICP-MS fission track 

data as they are not accurate, and dependent on variations in U/Ca fractionation 

between sessions and also different instrumental setups / protocols. 

While the U/Ca fractionation between sessions and illustrated in Fig. 3C is easily 

accommodated by our protocol, the offsets in absolute U concentration measurements 

would be impossible to detect if an absolute dating approach (using NIST glass with 

no apatite reference material) was employed. The extent of these systematic offsets 

when using NIST612 as a primary reference material is such that until a U-

homogenous fluoroapatite primary reference material is found or produced, routine LA-

ICP-MS absolute fission track dating is not possible. 
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5.3 Tests of the method 

The -based approach to LA-ICP-MS apatite fission track dating has been 

tested by dating three different age standards, Durango (using a crystal different that 

is different to that used for zeta calibration and treated as an unknown; reference age 

31.440.18 Ma, McDowell et al., 2005), Fish Canyon tuff (28.10.1 Ma, Boehnke and 

Harrison, 2014) and Mount Dromedary (98.50.5 Ma, McDougall and Wellman, 2011). 

Radial plots (drawn using IsoplotR, Vermeesch, 2018) for these samples are shown 

on Fig. 4 and the detailed data are provided in the Supplementary Material. These 

tables also show all the parameters that are employed in the calculation and that 

should be presented in publications that use FT data generated using our protocol (i.e 

Ns, area, 238U/43Ca with error and primary zeta factor with error). The three ages 

determined using our protocols are indistinguishable from the accepted ages at 2 

level, with Durango giving a pooled age of 31.7  2.1 Ma, Fish Canyon tuff a pooled 

age of 27.9  3.2 Ma and Mount Dromedary a pooled age of 99.1  6.7 Ma. These 

results show that our protocol is able to reproduce well the age of standards, with a 

precision similar to what is usually obtained with the EDM method. 

In 2014 the TCD laboratory participated in an international inter-laboratory 

exercise to test the reproducibility of thermochronological data (Ketcham et al., 2018). 

The test consisted of ‘blind’ dating of two samples, and was undertaken by two of the 

authors of this study (NC and DC) using the protocol described here. Results for NC 

are reported on Fig. 4 and the detailed data are provided in the Supplementary 

Material. The results of Ketcham et al. (2018) shows that for both analysts the ages 

calculated with our protocol are in excellent agreement with the mean of the 15 ages 

and 13 ages reported from the different labs for samples S1 and S2 respectively. The 

associated uncertainties are in the same range as the uncertainties determined by 
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other laboratories using the EDM. Additionally, U-Pb age data were simultaneously 

acquired for apatite grains from samples S1 and S2 and are in agreement with 

previously determined crystallisation ages for both samples (Ketcham et al., 2018), 

showing that simultaneous acquisition of U-Pb data (as well as a large suite of trace 

elements) is not prejudicial to the accuracy or the precision of the LA-ICP-MS fission 

track age.  

Interestingly, Ketcham et al. (2018) suggest that the LA-ICP-MS analyses from 

different laboratories typically show greater dispersion in single grain ages than EDM 

analyses. Although this could be interpreted as LA-ICP-MS fission track dating causing 

over-dispersion, it is also possible EDM induces a bias towards under-dispersion. 

Usually more grains are analysed with LA-ICP-MS protocols (ca. 30-40 grains) than 

with EDM (ca. 20), which increases the likelihood of producing over-dispersed grain 

data (McDannell et al., 2019). One potential additional advantage of the LA-ICP-MS 

technique is that there is no possibility (unlike EDM) of subconsciously tracking if grains 

belong to one population using the Ns/Ni ratio, which would result in artificially low chi-

square test values (Donelick et al., 2005). 

Apatite grains from Mt Dromedary were also dated by the EDM method (Fig. 

5A). Mt Dromedary apatite has the advantage for an EDM vs LA-ICP-MS comparison 

in that it is similar to typical natural samples in terms of defects and U zoning, yet its 

age is well constrained from multiple studies. We also dated a sample from Cogné et 

al. (2012) by both EDM and LA-ICP-MS on the same grains (Fig. 4D and 5B). This 

sample (Br5) was chosen because it has a relatively low track spontaneous track 

density (1.32 x 105 tracks/cm2) and therefore potential U zonation would be difficult to 

detect (see section 5.5 for discussion on zonation). Detailed single grain data are 

provided in the Supplementary Material (Table S6). For both samples, all EDM and 
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LA-ICP-MS single grain ages are comparable at the 2level, as are the resultant 

pooled ages (Figs 5C and 5D). Therefore, our LA-ICP-MS protocol is able to reproduce 

ages with those obtained by the EDM method and with similar precision, even for 

samples with relatively low track densities. 

 

5.4 Zero-track grains 

For young and/or low U apatite samples, grains with no spontaneous tracks are 

sometimes encountered; when Ns=0 then the error on the fission track age cannot be 

determined (equation 4). There is no simple way to deal with zero-track count data with 

the LA-ICP-MS method. EDM data are based on the ratios of two independent Poisson 

variables (Ns and Ni) which greatly simplifies all subsequent statistical analyses 

(including calculations of the uncertainty on zero-track grains); in contrast LA-ICP-MS 

fission track data are based on mixed ratios of Poisson and (log)normally distributed 

variables that are not easy to model statistically. 

 One possibility is to recast the age equation in an EDM form as shown by 

Vermeesch (2017, section 5 therein). The age equation in EDM form converts the 

238U/43Ca ratio to a Ni equivalent (see Vermeesch, 2017 for further details). A non-zero 

age is then obtained by adding 0.5 to both Ns and the Ni equivalent value, and the error 

on the fission track age can then be calculated. An alternative approach involves 

delimiting a 95% confidence interval that goes from 0 Ma (the age of the zero-track 

grain) to an age calculated for Ns=3, because in the Poisson distribution an observation 

of zero tracks denotes a 95% probability that the underlying mean is between zero and 

three. Both approaches yield similar results and the latter method can be easily 

implemented in the spreadsheet provided in the Supplementary Material. However, we 

favour the approach of Vermeesch (2017), as it is also enables zero-track grains to 
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also be included in a chi-squared homogeneity test. If a zero-track grain is present in 

a dataset then the single-grain age ti given by equation 3 is 0 Ma and the chi-squared 

homogeneity test (equation 17) cannot be employed using this grain to calculate the 

2 value. Recasting the age equation into an EDM form allows the use of equation 17 

with a zero-track grain; we then follow the transformation proposed in equations 6.38 

and 6.39 of Vermeesch (2019) for low-track density grains prior to applying the chi-

squared homogeneity test. 

 

5.5 U zoning in apatite 

One of the major strengths of the EDM is that data are collected from identical 

areas on individual grains and their mirror-images in the muscovite external detector, 

and therefore within-grain heterogeneity in uranium concentration can be 

accommodated by the EDM. The distribution of induced tracks in the external detector 

can therefore be considered as a reliable proxy map for the uranium distribution in its 

mirror-image apatite grain. This induced track “map” also records depth-integrated 

variations in uranium concentration, as induced fission (similar to spontaneous fission) 

generates tracks in the detector that are produced by uranium up to half a fission-track 

length below the apatite grain surface.  

Firstly, we consider the issue of potential U zoning in the Durango shards 

employed in the zeta calculation. LA-ICP-MS mapping of our Durango crystal and 

replicate spot analyses of our primary zeta grains demonstrates that U zoning in our 

Durango crystal is minor and on a significantly larger scale than that of an individual 

shard. 

In subsequent secondary LA-ICP-MS sessions with unknowns, the 238U/43Ca 

values of the Durango shards may be offset by a session-specific zeta fractionation 
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factor s (which is not related to variations in U content in a given shard). This zeta 

fractionation factor can then be applied to the 238U/43Ca values of a given Durango 

shard in a secondary LA-ICP-MS session, so it can be ratioed against its corresponding 

value in the primary LA-ICP-MS session. This ratio for each shard (Ri, equation 14) in 

a secondary LA-ICP-MS session should cluster around unity; a systematic deviation 

from unity during the secondary LA-ICP-MS session indicates an inappropriate drift 

correction while a single outlier might indicate U zoning in a given Durango shard which 

can then be discarded and not used in subsequent secondary LA-ICP-MS sessions. 

This is a major advantage of our method as it facilitates checking if the background 

and drift corrections applied during the secondary LA-ICP-MS session were fully 

appropriate. 

U zoning in unknowns is potentially more problematic but can be accounted for. 

U zoning with depth is easily dealt with by generating depth-weighted U/Ca ratios 

during the initial data reduction stage. Comparison of the depth-weighted U/Ca ratio 

with the U/Ca ratio from the same laser ablation spot analysis is a useful monitor for U 

zoning. Our depth-weighted U/Ca function in the Iolite DRS (section 3.1) extends down 

to 8 µm (half a fission track length) and accounts for U closer to the mount surface 

contributing more to the spontaneous track count. A graph of depth-weighted U/Ca vs 

U/Ca measured for the total pit depth is shown in Figure 6. These data should plot on 

a line with a slope very close to unity which is what is observed (Fig. 6); deviation from 

this line is accounted for by downhole U zonation. Importantly the sample in Figure 6 

(Sample K1 from Turab et al., 2017) is a young sample (3.7 Ma) with a low 

spontaneous track count (2.83 × 104 tracks/cm2) which could not be used as a guide 

to potential U zonation. In samples with U zoning, individual grains may differ in U/Ca 
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ratio by up to 20% between these two approaches, even though it makes typically very 

little difference (< 1%) to the pooled age of the sample. 

U zoning on the etched surface of the grain mount (i.e. the counting area) can 

be more difficult to assess. In the EDM (in samples with appreciable U) the 

corresponding induced track image can act as a guide for U zoning; such information 

is not available in the LA-ICP-MS fission track technique. For samples with high 

spontaneous track densities (i.e. with old ages and/or significant U contents) then the 

spontaneous track density can be used as an indication for U zoning. In such cases 

the counted area should be sited on a zone with a homogenous spontaneous density, 

or alternatively the counted area should be the same size and in the same position as 

the laser ablation spot. The uncertainty on the single grain age is mainly dependant on 

the number of tracks counted; reducing the counted area to the size of the laser 

ablation spot should not significantly penalise the single grain age accuracy in samples 

with high spontaneous track densities. 

In samples with low track density (i.e. young or low U samples) the problem of 

U zoning is potentially greater, although it is still possible to date such samples by LA-

ICP-MS. The simplest solution is to count on an area that mimics the exact size and 

location of the laser spot. However, this solution has the disadvantage of increasing 

the age uncertainty as the number of counted tracks will be low, while the choice of 

counted area (and thus spot location) in samples with very few tracks may be 

inadvertently affected by operator bias. To circumvent this, two different approaches 

have been developed that allow for counting of the whole grain surface. Vermeesch 

(2017) suggests undertaking multiple laser ablation spots analyses on a single crystal 

and calculating the U content by assuming a log-normal distribution of U in the grain. 

An alternative is to produce a 238U/43Ca map of the entire grain using the LA-ICPMS 
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technique that captures intra-grain U-variation and thus closely mimics the role of the 

muscovite external detector employed in the EDM. Rapid characterisation of elemental 

zonation by two-dimensional mapping of the grain surface is now possible by 

employing LA-ICP-MS systems with fast cell washout (e.g the aerosol rapid induction 

system or ARIS, van Malderen et al., 2015; Petrus et al., 2017; Ubide et al., 2015). 

Moreover, extracting data (elemental abundances and/or isotopic ratios) from grain 

maps from a specific region of interest (a polygon) that is identical to the counted area 

is now possible using the flexible ‘Monocle’ map interrogation tool for Iolite (Petrus et 

al., 2017). Grain mapping by LA-ICP-MS can thus be employed as an alternative to 

laser ablation spot analysis in the case of grains with low spontaneous track densities. 

In both approaches the time it takes to undertake the analysis and the subsequent data 

reduction is longer than conventional single-spot ablations and thus these approaches 

are best suited only for samples with low spontaneous track densities.  

 

6 Conclusions 

LA-ICP-MS fission track dating is becoming progressively more popular 

because of its advantages over the classical EDM (faster throughput, no need for 

irradiation nor use of hazardous acid to etch external detectors). It also facilitates 

acquisition of other data such as U-Pb age information or trace elements abundances, 

and these data are extremely useful in provenance studies (e.g. O’Sullivan et al., 

2018). Apatite Cl content can also be determined using this integrated analytical 

protocol and can be employed as a kinetic parameter for fission track annealing 

models. Two different approaches have been proposed for LA-ICP-MS fission track 

dating: absolute age determinations or a -based method. Absolute fission track dating 

by LA-ICPMS is susceptible to minor yet systematic deviations in apatite U contents 
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between sessions which in turn propagate through to systematic variations in the 

accuracy of absolute fission track age determinations, while the spontaneous fission 

decay constant is not well constrained. -based approaches do not employ the 

spontaneous fission decay constant while absolute U concentration determinations are 

not required - it is only assumed that the relative differences in 238U/43Ca ratios between 

grains (unknowns and Durango zeta grains) are constant in a secondary LA-ICP-MS 

session with unknowns. These -based approaches have often employed a ICP factor 

that had to be calculated for every LA-ICP-MS session with unknowns, which results 

in either a ICP factor with low precision or time-consuming counting to produce a 

precise ICP factor for each session. 

The method developed here overcomes these problems by measuring a single, 

high-precision ICP in a primary LA-ICP-MS session that can be reused for subsequent 

secondary LA-ICP-MS sessions. It involves revisiting the same grains (shards) of 

Durango that were used for the primary LA-ICP-MS session and calculating a session-

specific zeta fractionation factor to account for 238U/43Ca fractionation differences 

resulting from variations in LA-ICP-MS tuning. This approach also allows the user to 

verify that the drift correction based on NIST 612 is appropriate. The method has been 

tested and validated against apatite fission track standards of known age and by 

participating in an international survey that employed ‘blind’ dating of unknown 

samples. The method has also been tested by undertaking LA-ICP-MS and EDM 

fission track dating on the same grains on one apatite fission track standard (Mt 

Dromedary) and one low track density sample (Br5 from Cogné et al., 2012). 

The following recommendations are made to maximise the potential of our LA-ICP-MS 

approach: 

 employing epoxy-only grain mounts 
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 80 to 100 individual counted shards of Durango should be used for primary zeta 

sessions 

 long analytical sessions of unknowns (several hours) are possible and ensure 

a better fractionation correction of the ICP-MS signal. At least ca. 20-30 shards 

of Durango should be reanalysed during unknown sessions. 

 a laser spot of ca. 30-35 µm should be used with laser parameters optimised to 

achieve an ablation depth of ca. 15 µm; this allows for sufficient time and analyte 

volume for independent data to be acquired (e.g. trace elements abundances 

including Cl; U-Pb data).  

 counted areas should mimic the ablation spot area if uranium zonation is 

suspected. If the track density is low then multiple ablation spots or mapping of 

the grain should be employed to ensure a precise and accurate age 

determination. 

The LA-ICP-MS method developed here for fission track dating of apatite can 

be easily modified for other U-bearing minerals such as zircon or titanite. For titanite 

43Ca can also be used as an internal elemental standard, while for zircon either 29Si or 

a Zr isotope can be employed. The main issue is to find a sufficiently large titanite or 

zircon reference material with no small-scale U zoning (i.e. U is homogenous over the 

scale of a shard or crystal), such that they can be employed in an analogous fashion 

to Durango is in our LA-ICP-MS apatite protocol. 
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Figure 1: Plot of the 238U/43Ca ratio of 94 Durango shards analysed in three primary 

LA-ICP-MS sessions and used to determine the ICP factor. The plot shows good intra-

grain homogeneity with mean and median standard deviations of c. 2.0% (maximum 

c. 5%) while inter-grain variability can be relatively important. 

 

Figure 2: Plot of the individual Ri ratios for each analysed Durango shard (primary LA-

ICP-MS session data versus a secondary LA-ICP-MS session with unknowns with the 

session-specific zeta fractionation factor, s, applied). The importance of an 

appropriate drift correction during LA-ICP-MS sessions is apparent.  

 

Figure 3: Plots illustrating the difficulty in accurate U concentration determinations by 

LA-ICP-MS. (A) U/Ca ratio vs U content (ppm) for two runs of a primary Durango zeta 

session (both run on the same day) and for the same Durango shards run several 

months later in a session with unknowns. (B) U content (ppm) and U/Ca ratio of single 

Durango zeta shards from one unknown session ratioed to the weighted mean of the 

same individual shards from two primary zeta runs. (C) mean U content (ppm) and 

U/Ca ratio of the same pool of Durango shards in 24 sessions of unknowns ratioed 

against the weighted mean of the same pool of shards from two two primary zeta runs. 

This same dataset in inset figure (D) shows a correlation between the session 

averages of the U ppm and U/Ca ratio values for this same pool of Durango shards;  

absolute U ppm values are thus affected by U/Ca fractionation. See text for further 

discussion. 

 

Figure 4: Results of fission track dating by LA-ICP-MS (all errors are at 2 level. All 

radial plots were made using IsoplotR (Vermeesch, 2018): (A) Durango analysed as 
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an unknown, (B) Fish Canyon, (C) Mt Dromedary, (D) Sample Br5 from Cogné et al. 

(2012), (E) S1 from Ketcham et al. (2018), (F) S2 from Ketcham et al. (2018). 

 

Figure 5: Comparison of fission track dating by EDM and LA-ICP-MS on the same 

grains. All radial plots were made using IsoplotR (Vermeesch, 2018): (A) Mt Dromedary 

analysed by EDM on the same grains as Fig. 4C. (B) Sample Br5 from Cogné et al. 

(2012) analysed by EDM on the same grains as Fig 4D. (C) graph of LA-ICP-MS single 

grain ages (and pooled age) vs EDM single grain age (and pooled age) using the Mt 

Dromedary data from 4C and 5A. (D) graph of LA-ICP-MS single grain ages (and 

pooled age) vs EDM single grain age (and pooled age) using the Br5 data from 4D and 

5B. The 1:1 line is illustrated for reference and shows the similarity of the datasets 

between both methods. 

 

Figure 6: Plot of the downhole-weighted U/Ca ratio vs the U/Ca ratio for the whole 

ablation pit. Deviation from the trend line is a result of U zoning. The sample (K1) is a 

young sample (3.7 Ma) with a low spontaneous track count (2.83 × 104 tracks /cm2) 

from the study of Turab et al. (2017). 
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