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Abstract

The first known interstellar object ’Oumuamua exhibited a nongravitational acceleration that appeared inconsistent
with cometary outgassing, leaving radiation pressure as the most likely force. Barring the alien lightsail hypothesis,
an ultra-low density due to a fractal structure might also explain the acceleration of ’Oumuamua by radiation
pressure. In this Letter we report a decrease in ’Oumuamua’s rotation period based on ground-based observations,
and show that this spin-down can be explained by the YORP effect if ’Oumuamua is indeed a fractal body with the
ultra-low density of 10−2 kg m−3. We also investigate the mechanical consequences of ’Oumuamua as a fractal
body subjected to rotational and tidal forces, and show that a fractal structure can survive these mechanical forces.

Unified Astronomy Thesaurus concepts: Minor planets (1065); Asteroids (58); Two-body problem (1723);
Protoplanetary disks (1300); Solid matter physics (2090); Interstellar dust processes (838); Astrophysical dust
processes (99)

1. Introduction

The first known interstellar object 1I/’Oumuamua was
discovered by the Pan-STARRS telescope in 2017 October,
and after a short and intense observational campaign, it left
behind far more questions than answers. Ground-based
observations (Bannister et al. 2017; Bolin et al. 2017; Jewitt
et al. 2017; Knight et al. 2017; Meech et al. 2017; Drahus et al.
2018; Fraser et al. 2018) generally agreed on the following: (1)
effective radius: 50–130 m, (2) axis ratio: 6:1, and (3) a rotation
period 6.8–8.7 hr. However, the fact that ’Oumuamua could not
be observed in the infrared spectrum (see Trilling et al. 2018)
introduces a significant uncertainty in its albedo, and hence
its size.

There was much speculation about its origin, ranging from
an isotropic background population (Do et al. 2018) to non-
isotropic distributions (Moro-Martín 2018, 2019a) originating
from a nearby young solar system (Gaidos et al. 2017). Efforts
to retrace ’Oumuamua to its origin were complicated by the
observed nongravitational acceleration (Micheli et al. 2018).
Micheli et al., as well as Seligman et al. (2019), attributed the
acceleration to cometary outgassing, in which case it could be
explained by a dust mass-loss rate of a few ×0.1 kg s−1. This
mass-loss rate contradicts upper limits on the mass-loss rate
imposed by both ground- and space-based observations. For
example, Jewitt et al. (2017) saw no coma in deep images of
the object, and calculated an upper limit of 10−4 kg s−1.
Rafikov (2018) pointed out that outgassing torques should have
spun up the object to the point of fragmenting due to rotation
fission, but ’Oumuamua’s rotation period appeared stable over
the ∼month-long observing campaign. Finally, ’Oumuamua
was not detected by the Spitzer Space Telescope (Trilling et al.
2018), and the nondetection placed an upper limit on the CO
and CO2 production rate that was 2–3 orders of magnitude
lower than that required for acceleration.

Bialy & Loeb (2018) suggested instead that radiation
pressure could explain the extra acceleration, only if the
mass-to-area ratio were as small as ∼1 kg m−2, akin to that of a
lightsail. Finally, Moro-Martín (2019b) pointed out that

propulsion by radiation pressure could also be effective if
’Oumuamua had a highly porous fractal structure, with a
density in the range –~ - -10 102 3 kg m−3, depending on the
fractal parameters. The fractal hypothesis is a natural one, as it
has long been expected that random growth processes at low
velocities would produce fractals, structure that appears
invariant under changes of spatial scale (Witten & Cates 1986;
Meakin 1988 and Donn 1991). Since then, fractal aggregates
have been postulated to be the building blocks in proto-
planetary disks (e.g., Mukai et al. 1992). The formation of
highly porous, fractal aggregates by dust grains colliding at low
relative velocities (<0.2 m s−1 was confirmed by experiments;
Blum & Wurm 2000). Finally, there is indirect evidence for
porous aggregates in well-studied circumstellar disks like HR
4796A (Augereau et al. 1999) and au Microscopii (Fitzgerald
et al. 2007).
A defining characteristic of a fractal aggregate is that the

average of the number of unit particles, N, within a radius, r, is
given by ( ) =N r Ar D, where A is a constant, and D is the
fractal dimension. From this relation it can be shown that the
density ρ decreases with size according to the relation

( )r µ -r r D 3. In the early growth stage, aggregates simply
stick to each other, and their density decreases accordingly
(Suyama et al. 2008). These early aggregates have mass fractal
dimension D=1.75 (Katyal et al. 2014). As the fractal
aggregates grow, depending on the impact energy and the
particle binding energy, the more filamentary structures are
expected to break off and the aggregates become compressed,
reaching a fractal dimension of ∼2.5 (Suyama et al. 2008).
Even with collisional compression, these aggregates still retain
very low densities of order0.1 kg m−3, thanks to their fractal
structure. For icy aggregates growing beyond the snowline of
protoplanetary disks, Okuzumi et al. (2012) found an even
lower density, ~ -10 2 kg m−3, for a wide range of aggregate
sizes, at the end of the collisional compression stage. This
result was echoed by Kataoka et al. (2013) who found that sub-
micron ice grains could form 100 m size planetesimals with
density 10−2 kg m−3 beyond 5 au. We note that fractal grains
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have been found in the coma of comet Churyumov–
Gerasimenko in the form of fluffy aggregates (Bentley et al.
2016), with densities 0.1 kg m−3 and tensile strength
T=0.7 kPa (Fulle et al. 2015).

In this work we build on Moro-Martín (2019b)’s premise of
a fractal structure for ’Oumuamua and interpret the observa-
tions in the fractal context. The Letter is organized as follows.
In Section 2, we report a change in the rotation period of
’Oumuamua based on the available ground-based observations.
The change in rotation velocity is consistent with a very rapid
response to the YORP effect, made possible only by the very
small density of a fractal-like body. We investigate the
mechanical forces acting on ’Oumuamua due to centrifugal
forces in Section 3, and the forces due to tidal forces in
Section 4.

2. YORP Effect

A summary of all the available optical photometry of
’Oumuamua can be found in Belton et al. 2018 (their Table 1).
The ground-based data come from six different works, listed
here in chronological order: Meech et al. (2017), Drahus et al.
(2018), Bolin et al. (2017), Bannister et al. (2017), Knight et al.
(2017), and Jewitt et al. (2017). The Bannister/Bolin data can
be combined as one set of data since they are very close in time
(Figure 1 of Belton et al.) and both report the same rotation
period. Also, the Jewitt and Knight data can also be combined
into one set of data, since they overlap, and both sets of data
were combined to obtain a rotation period (Jewitt et al. 2017).
With these combinations, there are four separate epochs of
observations, reporting four different rotation periods. These
rotation periods are listed in (our) Table 1, along with the epoch
of the last exposure of each run, as reported by Table 1 of
Belton et al. The data are also plotted in Figure 1. The data
indicate that the rotation period P increases with time, with a
rate of ~ D D =dP dt P t 0.3 hr day−1, or w = -d dt 10 10

s−2. The timescale required to change the rotation period is
( )t = = =P dP dt 7.34 0.3 24s days, where we used the

earliest measured rotation period =P 7.34 hr (see Table 1).
If ’Oumuamua was propelled by radiation pressure, it is a

natural question to ask whether radiation pressure also affected
its rotational properties. Small solar system bodies with low
albedos are susceptible to the YORP effect, which refers to the
torque that results when thermal radiation is anisotropically
emitted from the object’s surface (Rubincam 2000). The YORP
characteristic timescale is a complex function of the object’s
shape, thermal properties, and spin axis, none of which are
known for ’Oumuamua, so we estimate this timescale by
scaling from previous observations of asteroids (Jewitt et al.

2015), acknowledging the significant uncertainty. Adapting
Equation (1) of Jewitt et al., the YORP timescale is given by
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where r is the object’s radius, R is the heliocentric distance,
w p= P2 is the angular velocity, and r is the average bulk
density. Adopting the values r=230 m (see Section 3 and
Rafikov 2018), R=1 au, w = ´ -2 10 4 s−1, and the average
density r = -10 2 kg m−3 (Okuzumi et al. 2012; Kataoka et al.
2013), we obtain t ~ 29YORP days. We note that this is
completely consistent with the timescale required to change the
rotation period, ts. This close agreement must be somewhat of a
coincidence, considering the uncertainties involved in
Equation (1), but it does show that the observed dP/dt is
consistent with the YORP effect, provided the bulk density is
very low. It thus takes only ∼1 month for the YORP effect to
significantly change the rotation speed of ’Oumuamua. This is
very short compared to the ∼1 Myr timescale for asteroids, and
is made possible only by ’Oumuamua’s extraordinarily small
density of r = -10 2 kg m−3, compared to the density ~10 kg3

m−3 for most asteroids. We conclude that ’Oumuamua’s
observed spin-down is plausibly attributed to the YORP torque
acting on a fractal body with a very small bulk density,
corresponding to a large area-to-mass ratio.

3. Mechanics of a Rotating Fractal

There are considerable uncertainties in most of the physical
parameters measured for ’Oumuamua. Hereafter we adopt the
following parameters: the object has the dimensions
´ ´ =a b c 230 m×35 m×35 m (Rafikov 2018), mass

( )pr = ´abc4 3 1.2 10 kg4 , and rotates with a rotation
period of =P 8.26 hr. The large brightness variations in
’Oumuamua’s lightcurve most likely arise from rotation around
the short axis, i.e., the axis of maximum inertia. Given
’Oumuamua’s susceptibility to radiation pressure torques, this
spin axis may precess, as might the long axis (Belton et al.

Table 1
Rotation Period of ’Oumuamua

Work
Epoch of Last
Exposurea P (hr)

Meech et al. (2017) 53.25 7.34
Drahus et al. (2017) 54.52 7.55
Bannister et al. (2017), Bolin et al. (2018) 55.88 8.10
Jewitt et al. (2017), in conjunction with

Knight et al. (2017)
56.29 8.26

Note.
a Epoch of last exposure of observing run, in MJD=JD-2458000.5.

Figure 1. ’Oumuamua’s reported rotation period as a function of epoch of
observations (in MJD=JD-2458000.5). The data are as listed in Table 1 and
described in the text. The plotted line simply connects the first and last data
points, to guide the eye.
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2018), but in this Letter we only assume rotation about the
short axis.

Leaving tidal forces and the forces exerted by the radiation
aside for now we address the question of the forces created by
the rotation around the center of mass itself.

3.1. Fractal Properties and Particle Size

A fractal is a structure that is scale invariant. In the case of
’Oumuamua the structure is assumed to have formed through
random aggregation processes and will thus be disordered. The
scale invariance implies that it will have holes of all length
scales inside. However, the object would break apart if a hole
would be bigger in linear size than b, and we will thus take b to
be the upper limit of the fractal behavior (a useful conceptual
comparison would be that of a train of Sierpinsky gaskets).

In Figure 2 a fractal of dimension D=2.35 is shown. It is
constructed by partitioning the body into cubes, and each cube
is then partitioned into 33 subcubes. We then remove subcubes
from every cube at random so as to keep a given average
fraction =f 3 3D 3 of cubes. The remaining cubes are treated
the same way until the fractal of dimension D results. This
simple algorithm does not correspond to the physical aggrega-
tion processes that may have formed ’Oumuamua, but it serves
as a conceptual guide and illustrates the degree of surface
fluctuations and transparency that is typical of such a
disordered fractal.

The mass of this fractal may then be written

⎛
⎝⎜

⎞
⎠⎟( ) ( )=m r m

r

r
, 2

D

0
0

where r is the distance from a point on the fractal, r0 and m0 are
the smallest, or elementary, particle radius and mass, and D is
the fractal dimension.

The density of such a fractal is
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where r0 is the density of the material making up the smallest
particles. We use the density of ice, r = 100

3 kg m−3.
The particle size follows by identifying the observed r =

10−2 kg m−3 with ( )r b . Solving Equation (3) for D gives

( ( ) )
( )

( )
r r

= +D
b

b r
3

ln

ln
. 40

0

Measurements of cometary fractal aggregates are available for
comets Wild 2 (Kearsley et al. 2008) and Churyumov–
Gerasimenko (Bentley et al. 2016). The smallest grains of

comet Wild 2 have sizes500 nm (Kearsley et al. 2008), while
those of comet Churyumov–Gerasimenko have sizes in the
ranges –260 500 nm and – m1 3 m (Bentley et al. 2016). Using
the representative sizes as =r 100 nm0 and 1 μm, we can
calculate D using Equation (4). Figure 3 shows D as a function
of r0. Within the range of measured r0, Equation (4) predicts
that D lies in the range  D2.3 2.4 in agreement with
Figure 1 in Moro-Martín (2019b). The D-value is comparable
to, but somewhat smaller than, the ~D 2.5 predicted by
numerical simulations of aggregates that have undergone
collisional deformation (Suyama et al. 2008; Okuzumi et al.
2012). Note that due to the factor ( )b r0 , the fractal behavior
extends over a full 8 orders of magnitude. This extraordinary
range of length scales over which the structure appears to be
fractal is much larger than the range of scales normally
observed on Earth (typically 3; Feder 1988), or in other
extraterrestrial aggregate structures like cometary grains
(Bentley et al. 2016) and interplanetary dust particles
(Rietmeijer & Nuth 1998).
In the following we use =r0 1 μm whenever a concrete

number is needed, but as we will see, several key values do not
depend on r0.

3.2. Mechanical Forces Due to Rotation

In this section we consider four different stresses: (1) sc, the
averaged stress resulting from centrifugal forces; (2) slink, the
stress from centrifugal forces over a single link; (3) syield, the
yield stress for a single link; and (4) syield, the yield stress
averaged over the whole body.
Since we are considering the short axis rotation of an

elongated object, the principal axis of the strongest tensile
stress will largely point along the long axis, i.e., the forces will
act across planes of area pb2, the smallest plane that intersects
the structure. First, we consider the average stress sc over such
a plane. We will take a coordinate z to point along the long axis
and take its origin in the center of mass. Averaging across the
plane normal to z, the balance between the centrifugal force and
this stress may then be written

( )s
rw= -

d

dz
z, 5c 2

Figure 2. Fractal of the same dimension D and aspect ratio as is assumed for
’Oumuamua.

Figure 3. Fractal dimension D as a function of r0. The shaded areas denote the
range of r0 measured in comets Wild 2 and Churyumov–Gerasimenko.
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where w p= =P2 2 10−4 Hz. Using the boundary condition
( )s =a 0c the above equation may be integrated to yield the

internal stress

( ) ( ) ( )s
r
w= -z a z

2
, 6c

2 2 2

which is the maximum for z=0, or

( )s
r
w= = -a

2
10 Pa, 7c max

2 2 5

using the values r̄ = -10 2 kg =- am , 2303 m, and
w = ´ -2 10 4 s−1. We note that this is within a factor of 2
of Bialy & Loeb’s (2018) estimate of the stress due to
centrifugal forces. We are aware that inside a fractal, some
bonds may not share in the stresses. In fact, the backbone (the
load-bearing structure) may indeed have a smaller fractal
dimension than the rest of the structure; this will be discussed
later in Section 3.4.

3.3. Estimate of Internal Mechanical Strength

Assuming for now that all bonds share equally in the load,
we can calculate the stress slink along links of particles, based
on the fact that ’Oumuamua can survive centrifugal forces. We
equate the following expression for the tensile force:

( )p s fp s=b b , 8c
2 2

link

where f r r= = -100
5 is the solid fraction. This gives the

link stress

( )s
r
r
s

r
w= = =a

2
1 Pa, 9clink

0 0 2 2

which is rather modest. Note that the expression for slink does
not depend on r0 and D.

We can also calculate the upper limit of the link stress before
breaking. This estimate is based on the physical picture that the
particles have a surface energy per unit area γ that is converted
to elastic energy as the particles connect and deform (Johnson
et al. 1971). The force FS needed to separate the particles again
is estimated as the surface energy divided by the distance
characterizing the deformation. Their result of

( )pg
=F

r

2
10S

0

is notably independent of such material parameters as Young’s
modulus and Poisson ratio, and the surface energy could be due
to any kind of interatomic forces. It leads to the following
prediction of the critical stress:

( )s
p

g
= =

F

r r2
, 11S

yield
0
2

0

which is inversely proportional to r0. We note that Suyama
et al. (2008) also used this same expression for the force where
the surface energy is taken to be that of ice g = 0.1 J m−2. This
gives

( )s
m

=
r

2.5 m
20 kPa. 12yield

0

With m=r 1 m0 this critical stress is almost 4 orders of
magnitude larger than slink, so the constant load sharing
assumption certainly predicts a stable structure.

We may also inquire about the yield stress syield that will
cause the whole structure to break apart. This will happen when

( )s
r
r

s= = 0.2 Pa. 13yield
0

yield

This means that any external stress acting on the whole
structure and exceeding this small value will deform or break it.
The single link tensile strength syield is much larger than the
actual link stress slink because of the relatively slow rotation
rate. Yet, due to the very low density, the corresponding
average syield is quite small. In fact, syield is more than an order
of magnitude smaller than the stress that would result from
Earth’s gravity, ( )s p= =mg ab 3 Pagravity . In other words,
’Oumuamua would simply collapse on Earth. It should be
noted that syield is still much larger than the radiation pressure
that at a distance of 0.25 au is about 80 μPa.

3.4. What if the Backbone Dimension is Smaller than D?

So far we have assumed that the entire fractal structure
carries an equal load. It is well known, however, that most
random fractals have dangling ends that do not carry any load.
In granular packings, external compression gives rise to
ramified force networks through the grain assembly. These
force networks strongly depend on the nature and orientation of
the external loading. It is then to be expected that ’Oumuamua,
which must already have experienced some deformation during
its aggregation process, might also deform according to
mechanical forces caused by its rotational motion. The result
will be some kind of backbone structure that carries most of
the load.
Since the initial structure is assumed to be a fractal, with

dangling substructures on all scales smaller than the fractal
itself, it is reasonable to characterize the backbone as a fractal
too, with a fractal dimension DB that is smaller than that of the
original structure (Stauffer & Aharony 1985).
As before, we also assume equal load sharing, but now

inside the backbone only. In this way we may inquire whether
the presence of dangling ends on all scales would catastrophi-
cally disrupt the structure. The larger the fraction of dangling
substructures that does not take part in the load carrying, the
larger the stress on the remaining backbone structure. Thus, we
can calculate a lower bound on the backbone fractal dimension
DB, below which the bond stress becomes larger than syield.
The backbone will have a mass density rB defined in exactly

the same way as that leading to Equation (3), except with a
different fractal dimension:

⎛
⎝⎜

⎞
⎠⎟( ) ( )r r=

-

r
r

r
. 14B
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0
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3B

The volume fraction of the backbone averaged over a cross-
section of area pb2 is then

⎛
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. 15B
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When the forces are distributed only on the backbone, we must
make the replacement

( )f f 16B
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so that now the link stress becomes
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Requiring that s s<Blink yield we get the condition
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D D
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, 18B
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r
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which, when m=r 1 m0 , gives the condition > -D D 0.62B .
From a purely geometrical point of view this is rather a

conservative condition. The mass ratio between the load
carrying minimal backbone and the total structure is then
( ) ( )= = ´- -r b r b 2 10D D

0 0
0.62 5B min , which is indeed a

small fraction. Since stretching of a structure with only a few
load carrying parts will tend to redistribute the force over other
parts, it is reasonable to assume that the mass fraction of load
carrying bonds will increase well before the entire system
breaks.

4. Tidal Forces

Considering that ’Oumuamua came within 0.25 au of the
Sun, we now consider the effect of tidal forces.

4.1. The Internal Stresses Caused by Tidal Forces

Since we have already considered the internal forces due to
the rotation around its center of mass, we now consider the
motion of an elongated object moving around the Sun with its
long axis constantly pointing toward the Sun. We then estimate
the maximum stress due to tidal forces by the difference in the
gravitational forces F(r) on the closest and most distant point of
our object, that is,

( ) ( )s
p

=
DF r

b
. 19t max 2

Here ( ) = GF r Mm r2 where Γ is the gravitational constant,
M is the Sun mass, and m is the total mass of ’Oumuamua.
Taking R to be the center of mass distance from the Sun and

( )DF r to be calculated between the points = r R a this
means that ( ) ( ) ( )D = -F r a R F R4 . For the sake of getting an
estimate, we may approximate the ’Oumuamua motion by a
circular one with an orbit angular velocity Ω. Then the balance
between the centripetal force and gravity may be written

( ) = WF R m R2 , giving D = - WF m a4 2 . Inserting this in
Equation (19) and using ( )r p= m ab2 we can write

( )s r= W a4 . 20t max
2 2

Comparing this with the stress due to the rotation around the
center of mass given in Equation (7) we can write

( )s
s w

=
W

4 1. 21t

c

max

max

2

2

In other words, tidal stresses are smaller than the rotational
stress by a factor that is the square of P divided by the time for
a hypothetical circular orbit around the Sun. Since we have
already shown that sc max is unlikely to destabilize ’Oumuamua,
the same may clearly be said for the role of st max.

4.2. The Torque Due to Tidal Forces

Taking ’Oumuamua now to have an arbitrary shape the
torque around the center of mass may be written

( ) ( )òt r= - ´r rdV g , 22

where r is measured from the center of mass, so that

ò r =rdV 0. The acceleration of gravity is

( )
∣ ∣

( ) ( )= -
G
+

+r
R r

R rg
M

. 23
3

Here R is the center of mass position relative to the Sun; we
may be split g into a constant and variable part

( ) = + Drg g g0 , where ( )= Rg g0 , so that the torque

( ) ( ) ( )ò òt r r= - ´ + D ´r r r rg dV dV g . 240

Here, the first term vanishes and · ( )D = r rg g may be
written

⎡
⎣⎢

⎤
⎦⎥∣ ∣

· ( )( )
∣ ∣

( )D =
G
+

-
+ +
+R r

r
r R r R r

R r
g

M
3 . 25

3 2

Keeping only terms to leading order in r/R

⎜ ⎟
⎧⎨⎩

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎫⎬⎭· ( )D =
G

- +r u rug
M

R
o

r

R
3 1 , 26

3

where we have introduced the constant unit vector =u R R.
Now, since ´ =r r 0

⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟( · ) ( )òt r=

G
´ +u r u r

M

R
dv o

r

R

3
1 . 27R R3

Introducing the moment of inertia tensor

( )ò r=T dV r r , 28ij i j

we may write the above equation in component form as

⎛
⎝⎜

⎞
⎠⎟ ( )òt r=

G
+ G M

R
T u u o dV M

r

R

3
, 29i ijk nk j n3

3

4

where we have introduced the antisymmetric Levi-Civita tensor
and neglected the vectorial nature of the last term since we are
only interested in its order of magnitude.
Since Tnk is symmetric we may assume that we are already in

the orthogonal coordinate system where it is also diagonal so
that dµTnk nk, where dnk is the Kronecker delta. This implies
that

( )µ = T u u u u 0 30ijk nk j n ijk j k

since the ò-term is antisymmetric in jk and the last terms are
symmetric in jk. Then we are only left with the last contribution
to the integral of Equation (29), and

( )òt r» G ~dV M
r

R
mg

a

R
, 31

3

4 0

3

2

where m is the mass of ’Oumuamua.
We may now estimate the characteristic time of change of

angular momentum

( )w
t

=t
I

, 32tidal
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where ~I ma2 is the moment of inertia and w = 2 10−4 s−1

the angular velocity of ’Oumuamua. Using this and
Equation (31) gives

( )w
t

w
= = »t

I

g

R

a
10 yr. 33tidal

0

2
9

So, the effect of tidal forces on the angular velocity of
’Oumuamua during its passage through the inner solar system
should be quite negligible.

5. Conclusion

We report observations and calculations that support the
hypothesis of a fractal structure of ’Oumuamua:

(1) Ground-based observations show that the rotation period
of ’Oumuamua increased at the rate of ~dP dt 0.3
hr day−1, corresponding to a timescale of ∼24 days to
change the angular momentum. This timescale is
consistent with the YORP characteristic timescale,
provided the bulk density is r ~ -10 2 kg m3, as expected
from a fractal structure (Okuzumi et al. 2012; Kataoka
et al. 2013; Moro-Martín 2019b).

(2) The expected yield stresses inside a fractal structure like
’Oumuamua are far larger than the actual mechanical
stresses caused by the orbital and rotational motion, even
though the structure could not survive the gravity on
Earth’s surface. Thus, even though our fractal structure is
very fragile, it should not break apart in its trajectory
through the inner solar system. If the internal load is
evenly distributed, the stress due to centrifugal forces is
4–5 orders of magnitude smaller than the cohesion force
between particles that make up the body (Johnson et al.
1971). However, this result holds even if the mechanical
loads are carried by a backbone with a lower fractal
dimension and there are dangling substructures with
no load.

(3) Assuming that the smallest grain size is comparable to
that found in comets (e.g., comet 67P/Churyumov–
Gerasimenko and comet Wild 2), the average bulk
density implies a fractal dimension  D2.3 2.4.
’Oumuamua thus appears to display a fractal structure
over 8 orders of magnitude, a much larger range of length
scale than that previously seen on Earth or in space.
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