Doppler lidar at Observatoire de Haute Provence for wind profiling up to 75 km altitude: performance evaluation and observations - INSU - Institut national des sciences de l'Univers Access content directly
Journal Articles Atmospheric Measurement Techniques Year : 2020

Doppler lidar at Observatoire de Haute Provence for wind profiling up to 75 km altitude: performance evaluation and observations

Sergey Khaykin
Connectez-vous pour contacter l'auteur
Alain Hauchecorne
  • Function : Author
  • PersonId : 914935
Robin Wing
  • Function : Author
  • PersonId : 1025980
Philippe Keckhut
  • Function : Author
  • PersonId : 918122
Sophie Godin-Beekmann
Jacques Porteneuve
  • Function : Author
  • PersonId : 982692

Abstract

A direct-detection Rayleigh-Mie Doppler lidar for measuring horizontal wind speed in the middle atmosphere has been deployed at Observatoire de Haute Provence (OHP) in southern France since 1993. After a recent upgrade, the instrument gained the capacity of wind profiling between 5 and 75 km altitude with high vertical and temporal resolution. The lidar comprises a monomode Nd:Yag laser emitting at 532 nm, three telescope assemblies, and a double-edge Fabry-Perot interferometer for detection of the Doppler shift in the backscattered light. In this article, we describe the instrument design, recap retrieval methodology and provide an updated error estimate for horizontal wind. The evaluation of the wind lidar performance is done using a series of twelve time-coordinated radiosoundings conducted at OHP. A point-by-point intercomparison shows a remarkably small average bias of 0.1 m/s between the lidar and the radiosonde wind profiles with a standard deviation of 2.2 m/s. We report examples of a weekly and an hourly observation series, reflecting various dynamical events in the middle atmosphere, such as a Sudden Stratospheric Warming event in January 2019 and an occurrence of a stationary gravity wave, generated by the flow over the Alps. A qualitative comparison between the wind profiles from the lidar and the ECMWF Integrated Forecast System is also discussed. Finally, we present an example of early validation of the ESA Aeolus space-borne wind lidar using its ground-based predecessor.
Fichier principal
Vignette du fichier
amt-13-1501-2020.pdf (8.99 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Loading...

Dates and versions

insu-02358152 , version 1 (31-03-2020)

Identifiers

Cite

Sergey Khaykin, Alain Hauchecorne, Robin Wing, Philippe Keckhut, Sophie Godin-Beekmann, et al.. Doppler lidar at Observatoire de Haute Provence for wind profiling up to 75 km altitude: performance evaluation and observations. Atmospheric Measurement Techniques, 2020, 13 (3), pp.1501-1516. ⟨10.5194/amt-13-1501-2020⟩. ⟨insu-02358152⟩
140 View
123 Download

Altmetric

Share

Gmail Facebook X LinkedIn More