

Rainfall event analysis in the north of Tunisia using the self-organizing map

Sabrine Derouiche, Cécile Mallet, Zoubeida Bargaoui

▶ To cite this version:

Sabrine Derouiche, Cécile Mallet, Zoubeida Bargaoui. Rainfall event analysis in the north of Tunisia using the self-organizing map. 9th International Workshop on Climate Informatics, Oct 2019, Paris, France. insu-02314163

HAL Id: insu-02314163 https://insu.hal.science/insu-02314163

Submitted on 11 Oct 2019 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

9th International Workshop on Climate Informatics October 02-04, 2019

Hosted by École Normale Supérieure, Paris, France

S. Derouiche^(1,2), C. Mallet⁽¹⁾, Z. Bargaoui⁽²⁾ (1) LATMOS, UVSQ, Paris Saclay University, France, (2) LMHE, ENIT, Tunis el Manar University, Tunisia

RAINFALL EVENT ANALYSIS IN THE NORTH OF TUNISIA USING THE SELF-ORGANIZING MAP

0. Introduction

The rainfall pattern in the Mediterranean is characterized by an important spatial and temporal variability.

 \rightarrow This variability is mainly due to its position (between 30°N and 45° N) which is directly influenced by subtropical high pressures and low mid-latitude pressures.

In Tunisia, the studies of rainfall patterns are often based on sample analysis with a

Data: daily rainfall database from 1959 to 2008 distributed over 70 rain gauge stations in Northern of Tunisia.

1. Data

Source: General Direction of Water Resources of Tunisia

fixed time step (annual, seasonal or monthly).

Since precipitation is an intermittent phenomenon that appears in the form of events. It is proposed in this study to analyze the rainfall variability using event concept using a daily rainfall time series.

The main objective of this study is to analyze the rainfall event of a single one season (December -January- February) in the north of Tunisia using the Self **Organizing Map SOM over 50 years.**

2. Rainfall event definition

The time series in rain gauge stations is broken down into a separate rain event by a dry period called Minimum Inter event Time MIT.

3. Variables characterizing seasonal rain event DJF and SOM parameters

Tab.1: Variables are characterizing seasonal rain events (DJF)

Nom	Symbol	Unit	Formula
Event number	EN	Events	
Total duration	TD	days	$TD = \sum_{i}^{NE} TD_{i}$
Precipitation	Р	mm	
Average precipitation	MP	mm/event	$MP = \frac{P}{EN}$
Average duration	MD	days/event	$MD = \frac{TD}{EN}$
Average intensity	MI	mm/day	$MI = \frac{P}{TD}$

Tab.2: SOM parameters

parameters	Observations		
Neuron number	320		
Map dimension	(20 ^x 16)	- rain event var	
Grid	Hexagonal	_	
Neighborhood function	Gauss		
Neighborhood radius	$\sigma(t) = \sigma_{\text{prind}} \left(\sigma_{\text{final}} / \sigma_{\text{prind}} \right)^{\frac{t}{T}}$		
Rough tuning			
Epoch number T	1000		
Initial and Final radius of training	[8 3]		
Fine-tuning		—	
Epoch number T	5000		
Initial and Final radius of training	[3 0.5]		

The training of Kohonen map is done starting from

the matrix of input data constituted of 3500 (50 years * 70 stations) and the six seasonal riables.

Fig.2: Rainfall event separation

Autocorrelation analysis method : The MIT is defined as the lag time where the autocorrelation coefficient of daily rainfall converge to zero.

Fig.3: Autocorrelation Analysis for 9 representative stations

→ The daily rainfall time series are decorrelated after two days (MIT = 2 days)

5. Conclusions and perspectives

The wet seasons, classes 3 and 4, are located in the northern part of

→ influenced by North West flux coming from the Atlantic during

The dry seasons, classes 1 and, are located in the southern part of

Exceptional wet seasons: 1963, 1970, 1973, 2002, 2003, 2004 and 2005

predominance of class 1 and 2 for more than 90 % of stations

Fig.5: Variables projection in topological Map

Fig.7: Histogram of six seasonal rain event variables corresponding to the obtained clusters

Fig.6: Clusters delimitation in topological map

Class 1 : low amount of precipitation, strong event number and total duration. Dry seasons with intermittent low rainfall

Class 2 : weak values of all variables. → Very dry seasons with infrequent rain event

Class 3 : Strong and long events, important amount of rainfall, strong intensity. Very wet seasons with extreme events

Class 4 : good amount of precipitation, strong intensity , important event number.

→ Wet seasons with intermittency of precipitation in the season

Fig.9: Temporal distribution of classes

The objective of this classification is to study the links between the temporal structure of seasonal precipitations and climate indices that influence the rainfall in the Mediterranean.

- A. Sharad Parchure, S. Kumar Gedam. "Precipitation Regionalization Using Self-Organizing Maps for Mumbai City, India". Journal of Water Resource and Protection, 10, 939-956. DOI: 10.4236/jwarp.2018.109055,2018.
- D.Dilmi, C.Mallet, L.Barthès, A.Chazottes. Data-driven clustering of rain events: microphysics information derived from macro-scale observations Atmospheric Measurement Techniques, European Geosciences Union, 10 (4), pp.1557-1574. (10.5194/amt-10-1557-2017) - insu-01410090, 2017.
- F.Murtagh, P. Contreras, Methods of hierarchical clustering. Comput.Res.Repository.abs/1105.0121(2011).http://arxiv.org/abs/1105.0121, 2011.
- J-F Rysman, S. Verrier, Y. Lemaître, E. Moreau. "Space-time variability of the rainfall over the western Mediterranean region: A statistical analysis" Journal of Geophysical Research: Atmospheres, American Geophysical Union, 118 (15), pp.8448-8459, 2013.
- J.Vesanto, J.Himberg, E.Alhoniemi and J.Parhankagas. SOM Toolbox for Matlab 5, Report A57. http://www.cis.hut.fi/projects/somtoolbox/, 2000.
- N. Akrour, A. Chazottes, S .Verrier, C. Mallet and L.Barthes . Simulation of yearly rainfall time series at microscale resolution with actual properties: Intermittency, scale invariance, and rainfall distribution, Water Resour. Res., 51, 7417–7435, doi:10.1002/2014WR016357, 2015
- T.Kohonen, "Self-Organizing Maps". Third Edition, Springer, Berlin. https://doi.org/10.1007/978-3-642-97610-0, 1995.