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Abstract15

Permanent deformations in the lithosphere can occur in the brittle as well as in the ductile16

domain. For this reason, the inclusion of viscous creep and frictional plastic deformation17

is essential for geodynamic models. However, most currently available models of frictional18

plasticity are rate-independent, and therefore do not incorporate an internal length scale,19

which is an indispensible element for imposing a finite width of localized shear zones.20

Therefore, in computations of localization, either analytical or numerical, resulting shear21

zone widths tend to zero. In numerical computations this manifests itself in a severe mesh22

sensitivity. Moreover, convergence of the global iterative procedure to solve the non-linear23

processes is adversely affected, which negatively affects the reliability and the quality of24

predictions. The viscosity which is inherent in deformation processes in the lithosphere25

can, in principle, remedy this mesh sensitivity. However, elasto-visco-plastic models which26

are commonly used in geodynamics assume a series arrangement of rheological elements27

(Maxwell-type approach), which does not introduce an internal length scale. Here, we28

confirm that a different rheological arrangement which put a damper in parallel to the29

plastic slider (Kelvin-type approach) introduces an internal length scale. As a result pres-30

sure, and strain and strain rate profiles across the shear bands converge to finite values31

upon decreasing the grid spacing. We demonstrate that this holds for non-associated plas-32

ticity with constant frictional properties and with material softening with respect to cohe-33

sion. Finally, the introduction of Kelvin-type viscoplasticity also significantly improves the34

global convergence of non-linear solvers.35

1 Introduction36

Shear localization refers to the phenomenon of the concentration of strains in nar-37

row zones when the applied load exceeds a certain threshold level. It occurs in virtu-38

ally all materials [Nadai, 1931], takes place at all spatial and temporal scales within the39

lithosphere and manifests itself through phenomena which are widespread in rocks, e.g.,40

faults, shear zones and shear bands. The localization of strains is observed in lithospheric41

domains where the stress levels are controlled mainly by either the temperature and the42

strain rate (viscous creep, ductile mode) or the pressure (frictional plasticity, brittle mode).43

While the mechanisms that govern strain localization in the ductile mode are still being44

discussed [Bercovici et al., 2001; Précigout and Gueydan, 2009; Thielmann and Kaus,45

2012; Duretz and Schmalholz, 2015], those acting in the brittle mode, particularly in the46
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realm of non-associated plasticity, are fairly well established [Rudnicki and Rice, 1975; Po-47

liakov et al., 1994].48

For the purpose of geodynamic modeling, accounting for plasticity is mandatory49

to capture the self-consistent generation of tectonic plates [e.g. Tackley, 2000] and the50

development of fault zones [e.g. Poliakov et al., 1993; Gerbault et al., 1998]. However,51

the physical processes within shear bands, which control their width, are often consid-52

ered to be beyond the scope of current geodynamic models. Hence, for sake of simplicity,53

strain localization is often induced by a priori defined strain-softening functions [Lavier54

et al., 1999; Buck and Lavier, 2001; Huismans and Beaumont, 2002; Buiter et al., 2006;55

Döhmann et al., 2019], which are meant to take into account the role of complex thermo-56

hydro-chemico-mechanical interactions within faults in a phenomenological sense.57

Since geodynamic models need to deal primarily with large deviatoric static strains,58

most models rely on the incompressible Stokes equations [e.g. Fullsack, 1995; Tackley,59

2000; Gerya and Yuen, 2003]. Typically, visco-plasticity is used to describe the rheologi-60

cal behavior of geomaterials under these conditions, treating them as highly viscous fluids61

which can locally undergo plastic flow if a yield criterion is met [Willett, 1992]. Many62

geodynamic models neglect the role of elasticity and can therefore not capture the effects63

of elastic unloading, which can be pivotal in the proper description of progressive shear-64

band development. Multi-dimensional stress states in geodynamics are typically captured65

using pressure-dependent yield functions like Drucker-Prager or Mohr-Coulomb [Moresi66

et al., 2007; Popov and Sobolev, 2008].67

For most rocks the angle of internal friction is relatively large in the steady state,68

around 30° or more [Byerlee, 1978]. On the other hand, the magnitude of the dilatancy69

angle is, which controls the amount of plastic volumetric change for a given amount of70

plastic shearing, is usually much lower, at most 10 − 15° at the onset of shear banding71

[Vermeer and de Borst, 1984], tending to zero for progressively increasing deformations.72

The latter observation ties in with the common use of the incompressible Stokes equa-73

tions for these applications. The nearly incompressible nature of the plastic flow in com-74

bination with the strong frictional character of geomaterials renders the plasticity models75

non-associated.76

Both the introduction of strain softening and the use of non-associated flow rules in77

pressure-dependent plasticity models yield mesh-dependent results and often exhibit an er-78
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ratic and unsatisfactory convergence behavior of the equilibrium-searching iterative proce-79

dure [Spiegelman et al., 2016]. The underlying reason is that the introduction of cohesion80

softening or of a non-associated flow rule has a mechanically destabilising influence. In-81

deed, both for cohesion softening [Read and Hegemier, 1984] and for non-associated flow82

[Rudnicki and Rice, 1975] not only loss of mechanical stability can be induced, but worse,83

also loss of ellipticity. This mathematical condition is the basic cause of the frequently84

observed mesh dependence, which occurs in computations of materials which have con-85

stitutive laws that are equipped with this kind of behaviour. It has also been shown that86

under such conditions convergence of the incremental-iterative solution procedure deterio-87

rates with increasing mesh refinement [de Borst et al., 2012].88

For non-associated flow, loss of ellipticity can happen even if the material is still89

hardening and simulations have shown that global structural softening can then take place90

[de Borst, 1988; Le Pourhiet, 2013; Sabet and de Borst, 2019]. It occurs at more and more91

positive hardening rates when the difference increases between the angles of internal fric-92

tion and dilatancy.93

It is emphasized that the fundamental, mechanical-mathematical cause of these nu-94

merical problems is loss of ellipticity. Loss of ellipticity can cause the initial value prob-95

lem to become ill-posed, which makes that solutions no longer continuously depend on96

the initial and boundary conditions. Numerical solutions then become meaningless, since97

they are fully dependent on the discretization, with respect to the fineness of the mesh,98

but also with respect to the direction of the grid lines [Sluys and Berends, 1998; Jirašek99

and Grassl, 2008]. This holds for any discretization method, including meshless methods100

[Pamin et al., 2003], and also adaptive mesh refinement is severely biased [Perić et al.,101

1994].102

Unless a plasticity model which incorporates cohesion softening or non-associated103

flow is equipped with an internal length scale, it will lose ellipticity, and hence suffer from104

mesh sensitivity, at some loading stage. Yet, most plasticity models which have been used105

so far in long term tectonics do not incorporate an internal length scale. Such models,106

while ubiquitous in geophysics, geomechanics and engineering, are based on the assump-107

tion that the mechanical behavior in a point is representative for a small, but finite volume108

surrounding it. This assumption is often correct, but fails for highly localized deforma-109

tions, like fault movement or shear bands. In the presence of strain weakening or non-110
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associated flow local stress-strain relations have to be enriched to properly take into ac-111

count the physical processes which occur at small length scales. A range of possibilities112

has been proposed to remedy this deficiency [de Borst et al., 1993], including Cosserat113

plasticity [Mühlhaus and Vardoulakis, 1987; Stefanou et al., 2019], non-local plasticity114

[Bažant and Jirasek, 2002] and gradient plasticity [de Borst and Mühlhaus, 1992]. Un-115

fortunately, all these possible solutions come with disadvantages. Obviously, they share116

the need to specify additional boundary conditions, which are often not easily understood117

from the physics. Other disadvantages are the introduction of additional degrees of free-118

dom, as in Cosserat or gradient models, or they can result in fully populated, non-banded119

and non-symmetric stiffness matrices (non-local models).120

For geodynamic applications the inclusion of a deformation-limiting viscosity, which121

has been tailored for modeling the deformation of crystalline solids [Peirce et al., 1983;122

Needleman, 1988] represents an alternative to non-local rheological models. It is empha-123

sized though, that not all visco-elasto-plastic rheologies solve the issue of mesh depen-124

dence, and that a pure series arrangement of the rheological elements (Maxwell-type ap-125

proach, see Fig. 1b)) for instance, does not introduce a length scale and therefore does126

not remove the mesh-dependence issue . By contrast, a viscoplastic model which relies on127

the introduction of a rate-limiting viscosity in a parallel arrangement with a plastic slider128

(Kelvin-type viscoplasticity, Fig. 1c)) [Perzyna, 1966] does introduce a length scale and129

can provide mesh-independent numerical solutions [Sluys and de Borst, 1992; Wang et al.,130

1996; Dias da Silva, 2004; Niazi et al., 2013]. Although a Kelvin-type viscoplasticity rhe-131

ology has been used in tectonic modeling studies before, [e.g. Hansen, 2003; Regenauer-132

Lieb et al., 2018; Yin et al., 2018], the consequences have largely remained unexplored.133

Herein, we will numerically study strain localization using non-associated Drucker-134

Prager plasticity, which captures the first-order behavior of the frictional lithosphere [Lemi-135

ale et al., 2008; Moresi et al., 2007; Kaus, 2010]. We first illustrate the problem of mesh136

dependence using rate-independent plasticity. Then, we introduce a Kelvin-type rate-dependent137

viscoplastic formulation and demonstrate that the computed shear bands are mesh indepen-138

dent, even when strain softening is also introduced. We analyze the pressure, strain, and139

strain rate profiles across the shear bands as well as their evolution. Finally, we discuss140

the implications of using viscoplasticity for modeling in geodynamics.141
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2 Constitutive models142

In the remainder, we consider three rheological models. The first model is a stan-143

dard, rate-independent elasto-plastic model (E-P), depicted in Fig. 1a) and, assuming small144

strains, it can be characterized by an additive decomposition of the strain rate into an elas-145

tic component and a plastic component:146

Ûεεε = Ûεεεe + Ûεεεp, (1)

where the subscripts e and p denote elastic and plastic components, respectively. The de-147

viatoric elastic strain εεεe ′ relates to the deviatoric stress τττ as follows:148

εεεe ′ =
τττ

2G
, (2)

where G represents the shear modulus, which is kept constant for simplicity.149

Plastic deformations arise when the yield function150

F =
√

J2 − C cos(φ) − P sin(φ), (3)

attains a zero value, with C and φ the cohesion and the angle of internal friction, respec-151

tively. J2 =
1
2

(
τ2
xx + τ

2
yy + τ

2
zz

)
+ τ2

xy is the second invariant of the deviatoric stresses152

τxx, τyy, τzz, τxy and P = − 1
3
(
σxx + σyy + σzz

)
is the mean stress, defined as negative in153

tension. When cohesion hardening or softening is incorporated, the hardening/softening154

modulus takes the form:155

h =
dC
dεp , (4)

where εp is the accumulated equivalent plastic strain according to the strain-hardening156

hypothesis and is formulated as:157

εp =

∫ √
2
3
( ÛεÛεÛεp)T ÛεÛεÛεpdt . (5)

During continued plastic flow, F = 0 and the deviatoric strain rates are assumed to158

be derivable from a plastic potential function Q:159

Ûεεεp = Ûλ
∂Q
∂σσσ

, (6)

where Ûλ is a plastic multiplier and Q is assumed to have a form similar to that of the160

yield function F:161

Q =
√

J2 − P sin(ψ), (7)

with ψ ≤ φ the dilation angle.162
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Next, we consider an visco-elasto-plastic model classically used in geodynamics,163

Fig. 1b), with a viscous damper added in series to the previous rheology (Maxwell-type164

approach, V-E-P):165

Ûεεε = Ûεεεv + Ûεεεe + Ûεεεp, (8)

the superscript v denoting a viscous (strain) component. The viscous deviatoric strain rate166

Ûεεεv ′ is assumed to be linearly related to the deviatoric stress tensor:167

Ûεεεv ′ =
τττ

2η
(9)

with η the (constant) dynamic shear viscosity.168

Thirdly, we consider a model where the plastic element of Fig. 1a) is substituted by169

a viscoplastic element, Fig. 1c), which can be considered as a Kelvin-type arrangement170

(E-VP):171

Ûεεε = Ûεεεe + Ûεεεvp. (10)

During viscoplastic flow, the yield function is now defined as [Heeres et al., 2002]:172

F =
√

J2 − C cos(φ) − P sin(φ) − ηvp Ûλ (11)

where ηvp is the viscosity of the damper. The rate-independent limit is recovered by let-173

ting ηvp → 0. Expression (11) makes the yield function rate-dependent, so this model174

belongs to the class of consistency viscoplastic models. It has been shown [Wang et al.,175

1997; Heeres et al., 2002] that this class of viscoplastic models has advantages over overstress-176

type viscoplastic models, e.g. those of the Perzyna-type [Perzyna, 1966], including an im-177

proved convergence behaviour and a more straightforward implementation.178

3 Numerical Implementation179

The expression of the visco-elastic tangent matrix Dve is obtained by integrating the180

Maxwell rheological chain, Eq. (8) under the assumption of no plastic flow. We introduce181

the quantities182

Gve =

(
1
G
+

1
η

)−1
and ξ =

Gve

G
(12)

to obtain the following update rule for the total stress tensor:183

σσσt+1 = −Pt + ξτt + Dve (
∆εve) t+1 (13)

–7–



Confidential manuscript submitted to Geochemistry, Geophysics, Geosystems

where the ∆-operator represents a finite increment, and the visco-elastic tangent operator184

reads:185

Dve =



K + 4
3 Gve K − 2

3 Gve K − 2
3 Gve 0

K − 2
3 Gve K + 4

3 Gve K − 2
3 Gve 0

K − 2
3 Gve K − 2

3 Gve K + 4
3 Gve 0

0 0 0 Gve


, (14)

with K the elastic bulk modulus.186

If (visco)plastic flow has occurred, the incremental plastic multiplier, ∆λ must be187

computed from Eq. (11) with Ûλ = ∆λ
∆t and F = 0, see also Heeres et al. [2002]. Using a188

Taylor’s expansion for the yield function [de Borst and Feenstra, 1990; Duretz et al., 2018],189

or by considering that the corrected stress state lie onto the yield surface [de Souza Neto190

et al., 2008], a closed-form expression for ∆λ can be derived for a Drucker-Prager yield191

function:192

∆λ =
F(σσσtrial)

Gve + K sin(φ) sin(ψ) + ηvp

∆t + H
. (15)

where σσσtrial is the trial stress, which has been computed assuming no (visco)plastic flow,193

and194

H = h cos φ

√
2
3

(
∂Q
∂σσσ

)T
∂Q
∂σσσ

. (16)

Defining σσσt as the stress state at the beginning of the loading step, the new stress state195

can be computed by adding the viscoelastic stiffness times the difference of the total and196

the (visco)plastic strain increments to σσσt :197

σσσt+1 = σσσt + Dve(∆εεε − ∆εεεvp) = σσσt + Dve
(
∆εεε − ∆λ

∂Q
∂σσσ

)
(17)

which exactly satisfies the yield condition.198

When a Newton-Raphson iterative procedure is used to achieve global equilibrium,199

the above expression must be linearized. This leads to the so-called consistent tangent op-200

erator for visco-elastic-viscoplastic solids201

Dvep ≡
∂σσσ

∂εεε
= E−1Dve −

E−1Dve ∂Q
∂σσσ

(
∂F
∂σσσ

)T
E−1Dve

H + ηvp

∆t +
(
∂F
∂σσσ

)T
E−1Dve ∂Q

∂σσσ

(18)

with ∆t the time step and202

E = I + ∆λ
∂2Q
∂σσσ2 . (19)

Detailed derivations of the consistent tangent operator and incremental plastic multiplier203

are provided in the appendix.204
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4 Model configuration205

The results shown in this study have been obtained using a simple initial model206

configuration. The two-dimensional model consists of a 1.0 × 0.7 domain subjected to207

a kinematic boundary condition which induces a pure shear state. Displacements incre-208

ments (∆uBC
i = xi∆εBC) are imposed on the south and east sides of the domain. The west209

and north sides of the domain are slip-free boundaries. A circular inclusion with radius210

5 × 10−2 is located at the origin of the domain. This imperfection is characterized by a211

lower shear modulus, which causes the stress perturbation ultimately leading to strain lo-212

calization. All initial stress and strain components are set equal to zero. We have used the213

same number of nodes (ni) in both spatial dimensions (nx = ny). The shear modulus G214

has been set equal to 1 in the matrix and equal to 0.25 in the perturbation, while the bulk215

modulus K has been set equal to 2. The applied strain increment ∆εBG = 5.0 × 10−6. For216

the viscoplastic model, the viscosity is set to 2.5 × 102 and the timestep ∆t = 104, which217

yields a background strain rate ÛεBG =
∆εBG
∆t = 5.0×10−9. More information about the model218

parameters is given in Table 1.219

5 Modeling results with an elasto-plastic rheology (E-P model)220

The first series of computations have been carried using a rate-independent elasto-221

plastic rheology, an angle of internal friction φ = 30o and a dilatancy angle ψ = 10o.222

Three different resolutions were employed, with ni = [51, 101, 201] nodes. Fig. 2 shows223

the second invariant of the accumulated strain for all three resolutions, for the same amount224

of applied background strain. A single shear band develops starting from the imperfection.225

The shear band is oriented at 35o from the direction of the principal compressive stress,226

which is in line with the Arthur formula (45o − 1/4(φ + ψ)) [Arthur et al., 1977; Kaus,227

2010], which has been experimentally observed for shear banding in sands and can be de-228

rived from bifurcation analysis using the Mohr-Coulomb criterion. For the Drucker-Prager229

yield criterion the out-of-plane stress, however, plays a role, [Rudnicki and Rice, 1975], but230

this apparently affects the numerical results only marginally. The results are clearly mesh231

dependent as the localized strain is distributed over a thickness of a single cell.232

Another representation was made by plotting the profiles of the second invariant233

of the accumulated strain invariant and of the pressure across the shear bands, see Fig.234

2d). The profiles reveal a divergence of the solutions with increasing resolution. Since the235
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displacement jump across the shear band is constant, the magnitude of strain in the shear236

band continues to increase for finer resolutions. For the finest discretization we observe237

the development of a Dirac-like strain distribution. This is further evidence for the ill-238

posed character of the boundary value problem, since the Dirac-like strain profile points at239

a discontinuity in the displacements, which can only occur if the governing equations have240

locally changed character from elliptic to hyperbolic.241

6 Results for an elasto-viscoplastic rheology (E-VP model)242

The second series of models were carried out using a elasto-viscoplastic rheology.243

The numerical simulations were achieved on progressively refined meshes consisting of244

ni = [51, 101, 201, 401, 801] nodes. Fig. 3 depicts the spatial distribution of the accumu-245

lated strain at a fixed amount of shortening (3.0 × 10−4). In contrast with the elasto-plastic246

models of Fig. 2 shear bands of a finite width now arise. We note that the shear band is247

still oriented at 35o from the direction of σ1. Detailed probing of different variables, in248

particular the pressure, the second invariant of the accumulated strain and strain rate, re-249

sults in a clear convergence upon mesh refinement, see Fig. 4. The strain and strain rate250

profiles across the shear bands have a quasi-Gaussian shape. The peak strain and the peak251

strain rate are at the center of the shear band and reach values of 1.8×10−3 and 5.3×10−9,252

respectively. The pressure is lower inside the shear band and reaches a minimum value of253

0.9 × 10−4. For a low resolution (512 nodes), the peak strain reaches about half the mag-254

nitude of that obtained with the higher resolutions and the strain is localized over a wider255

zone.256

The evolution of the strain, the strain rate and the pressure across the shear band is257

shown in Fig. 5a) for a given fixed resolution. From a background strain of 1.0 × 10−4,258

the strain locally increases inside a well-defined region. The amplitude of a Gaussian-like259

strain profile exhibits a growth of 1.8 × 10−3 over an increment of background strain of260

2.0 × 10−4, see Fig. 5a). The evolution of the second invariant of the strain rate shares261

these characteristics. The amplitude of the Gaussian-like profile of the strain rate reaches262

a peak value of 6.2 × 10−9 shortly after the onset of shear localization (background strain263

2.0 × 10−4). This corresponds to a magnitude of the strain rate which is approximately264

twelve times larger than the applied background strain rate. The profiles of the pressure265

are characterized by a progressive decrease towards the center of the shear zone. After266

an applied background strain of 3.0 × 10−4, the pressure in the shear band drops to about267
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two-thirds the background pressure. The shape of the pressure profile differs from that of268

the accumulated strain rate profiles. With ongoing strain, it progressively deviates from269

a Gaussian shape and morphs into a square shape. At the final stage, positive pressures270

develop adjacent to the shear zone, which further increases the magnitude of the pressure271

gradient across the shear band.272

7 Characteristic shear band width273

The above results indicate that the viscoplastic rheology introduces a length scale274

into the boundary value problem. In the following, we define the characteristic shear-275

band thickness (Dvp) as the bandwidth of the accumulated strain profiles, which can be276

extracted from the two-dimensional modeling. Since the strain rate profiles sampled nor-277

mal to the shear band exhibit a Gaussian-like shape, they can approximated as:278

Ûε = Ûεmax exp

(
−

z2

Dvp 2

)
, (20)

where z is coordinate orthogonal to the shear band and Ûεmax is the maximum value of279

second strain rate invariant along the profile. The value of Dvp is obtained by an opti-280

mum fit of the Gaussian equation to the profiles which have been extracted from the two-281

dimensional models.282

The transient evolution Dvp for different mesh resolutions is given in Fig. 6a). For283

all resolutions, the initial value of Dvp is equal to the radius of the initial perturbation (r =284

0.05). The values of Dvp progressively decrease with an increasing applied strain. They285

all reach an asymptotic value at an applied strain of approximately 2.5 × 10−4. We have286

plotted the asymptotic Dvp values as a function of the grid spacing h−1 in Fig. 6b). The287

shear band width asymptotically approaches a value of 0.01 with an increasing resolution.288

Using a similar rheological model, Wang et al. [1996] have quantified the impact of289

the dimension of the initial imperfection on the shear band width. The dimensions of the290

initial perturbation are, together with the material parameters, key to the occurrence and291

further evolution of shear localization. It plays a fundamental role at the onset of shear292

localization. However, when the shear zone reaches a steady-state situation, i.e. when293

the width Dvp has stabilized, the shear band widths are virtually independent of the size294

of the imperfection, as shown in Fig. 7). This is similar to results obtained with thermo-295

mechanical models of strain localization in temperature activated rate-dependent materials296

[Lemonds and Needleman, 1986] using a power law viscous rheology [Duretz et al., 2014]297
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and a power law visco-elastic rheology [Duretz et al., 2015]. In a steady state, the charac-298

teristic shear band thickness is essentially independent of the size of the imperfection.299

8 Modeling strain localization at the crustal scale300

In order to investigate the applicability and consequences of viscoplasticity for mod-301

eling lithospheric deformations, we have carried out simulations on kilometer-scale di-302

mensions, using typical material parameters for rocks (Model Crust 1 and Model Crust303

2, see Table 1). Model Crust 1 was designed to study the initiation and propagation of a304

single shear band which originates from a well-defined material imperfection using co-305

hesion softening. The configuration shares similarities with that of Model E-VP, but has306

a material imperfection with radius of 500 m. The shear modulus within the perturba-307

tion is equal to 25% of that in the matrix (Table 1). The boundary velocity was set to308

VBC = 2 × 10−9 m.s−1. The dimensions of the domain are 10 × 6.85 km, which is dis-309

cretized using 4002 cells leading to a resolution of 25 m. For the reference test, the Kelvin310

element viscosity was set to 1017 Pa · s, the initial cohesion was set to C = 1.75 × 107 Pa.311

Softening was prescribed by setting a negative value of hardening modulus, h = −7.0×107
312

Pa and allowing a reduction of cohesion by a factor 2. The shear band develops from the313

south-west corner towards the north-east corner, see Fig. 8a). As for the previous cases,314

strain localization is progressive and the shear band width narrows down with increasing315

time or strain, Fig. 8b), and progressively reaches a width of 90 m. In order to test the316

sensitivity of the model, we have tested different parameter combinations, all satisfying317

a constant value the product η
vpVBC
C . The resulting models all predict a final shear band318

thickness of about 90 m. The time needed for strain localization is proportional to the319

Kelvin element viscosity. Defining the characteristic time tc ∝
ηvp

G and the characteristic320

length Dc ∝
ηvpVBC

C allows to collapse the shear band thickness evolution onto a single321

master curve (Fig. 8c).322

When considering crustal scale strain localization, incompressible plastic deforma-323

tion is generally invoked. However, with rate-independent plastic models, such a limit324

poses serious numerical issues. The latter occur for large differences between the friction325

and dilation angles (φ − ψ > 20o), and are caused by the loss of ellipticity [Sabet and de326

Borst, 2019]. In practice, models often diverge (e.g. Spiegelman et al. [2016]) even when327

using consistent linearizations (e.g. Duretz et al. [2018]). With Kelvin-type viscoplastic-328

ity models, attainment of convergence appears to be much less problematic because of the329
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weak regularisation of the ill-posed problem. Fully converged results were obtained for330

ψ = 0◦ and φ = 30◦ as depicted on Fig. 9a. Interestingly, strain localisation was obtained331

for values of the dilation angle up to 10◦, but localisation did not occur for larger values332

of ψ. During localisation, the shear zone narrows down at a faster rate when the dilation333

angle is small (Fig. 9b). However, the width of the post-localisation shear zone is not af-334

fected by a variations of ψ (Fig. 9b). By contrast, stress-strain curves notably differ for335

the different values of φ. In the incompressible limit, the effective stress (σ̄ = 1
V

∫ √
JIIdV)336

reaches a peak value (15 MPa) and then decreases to a saturation value (≈ 10 MPa). For337

larger angles, the effective stress keeps increasing despite the occurrence of strain localiza-338

tion.339

In Model Crust 2 strain localization is seeded by setting an initial random perturba-340

tion on the cohesion field. The confinement pressure was set equal to 50 MPa and cohe-341

sion softening is again applied. Numerous intersecting shear bands of different lengths de-342

velop, see Fig. 10). Due to the complex internal kinematics, shear bands exhibit different343

lengths and widths. This is in contrast with previously presented models in which single344

shear bands were arising from from single perturbations (Fig. 8a). We have run simula-345

tions for various resolutions (ni = [101, 201, 401, 801]) up to a bulk strain of 0.5 × 10−2.346

The results show that, despite the use of non-associated plasticity and cohesion softening,347

a reasonable convergence upon mesh refinement was achieved. While there is a difference348

in the strain fields between the low resolution models, e.g. between 1002 and 2002 cells,349

the differences are much less pronounced when comparing simulations for higher resolu-350

tions, e.g. between 4002 and 8002 cells. Most importantly, global equilibrium iterations351

converged quadratically up to machine precision without any need to reduce the applied352

strain increment. This is in complete contrast with rate-independent elasto-plastic models,353

with which it was impossible to reach such a high accuracy (results not shown here).354

9 Discussion355

9.1 A potential regularization for mesh-dependent strain softening plasticity356

In tectonic modeling, strain localization in the frictional domain is generally mod-357

eled using a strain-softening parametrization, e.g. Huismans and Beaumont [2002]. A pro-358

gressive decrease of the magnitude of plastic parameters (cohesion, friction angle) is im-359

posed as a function of the accumulated plastic strain. Such a parametrization is supposed360
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to mimick the effects of complex physico-chemical processes (e.g. metamorphic reactions,361

fluid pressure variations) that are not taken into account in the model description, which362

may cause post-localization stress drops measured in experiments on rock deformation.363

However, this approach is known to suffer from mesh dependence, cf. Fig. 2: the results364

strongly depend on the numerical resolution. Among the numerous possibilities that pro-365

vide regularization of mesh dependence in plasticity, viscoplasticity is a simple and effi-366

cient solution. Herein we have shown that using a viscoplastic rheology together with a367

non-associated frictional plasticity model and cohesion softening provides results which368

converge upon mesh refinement. Morerover, we have found that viscoplasticity also facili-369

tates resolving strain localization in the incompressible plastic limit (ψ = 0), which is very370

relevant for lithospheric conditions.371

9.2 Benefits for the convergence behavior of the global non-linear solver372

Use of a viscoplastic model as regularization method can also dramatically improve373

global convergence and the computability and solvability of shear banding. With a vis-374

coplastic model, strains are not concentrated in one cell, but are distributed over a finite375

width. Therefore, increasing the resolution does not lead to an increase of the strain lo-376

cally, which can cause serious numerical issues such as local snap-backs in the return377

mapping and the occurrence of multiple, non-physical equilibrium states which cause di-378

vergence of the global equilibrium-finding iterative procedure. An illustration is that for379

an elasto-plastic rheology no results could be obtained for meshes with more than 2012
380

nodes, even when reducing the strain increment. When the strain increment was kept con-381

stant, it was not possible to reach convergence for resolutions with more than 1012 nodes382

(Table 2). Using an elasto-viscoplastic rheology, however, converged results were obtained383

for fine resolutions, up to 8012 nodes (Figs 3 and 10). Moreover, both the maximum and384

average number of iterations required to achieve global equilibrium are almost insensitive385

to the numerical resolution, as expected (Table 2).386

9.3 Implications of viscoplasticity387

The viscoplastic model introduces a rate dependence in the yield function and re-388

quires an additional model parameter: the viscosity of the viscoplastic (Kelvin) element.389

Here we used the viscosity as a numerical parameter rather than as an experimentally390

measured quantity with a clear physical meaning. Shear viscosities estimated from labora-391
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tory experiments of rock deformation exhibit an Arrhenius temperature dependence, which392

results in a exponential growth of viscosity with decreasing temperature. Using such val-393

ues as viscosity of the Kelvin element would lead to an unrealistic overshoot of the yield394

function in the frictional (low temperature) domains of the lithosphere and would preclude395

strain localization. We believe that the viscosity of the Kelvin element should be chosen396

such that shear bands can be resolved numerically. We expect that such an approach will397

allow for the converged resolution of shear bands in geodynamic models where the spa-398

tial resolution has so far at most reached the 100 meter scale. Another approach to select399

the Kelvin element viscosity is to reason in terms of the overstress (∆σ = ηvp Ûλ). By as-400

suming that the rate of the plastic multiplier is proportional to the background strain rate401

( Ûλ ∝ LVBC), it is possible to define the viscosity that will approximately generate the pre-402

defined overstress (ηvp ∝ ∆σ
LVBC

). For example, using the parameters of Model Crust 1 (Fig.403

8) and assuming an overstress of 20 kPa, one obtains a viscosity for the Kelvin element of404

1017 Pa·s.405

In general, the width of shear bands which arise in the frictional domains of the406

lithosphere are highly variable and can range from discrete fault planes to finite thickness407

fault zones (gouges), which involve complex processes that are beyond the scope of this408

study (shear heating, fluid pressure variations, grain crushing, mineral reactions). A de-409

tailed study of these processes may provide a physics-based regularization for the width410

of frictional shear bands, which will likely be smaller than the current resolution power of411

geodynamic models.412

9.4 Differences with the standard visco-elasto-plastic model413

In geodynamics, visco-elasto-plasticity is generally implemented via a rheological414

model which couples a viscous damper, an elastic spring and a plastic slider in series,415

which can be dubbed a Maxwell V-E-P model, e.g. Lemiale et al. [2008]; Gerya and Yuen416

[2007]; Kaus [2010]. With such a model, rate dependence is included in the visco-elastic417

trial stress, but not in the plastic strain component. Shear localization obtained with such418

models has the same characteristics as that obtained with a rate-independent elasto-plastic419

rheology. Shear bands localize on a single band of cells or elements, thus causing numer-420

ical simulations to be mesh sensitive, see Figs. 11a,b). This is in contrast with the model421

discussed above, which incorporates rate dependence in the plastic element and allows422

shear localization to spread over several cells or elements, see Fig. 11c).423
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Simulations with an elasto-plastic model may also require extremely fine load incre-424

ment to reach global equilibrium, as shown in Fig. 11d). This equally applies to models425

with a viscoelastic-plastic (V-E-P) rheology. Elasto-viscoplastic (E-VP) models overcome426

this issue (Fig. 11d) and can accurately compute the load-bearing capacity of an E-P ma-427

terial, see Fig. 11e).428

For geodynamics modeling purposes, we suggest that E-VP and V-E-P models could429

be combined into an E-V-VP model, shown in Fig. 1d). One one hand, Maxwell visco-430

elasticity is necessary to capture both the short timescale [Deng et al., 1998; Heimpel,431

2006; Wang, 2007] and the long timescale, e.g. Farrington et al. [2014]; Schmalholz et al.432

[2015]; Olive et al. [2016], which are essential features of lithospheric deformations. On433

the other hand, Kelvin-type viscoplastic models remedy known issues in modeling strain434

localization in the lithosphere. A combined E-V-VP model would be suitable to capture435

the visco-elastic behavior of rocks, but would also enable to obtain mesh-independent and436

globally convergent solutions of plastic shear banding.437

10 Conclusions438

We have investigated the role of elasto-viscoplasticity with a damper in parallel to439

a plastic slider (Kelvin-type rheology) on the development of shear bands in the frictional440

regions of the lithosphere. While the rate-independent frictional plasticity models, which441

have been used classically, suffer from mesh sensitivity, models using this viscoplastic442

rheology converge upon mesh refinement. The strain, the strain rate and the pressure in-443

side the shear bands reach finite values upon a decrease of the grid spacing. A charac-444

teristic length scale is introduced due to the rate dependence of the viscoplastic model.445

Our results indicate that shear bands which arise from pressure-dependent viscoplastic-446

ity maintain their orientation, but are now also equipped with a characteristic band width.447

Even the combination of a Kelvin-type viscoplasticity with strain softening on the cohe-448

sion gives a mesh-convergent behavior. The approach is thus a viable way to regularize449

strain localization in geodynamic models. Most importantly, the introduction of an inter-450

nal length scale due to viscoplasticity maintains well-posedness of the boundary value451

problem also during shear banding, and therefore markedly improves the convergence of452

equilibrium iterations, which is a recurrent issue in geodynamic simulations.453

11 Figures454
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Table 1. List of parameters relative to the different tests presented in this study. *: In Models 1 and 3, the

strain increment may vary with time to allow for global convergence (see Fig. 11d). **: in Model Crust 2, the

initial cohesion is randomly perturbed.

455

456

457

Parameter Model 1 E-P Model 2 E-VP Model 3 V-E-P Model 4 E-VP soft. Model Crust 1 Model Crust 2

Lx [m] 1 1 1 1 1.41 × 104 2 × 104

Ly [m] 0.7 0.7 0.7 0.7 0.685 × 104 104

∆εBC [-] 5 × 10−6∗ 5 × 10−6 5 × 10−6∗ 5 × 10−6 2 × 10−5 5 × 10−5

∆t [s] - 104 104 104 108 1010

Pc [Pa] 0 0 0 0 0 50 × 106

C [Pa] 1.75 × 104 1.75 × 104 1.75 × 104 1.75 × 104 1.75 × 107 107∗∗

h [Pa] 0 0 0 −10−2 −7 × 107 −1.5 × 107

K [Pa] 2 2 2 2 2 × 1010 2 × 1010

G [Pa] 1 1 1 1 1010 1010

η [Pa.s] - - 2.5 × 105 - - -

ηVP [Pa.s] - 2.5 × 102 - 2.5 × 105 1 × 1017 3 × 1018

Table 2. Number of Newton-Raphson iterations required to reach global equilibrium for different resolu-

tions using either the E-P or the E-VP model. The relative tolerance was set to 10−11 and was measured using

the L2 norm. Runs which did not result in a converged state are denoted by a dash.

499

500

501

E-P models 512 1012 2012 4012

Mean # its. 3.88 6.78 − −

Max. # its. 11 26 − −

E-VP models 512 1012 2012 4012

Mean # its. 3.88 4.17 4.41 4.89

Max. # its. 11 12 12 12
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d) Maxwell visco-elasticity with Kelvin viscoplasticity (V-E-VP)

b) Maxwell visco-elasto-plasticity (V-E-P)

a) Maxwell elasto-plasticity (E-P)

c) Elasticity with Kelvin viscoplasticity (E-VP)

Figure 1. Investigated rheological models for deformation of the lithosphere: a) Maxwell elasto-plastic

model. b) Maxwell visco-elasto-plastic model. c) Elastic model coupled to a Kelvin viscoplastic element. d)

Maxwell visco-elastic model coupled to a Kelvin viscoplastic element.

458

459

460
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Figure 2. Spatial distribution of accumulated strain (εI I ) calculated with an elasto-plastic rheology for

three different mesh resolutions (512, 1012, and 2012 nodes). Results are depicted after a bulk strain of

≈ 7.7 × 10−5. The white lines indicate the location of solution profiles reported in d. d) Profiles of accumu-

lated strain (a) probed across elasto-plastic shear bands.
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464
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Figure 3. Spatial distribution of accumulated strain (εI I ) calculated with an elasto-viscoplastic rheology

for five different mesh resolutions (512, 1012, 2012, 4012 and 8012 nodes). Results are depicted after a bulk

strain of 3.0 × 10−4. The white lines indicate the location of solution profiles reported in Fig. 4.
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Figure 4. Profiles of accumulated strain (a), effective strain rate (b) and pressure (c) probed across elasto-

viscoplastic shear bands. The results were obtained on five different mesh resolutions (512, 1012, 2012, 4012

and 8012 nodes). The solution profiles were sampled along the white lines visible on Fig. 3

468

469
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Figure 5. Temporal evolution of accumulated strain, effective strain rate, and pressure across the shear

zone. The different profiles correspond to five values of background strain (from 1.0 × 10−4 to 3.0 × 10−4 ).

Results were computed on a mesh consisting of 4012 nodes.

471

472

473

–22–



Confidential manuscript submitted to Geochemistry, Geophysics, Geosystems

Figure 6. a) Evolution of the characteristic shear zone thickness (Dvp) versus accumulated background

strain (εBG). The values were extracted from the runs with five different mesh resolutions (Fig. 3). b) Char-

acteristic shear band thickness (Dvp) versus grid spacing h. The results were extracted from the runs depicted

on Fig. 3
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Figure 7. Influence of the initial size of the imperfection on the shear bands. Models were run with five

different initial seed radius and for a fixed resolution of 4012 nodes. The radius of the imperfection in the

reference model is r (panel c). The inclusion has a reduced size in panels a) and b) and an increased size in

panels d) and e). No material softening was applied.
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Figure 8. Strain localization at the kilometer scale arising from a single material perturbation. Panel a)

depicts the strain field after a bulk strain of 5 × 10−3. Panel b) shows measured shear band widths for different

parameter combinations. Panel c) depicts the master curve obtained when defining the characteristic time

scale directly proportional to the Kelvin element viscosity.
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Figure 9. Effect of plastic dilatancy on shear band development. Panel a) depicts the strain field after a

bulk strain of 1 × 10−2 in the incompressible limit (ψ = 0◦). Panel b) shows measured shear band widths for

different values of dilatancy angle. Panel c) depicts stress-strain curves for the different values of ψ.
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Figure 10. Shear banding at kilometer scale arising from an initial random perturbation of the initial co-

hesion field for various mesh resolutions (from 1002 to 8002 cells). A Kelvin E-VP rheological model was

applied. The confining pressure was set to 50 MPa and the Kelvin element viscosity was set to ηVP = 3× 1018

Pa.s.
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Figure 11. Spatial distribution of accumulated strain (εI I ) after a bulk strain of 3.0×10−4. a) depicts results

obtained with an elasto-plastic rheology (E-P). b) corresponds to a visco-elasto-plastic rheology (V-E-P) using

a serial viscosity of 2.5 × 105. and c) show results obtained with an elasto-viscoplastic rheology (E-VP) using

a Kelvin viscosity of 2.5 × 102. Panel d) shows the variations of the strain increment needed for achieving

successful non-linear solutions. Panel d) shows the evolution of effective stress for the 3 different rheological

models.

493

494

495

496

497

498

–28–



Confidential manuscript submitted to Geochemistry, Geophysics, Geosystems

Acknowledgments502

The research reported in this article has been partially supported by the European503

Research Council under grant 664734 "PoroFrac". The data presented in this study are the504

result of numerical simulations. Results can be reproduced using the open source routines505

M2Di_EP (https://bitbucket.org/lraess/m2di/src/e4bde7404e533ffacac0746872c5b0d24593517b/506

M2Di_EP/?at=master).507

References508

Arthur, J. R. F., T. Dunstan, Q. A. J. L. Al-Ani, and A. Assadi (1977), Plastic deformation509

and failure in granular media, Géotechnique, 27, 53–74.510

Bažant, Z. P., and M. Jirasek (2002), Nonlocal integral formulations of plasticity and dam-511

age: Survey of progress, Journal of Engineering Mechanics, 128, 1119–1149.512

Bercovici, D., Y. Ricard, and G. Schubert (2001), A two-phase model for compaction and513

damage: 1. General theory, Journal of Geophysical Research: Solid Earth, 106, 8887–514

8906.515

Buck, W. R., and L. L. Lavier (2001), A tale of two kinds of normal fault: The impor-516

tance of strain weakening in fault development, Geological Society, London, Special517

Publications, 187, 289–303.518

Buiter, S. J. H., A. Y. Babeyko, S. Ellis, T. V. Gerya, B. J. P. Kaus, A. Kellner,519

G. Schreurs, and Y. Yamada (2006), The numerical sandbox: comparison of model re-520

sults for a shortening and an extension experiment, Geological Society, London, Special521

Publications, 253, 29–64.522

Byerlee, J. (1978), Friction of rocks, Pure and Applied Geophysics, 116, 615–626.523

de Borst, R. (1988), Bifurcations in finite element models with a non-associated flow law,524

International Journal for Numerical and Analytical Methods in Geomechanics, 12, 99–525

116.526

de Borst, R., and P. H. Feenstra (1990), Studies in anisotropic plasticity with reference to527

the Hill criterion, International Journal for Numerical Methods in Engineering, 29, 315–528

336.529

de Borst, R., and H. B. Mühlhaus (1992), Gradient-dependent plasticity: Formulation and530

algorithmic aspects, International Journal for Numerical Methods in Engineering, 35,531

521–539.532

–29–



Confidential manuscript submitted to Geochemistry, Geophysics, Geosystems

de Borst, R., L. J. Sluys, H.-B. Mühlhaus, and J. Pamin (1993), Fundamental issues in533

finite element analysis of localisation of deformation, Engineering Computations, 10, 99534

– 122.535

de Borst, R., M. A. Crisfield, J. J. C. Remmers, and C. V. Verhoosel (2012), Non-Linear536

Finite Element Analysis of Solids and Structures, second ed., Wiley, Chichester.537

de Souza Neto, E. A., A. Perić, and D. R. J. Owens (2008), Computational Methods for538

Plasticity: Theory and Applications, first ed., Wiley, Chichester.539

Deng, J., M. Gurnis, H. Kanamori, and E. Hauksson (1998), Viscoelastic flow in the lower540

crust after the 1992 landers, california, earthquake, Science, 282, 1689–1692.541

Dias da Silva, V. (2004), A simple model for viscous regularization of elasto-plastic con-542

stitutive laws with softening, Communications in Numerical Methods in Engineering,543

20(7), 547–568, doi:10.1002/cnm.700.544

Döhmann, M. J. E. A., S. Brune, L. Nardini, E. Rybacki, and G. Dresen (2019), Strain lo-545

calization and weakening processes in viscously deforming rocks: Numerical modeling546

based on laboratory torsion experiments, Journal of Geophysical Research: Solid Earth,547

0(0), doi:10.1029/2018JB016917.548

Duretz, T., and S. M. Schmalholz (2015), From symmetric necking to localized asymmet-549

ric shearing: The role of mechanical layering, Geology, 43, 711–714.550

Duretz, T., S. Schmalholz, Y. Podladchikov, and D. Yuen (2014), Physics-controlled thick-551

ness of shear zones caused by viscous heating: Implications for crustal shear localiza-552

tion, Geophysical Research Letters, 41, 4904–4911.553

Duretz, T., S. Schmalholz, and Y. Podladchikov (2015), Shear heating-induced strain local-554

ization across the scales, Philosophical Magazine, 95(28-30), 3192–3207.555

Duretz, T., A. Souche, R. de Borst, and L. Le Pourhiet (2018), The benefits of using a556

consistent tangent operator for viscoelastoplastic computations in geodynamics, Geo-557

chemistry, Geophysics, Geosystems, 19(2018GC007877), 1–21.558

Farrington, R. J., L. Moresi, and F. A. Capitanio (2014), The role of viscoelasticity in sub-559

ducting plates, Geochemistry, Geophysics, Geosystems, 15, 4291–4304.560

Fullsack, P. (1995), An arbitrary lagrangian-eulerian formulation for creeping flows and its561

application in tectonic models, Geophysical Journal International, 120(1), 1–23.562

Gerbault, M., A. N. B. Poliakov, and M. Daignieres (1998), Prediction of faulting from the563

theories of elasticity and plasticity: what are the limits?, Journal of Structural Geology,564

20(2), 301 – 320.565

–30–



Confidential manuscript submitted to Geochemistry, Geophysics, Geosystems

Gerya, T. V., and D. A. Yuen (2003), Characteristics-based marker-in-cell method with566

conservative finite-differences schemes for modeling geological flows with strongly vari-567

able transport properties, Physics of the Earth and Planetary Interiors, 140, 293–318.568

Gerya, T. V., and D. A. Yuen (2007), Robust characteristics method for modelling multi-569

phase visco-elasto-plastic thermo-mechanical problems, Physics of the Earth and Plane-570

tary Interiors, 163, 83–105.571

Hansen, D. L. (2003), A meshless formulation for geodynamic modeling, Journal of Geo-572

physical Research: Solid Earth, 108(B11), 1–16.573

Heeres, O. M., A. S. J. Suiker, and R. de Borst (2002), A comparison between the574

Perzyna viscoplastic model and the Consistency viscoplastic model, European Journal575

of Mechanics: A/Solids, 21, 1 – 12.576

Heimpel, M. (2006), Earthquake scaling: the effect of a viscoelastic asthenosphere, Geo-577

physical Journal International, 166, 170–178.578

Huismans, R. S., and C. Beaumont (2002), Asymmetric lithospheric extension: The role579

of frictional plastic strain softening inferred from numerical experiments, Geology, 30,580

211–214.581

Jirašek, M., and P. Grassl (2008), Evaluation of directional mesh bias in concrete fracture582

simulations using continuum damage models, Engineering Fracture Mechanics, 75(8),583

1921 – 1943.584

Kaus, B. J. P. (2010), Factors that control the angle of shear bands in geodynamic numeri-585

cal models of brittle deformation, Tectonophysics, 484, 36–47.586

Lavier, L. L., W. R. Buck, and A. N. B. Poliakov (1999), Self-consistent rolling-hinge587

model for the evolution of large-offset low-angle normal faults, Geology, 27, 1127–588

1130.589

Le Pourhiet, L. (2013), Strain localization due to structural softening during pressure sen-590

sitive rate independent yielding, Bulletin de la Société géologique de France, 184(4-5),591

357–371.592

Lemiale, V., H. B. Mühlhaus, L. Moresi, and J. Stafford (2008), Shear banding analysis593

of plastic models formulated for incompressible viscous flows, Physics of the Earth and594

Planetary Interiors, 171, 177–186.595

Lemonds, J., and A. Needleman (1986), Finite element analyses of shear localization in596

rate and temperature dependent solids, Mechanics of Materials, 5, 339–361.597

–31–



Confidential manuscript submitted to Geochemistry, Geophysics, Geosystems

Moresi, L., H. B. Mühlhaus, V. Lemiale, and D. A. May (2007), Incompressible viscous598

formulations for deformation and yielding of the lithosphere, Geological Society, Lon-599

don, Special Publications, 282, 457–472.600

Mühlhaus, H. B., and I. Vardoulakis (1987), The thickness of shear bands in granular ma-601

terials, Géotechnique, 37, 271–283.602

Nadai, A. (1931), Plasticity, McGraw-Hill.603

Needleman, A. (1988), Material rate dependence and mesh sensitivity in localization prob-604

lems, Computer Methods in Applied Mechanics and Engineering, 67, 69–85.605

Niazi, M. S., H. H. Wisselink, and T. Meinders (2013), Viscoplastic regularization of local606

damage models: Revisited, Comput. Mech., 51(2), 203–216.607

Olive, J.-A., M. D. Behn, E. Mittelstaedt, G. Ito, and B. Z. Klein (2016), The role of elas-608

ticity in simulating long-term tectonic extension, Geophysical Journal International,609

205, 728–743.610

Pamin, J., H. Askes, and R. de Borst (2003), Two gradient plasticity theories discretized611

with the element-free Galerkin method, Computer Methods in Applied Mechanics and612

Engineering, 192, 2377–2403.613

Peirce, D., R. J. Asaro, and A. Needleman (1983), Material rate dependence and localized614

deformation in crystalline solids, Acta Metallurgica, 31, 1951–1076.615

Perić, D., J. Yu, and D. R. J. Owen (1994), On error estimates and adaptivity in elasto-616

plastic solids: Applications to the numerical simulation of strain localization in classical617

and Cosserat continua, International Journal for Numerical Methods in Engineering, 37,618

1351–1379.619

Perzyna, P. (1966), Fundamental problems in viscoplasticity, in Recent Advances in Applied620

Mechanics, vol. 9, edited by G. G. Cherny, pp. 243–377, Academic Press, New York.621

Poliakov, A., Y. Podladchikov, and C. Talbot (1993), Initiation of salt diapirs with fric-622

tional overburdens: numerical experiments, Tectonophysics, 228(3), 199 – 210.623

Poliakov, A. N. B., H. J. Herrmann, P. Y. Yu., and S. Roux (1994), Fractal plastic shear624

bands, Fractals, 02(04), 567–581.625

Popov, A. A., and S. V. Sobolev (2008), SLIM3D: A tool for three-dimensional thermo-626

mechanical modeling of lithospheric deformation with elasto-visco-plastic rheology,627

Physics of the Earth and Planetary Interiors, 171, 55–75.628

Précigout, J., and F. Gueydan (2009), Mantle weakening and strain localization: Implica-629

tions for the long-term strength of the continental lithosphere, Geology, 37, 147–150.630

–32–



Confidential manuscript submitted to Geochemistry, Geophysics, Geosystems

Read, H. E., and G. A. Hegemier (1984), Strain softening of rock, soil and concrete – a631

review article, Mechanics of Materials, 3, 271–294.632

Regenauer-Lieb, K., T. Poulet, M. Veveakis, and S. Alevizos (2018), The dynamics of633

multiscale, multiphysics faults: Part I - The long-term behaviour of the lithosphere,634

Tectonophysics, 746, 648 – 658, understanding geological processes through modelling -635

A Memorial Volume honouring Evgenii Burov.636

Rudnicki, J. W., and J. R. Rice (1975), Conditions for the localization of deformation in637

pressure sensitive dilatant materials, Journal of the Mechanics and Physics of Solids, 23,638

371–394.639

Sabet, S. A., and R. de Borst (2019), Structural softening, mesh dependence, and regulari-640

sation in non-associated plastic flow, International Journal for Numerical and Analytical641

Methods in Geomechanics, 43, 2170–2183.642

Schmalholz, S. M., T. Duretz, and Y. Jaquet (2015), Dramatic effect of elasticity on ther-643

mal softening and strain localization during lithospheric shortening, Geophysical Jour-644

nal International, 204, 780–784.645

Sluys, L. J., and A. H. Berends (1998), Discontinuous failure analysis for mode-i and646

mode-ii localization problems, International Journal of Solids and Structures, 35(31),647

4257 – 4274.648

Sluys, L. J., and R. de Borst (1992), Wave propagataion and localization in a rate-649

dependent cracked medium – model formulation and one-dimensional examples, In-650

ternational Journal of Solids and Structures, 29, 2945–2958.651

Spiegelman, M., D. A. May, and C. R. Wilson (2016), On the solvability of incompress-652

ible stokes with viscoplastic rheologies in geodynamics, Geochemistry, Geophysics,653

Geosystems, 17, 2213–2238.654

Stefanou, I., J. Sulem, and H. Rattez (2019), Cosserat approach to localization in geo-655

materials, in Handbook of Nonlocal Continuum Mechanics for Materials and Structures,656

edited by G. Z. Voyiadjis, pp. 1–25, Springer, Berlin.657

Tackley, P. J. (2000), Self-consistent generation of tectonic plates in time-dependent, three-658

dimensional mantle convection simulations 2. strain weakening and asthenosphere, Geo-659

chemistry, Geophysics, Geosystems, 1(8).660

Thielmann, M., and B. J. P. Kaus (2012), Shear heating induced lithospheric-scale local-661

ization: Does it result in subduction?, Earth and Planetary Science Letters, 359, 1–13.662

–33–



Confidential manuscript submitted to Geochemistry, Geophysics, Geosystems

Vermeer, P. A., and R. de Borst (1984), Non-associated plasticity for soils, concrete and663

rock, Heron, 29(3), 3–64.664

Wang, K. (2007), Elastic and viscoelastic models of crustal deformation in subduction665

earthquake cycles, in The Seismogenic Zone of Subduction Thrust Faults, edited by666

T. Dixon and J. C. Moore, pp. 540–575, Columbia University Press, New York.667

Wang, W. M., L. J. Sluys, and R. de Borst (1996), Interaction between material length668

scale and imperfection size for localisation phenomena in viscoplastic media, European669

Journal of Mechanics. A, Solids, 15, 447–464.670

Wang, W. M., L. J. Sluys, and R. de Borst (1997), Viscoplasticity for instabilities due to671

strain softening and strain-rate softening, International Journal for Numerical Methods in672

Engineering, 40(20), 3839–3864.673

Willett, S. D. (1992), Dynamic and kinematic growth and change of a Coulomb wedge, in674

Thrust Tectonics, edited by K. R. McClay, pp. 19–31, Springer, Dordrecht.675

Yin, A., Z. Xie, and L. Meng (2018), A viscoplastic shear-zone model for deep (15-50676

km) slow-slip events at plate convergent margins, Earth and Planetary Science Letters,677

491, 81–94.678

–34–



Confidential manuscript submitted to Geochemistry, Geophysics, Geosystems

A: The incremental plastic multiplier679

For (visco)plastic deformations to occur, the stress must lie on the yield surface and680

continue to be on the yield surface for an infinitesimal time increment when adopting the681

consistency model of viscoplasticity [Wang et al., 1997; Heeres et al., 2002]. This implies682

that for the yield function at the end of the plastic increment, we must have Ft+1 = 0.683

Following de Souza Neto et al. [2008], the corrected total stress is given by:684

σσσt+1 =
©«1 −

Gve∆λ√
J trial
I I

ª®®®¬σσσ
trial (A.1)

Using the identity σσσt+1
√
J t+1
I I

= σσσtrial
√
J trial
I I

, the corrected second stress invariant is:685 √
J t+1
I I =

√
J trial
I I − Gve

∆λ. (A.2)

The corrected pressure reads:686

Pt+1 = Ptrial + K sin(ψ)∆λ. (A.3)

and the updated cohesion can be expressed as:687

Ct+1 = Ctrial + H∆λ (A.4)

Approximating the rate of the plastic multiplier as Ûλ = ∆λ
∆t , the yield function at the end of688

the plastic increment can be written explicitly as:689

Ft+1 =
√

J trial
I I − Gve

∆λ − cos(φ)
(
Ctrial + H∆λ

)
− sin(φ)

(
Ptrial + K sin(ψ)∆λ

)
− ηvp∆λ

∆t
. (A.5)

Solving for Ft+1 = 0 then yields the following expression for the incremental plastic multi-690

plier:691

∆λ =
F trial

Gve + K sin(φ) sin(ψ) + ηvp

∆t + H
, (A.6)

where F trial =
√

J trial
I I − sin(φ)Ptrial − cos(φ)Ctrial.692

B: The visco-elastic-plastic consistent tangent operator693

During visco-elasto-(visco)plastic straining, the stress update follows:694

σσσt+1 = −Pt i + ξτττt + Dve
∆εεε − ∆λDve ∂Q

∂σσσ
(B.1)

A small variation δ of the updated stress σσσt+1 is given by:695

δσσσ = Dveδεεε − δλDve ∂Q
∂σσσ
− ∆λDve ∂

2Q
∂σσσ2 δσσσ. (B.2)
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and can be recast as:696

δσσσ = E−1Dveδεεε − E−1Dve ∂Q
∂σσσ

δλ (B.3)

with697

E = I + ∆λD
∂2Q
∂σσσ2 (B.4)

We now invoke the consistency condition:698

δF = 0 (B.5)

which, using F = F(σσσ, λ, Ûλ), can be elaborated as:699 (
∂F
∂σσσ

)T
δσσσ +

∂F
∂λ

δλ +
∂F
∂ Ûλ

δ Ûλ = 0. (B.6)

Premultiplying Eq. (B.3) by
(
∂F
∂σσσ

)T
, using the approximation δ Ûλ = δλ

∆t , and invoking con-700

dition (B.6), provides an expression for the variation of the plastic multiplier:701

δλ =

(
∂F
∂σσσ

)T
E−1Dve

H + ηvp

∆t +
(
∂F
∂σσσ

)T
E−1Dve ∂Q

∂σσσ

δεεε (B.7)

with H ≡ ∂F
∂λ and ηvp ≡ ∂F

∂ Ûλ
. This expression is now substituted into Eq. (B.3), which702

leads to:703

δσσσ =
©«E−1Dve −

E−1Dve ∂Q
∂σσσ

(
∂F
∂σσσ

)T
E−1Dve

H + ηvp

∆t +
(
∂F
∂σσσ

)T
E−1Dve ∂Q

∂σσσ

ª®®®¬ δεεε (B.8)

The consistent tangent operator hence reads:704

Dvep ≡
∂σσσ

∂εεε
= E−1Dve −

E−1Dve ∂Q
∂σσσ

(
∂F
∂σσσ

)T
E−1Dve

H + ηvp

∆t +
(
∂F
∂σσσ

)T
E−1Dve ∂Q

∂σσσ

, (B.9)
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