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The effect of an interstitial fluid on the mixing of sedimenting grains is studied numerically in a closed
rectangular Hele-Shaw cell. We investigate the impact of the fluid compressibility and fluid viscosity on the
dynamics and structures of the granular Rayleigh-Taylor instability. First we discuss the effect of the fluid
compressibility on the initial fluid pressure evolution and on the dynamics of the particles. Here, the emerging
patterns do not seem highly affected by the compressibility change studied. To characterize the patterns and
motion the combined length of the particle trajectories in relation to the movement of the center of mass is
analyzed, and the separation of particle pairs is measured as a function of the fluid viscosity.
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I. INTRODUCTION

Granular materials play an important role in geological
processes, for example, in erosion or avalanche processes
�1–3�. Handling granular materials is in addition the daily
basis of many of our industries, such as mining, agriculture,
civil engineering, and pharmaceutical manufacturing. The
field of dry granular materials and the enormous richness and
complexity of granular motion and granular flows have pro-
vided the research of the last 20 years with numerous ques-
tions. In granular flows the presence of an interstitial fluid
has been shown to strongly affect the dynamics of the grains
�4–8�. The fluid compressibility and the fluid viscosity may
well have an effect on the dynamics of the grains, for ex-
ample, in fluidized bed reactors, but have not been in much
focus.

The Rayleigh-Taylor instability in granular fluid mixtures
has been studied with different types of fluids. With air the
influence of the grain size was systematically investigated
�9–11�, and the behavior of this instability was compared
between the cases where the interstitial fluid was air or
water-glycerol �12�. In a comparable study of the Saffman-
Taylor instabilities for granular-fluid mixtures oil or air was
utilized as the interstitial fluid �13,14�. In our previous work
�12� we have found in experiments and simulations that the
mixing of the grains with the fluid during the granular
Rayleigh-Taylor instability was very different whether we
used air or a water-glycerol solution as the interstitial fluid.
In pursuit to study this influence we further developed a
numerical model �9,10,13,15� that was proven �12� to repro-
duce well the experimentally measured dynamics of the
grains in the presence of a fluid. Even though we could give
a quantitative explanation with the characterization of the
correlation lengths and velocity field histograms, it is still an
open question if the mixing behavior is a result of the fluid
grain coupling to a compressible or incompressible fluid and
how big is the influence of the fluid viscosity. To further
answer this question we will perform numerical simulations
with the goal to study the effect of the fluid viscosity and
fluid compressibility on the mixing behavior during sedimen-
tation. For this purpose the fluid viscosity and fluid com-

pressibility are systematically and independently varied.
These simulations show that the fluid compressibility has a
small effect on the mixing except in extreme cases. The
change in the fluid viscosity leads to an increase in the av-
eraged particle trajectory length as a function of the displace-
ment of the center of mass of the particles. With respect to
the separation of particle pairs, the change in the viscosity
displays initially two regimes: a nonhydrodynamic or ballis-
tic regime at low fluid viscosities and a hydrodynamic re-
gime at high fluid viscosities, with a crossover from diffusive
to turbulent-dispersive behavior. This distinction however
does not hold for the later stages of the simulations.

The paper is organized as follows. In the next section the
implementation of the numerical model is briefly discussed.
For more details and explanations see �9,10,12,13,15�. The
results of the simulations with varied fluid compressibility
and viscosity are presented in Sec. III. In Secs. III A and
III B the effect of the fluid compressibility is studied. The
effect of the fluid viscosity is studied and discussed in Sec.
III C followed by the conclusions in Sec. IV.

II. THEORY AND SIMULATIONS

The numerical model is a two-dimensional hybrid model
that uses a continuum description for the fluid and a discrete
description of the granular phase. Friction between particles
or the particles and the side plates is neglected. Further we
neglect the friction between the fluid and the side plates. The
model is derived in detail in �9,10,12,13,15�. It was tested
and shown to reproduce the dynamics of granular flows at
low Reynolds numbers, and we will only present the main
equations for the evolution of the nonhydrostatic part of the
pressure field P and the dynamics of the particles briefly.

A. Dynamics of the fluid

The equations ruling the evolution of the nonhydrostatic
part of the pressure, also termed the hydraulic head P, are
derived in detail in Ref. �15�. The nonhydrostatic part of the
pressure, P, corresponds to P= P�−� fgy�, where P� is the
pressure, g is the gravity constant, � f is the fluid density, and
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y� is the depth. In the following we will only present and
discuss the main equations briefly. We start with mass con-
servation of the fluid:

�t�� f�P��� + � · �� f�P��vf� = 0, �1�

where vf is the velocity of the fluid and � is the local poros-
ity: for the mass conservation of the grains we get

�t�1 − �� + � · ��1 − ��u� = 0, �2�

where u is the velocity of the grains. The velocity vf of the
fluid is the sum of the local velocity relative to the grains,
derived from Darcy’s law, plus the velocity of the grains:

vf = u −
�

��
� P , �3�

where � is the fluid viscosity and � is the local permeability.
Using Eq. �3� in Eq. �1� we get:

�t��� f�P�� + � · ��� f�P��u −
�

��
� P�� = 0. �4�

Eliminating �t� between Eqs. �2� and �4� and taking the fluid
mass density � f�P� to be related to the pressure by the com-
pressibility �T=−�1 /V��V /�P through an equation of state
that we linearize around the background pressure P0 with � f

0

as the fluid mass density at P0,

� f�P� 	 �T� f
0�P − P0� + � f

0, �5�

we get after a short calculation a diffusion equation for the
nonhydrostatic part of the pressure P. This equation in gen-
eral implies the fluid compressibility �15,16�:

�� �P

�t
+ u · �P� = � · �P̂��T�

�

�
� P� − P̂��T� � · u ,

�6�

where we have defined P̂��T�=� f / �� f
0�T�= P− P0+1 /�T.

Since in this work we only simulate fluids with the mass
density of air as the interstitial fluid, we can neglect the
inertia and the weight of the fluid, and the hydraulic head
correspond to the local pressure: P�	 P. In the case of air,
considered as an ideal gas we get �T=1 / P0 at P0 and Eq. �6�
results in

�� �P

�t
+ u · �P� = � · �P

�

�
� P� − P � · u . �7�

At the other end of fluid compressibility types, the incom-
pressible limit where �T→0, Eq. �6� results in a Poisson
equation:

� · � �

�
� P� = � · u . �8�

In both cases we calculate the local permeability � by the
Carman-Kozeny relation �17�

� =
a2

9K

�1 − �s�3

�s
2 , �9�

where �s=1−� is the solid volume fraction, a is the particle
radius, and K=5 is an empirical constant valid for a packing
of beads �15�.

B. Dynamics of the particles

The force equation for a single particle with the velocity
vp, particle mass m=�m�a2h, particle mass density �m, vol-
ume Va=�a2h in a cell with a plate spacing of h, and the
number density defined as �n=�s�m /m is given by

m
dvp

dt
= �effVag + FI −

�P

�n
+ Fd, �10�

where �eff=�m−� f enters in the buoyancy forces in the first
term of the left-hand side, FI is the interparticle solid contact
force, the third term arises from the momentum exchange
between the fluid and solid, and Fd is a viscous force ac-
counting for energy dissipation. To approximate a situation
of hard spheres we choose the interparticle force FI be a
linear force with a spring constant k high enough to make the
overlap of particles during collision a negligible fraction of
their diameters.

If particles collide we include energy dissipation with a
restitution coefficient of rs=0.13 �10�. This is modeled by a
viscous force, active only during particle contact. This force
is proportional to the relative velocity of the particles vr and
oriented along the unit vector nd, which points from the cen-
ter of one particle to the contact point:

Fd = − �d�vr · nd�nd. �11�

The particle propagation is modeled by the velocity Verlet
scheme �18,19�.

III. RESULTS

For the simulations presented in this paper we used a
Hele-Shaw cell in the x direction of 	x=5 cm in width and
in the y direction 	y=7 cm in height. The cell is entirely
closed on all sides, both for the fluid and for the grains. The
mass density of the fluid was constant, set to the mass den-
sity of air � f =1.29 kg /m3, and we considered particles of a
mass density of �m=2500 kg /m3. The initial pressure con-
sidered corresponds to atmospheric pressure, P0=100 kPa at
the top of the cell. The average size of the particles is
140 �m and to avoid the formation of a triangular lattice the
particle diameter was defined to have a flat size distribution
with a range of 
10% variation about the mean. In total
approximately 140 000 particles are considered in the simu-
lations. The only variables that we vary in the following are
the viscosity of the fluid � f and the compressibility of the
fluid �T. The initial state is prepared in the following way:
particles are first let to rest on the bottom up to when a
fraction of 2/3 of the cell volume is filled. The interparticle
space is filled with the interstitial fluid considered. Then,
gravity is instantaneously reverted, corresponding to a sud-
den upside down flipping of the cell, and particles start to fall
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from their initial configuration and initial zero velocity. In all
the simulations the cell could be divided into three zones
independent of the type of fluid. In the base of the cell,
where particles have sedimented, and in the top section we
find a bulk of compacted particles. In these two sections
particles are hardly moving relative to each other. In between
these two sections, we find a dynamic section with mobile
dispersed particles. The particles in this section move while
forming fingers of higher particle density and bubbles of
lower particle density.

A. Effect of the compressibility on the granular Rayleigh-
Taylor instability

The dynamics of the particles in the Hele-Shaw cell sig-
nificantly depends on the interstitial fluid. In vacuum we do
not see any evolution of patterns in the density field as
shown in Fig. 1. Since all particles start at zero velocity,
indeed, they simply all homogeneously fall in free fall, up to
the moment when they contact the lower boundary and
bounce back. In Fig. 2 an interstitial fluid however is present.
While falling through the gap of fluid, here the particles de-
velop downward falling fingers of high particle density and
rising bubbles of low particle density. In this section we are
going to investigate the effect of the fluid compressibility on
the dynamics of the particles. In Fig. 2 we therefore vary and
compare the dynamics for different fluid compressibilities.
While the fluid viscosity is kept fixed and set to � f�air�
=0.018 mPa s, which corresponds to air at room conditions
of 25 °C and atmospheric pressure, the bulk modulus varied
from �T=1 /�T=1 kPa to incompressible behavior.

From the plots of the density field in Fig. 2 we can iden-
tify two main differences due to the change in compressibil-
ity. First we find for the high compressible cases with a bulk
modulus of �T�5 kPa that at times t�0.12 s bubbles of
low particle density appear at the upper end of top section
and right above the fingers in Fig. 2 in the picture at t
=0.126 s in the top row. For a higher bulk modulus these
bubbles are not present, and the top section stays uniformly
compacted. Second we notice that in the beginning the center
of mass of the whole top section moves further down the
more compressible is the fluid. This movement of the top
section stops when the weight of the packing is balanced by
the overpressure of the compressed air in the base and the
underpressure in the upper part of the cell. In Fig. 3 we

plotted the movement of the center of mass of all particles
	Rc�t�=Rc�t�−Rc�0� in time. In the plots we observe oscil-
lations of the top section for all the bulk moduli below �T
�5 kPa. Above this limiting bulk modulus, the movement
of the center of mass does not seem to be influenced by the
compressibility of the fluid. The oscillations are governed by
the inertia of the mass of the grains in the top section and the
elasticity of the fluid given by the bulk modulus. After the
pressure rises in the bottom part of the cell fluid seeps
through the porous media, exchanging momentum between
the particles and the fluid and damping the oscillations. The
system can show transient oscillations, which we observe for
�T�5 kPa or be in an overdamped regime for �T�5 kPa.
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FIG. 1. A layer of beads falls through a gap in vacuum. Time
progresses from left to right. White areas represent areas where the
particle density is zero. The gray and black areas represent areas
filled with particles, and the stripes are added artificially to better
demonstrate the dynamics. From left to right time progresses in
equal time steps.
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FIG. 2. Comparison of simulations with different fluid com-
pressibilities at a fluid viscosity of air: � f�air�=0.0182 mPa s. Gray
and black areas represent areas filled with particles. The stripes are
added artificially to better demonstrate the dynamics. From left to
right time progresses in equal time steps and from top to bottom the
bulk modulus is increased.

FIG. 3. �Color online� The y position of the center of mass of all
particles is plotted in time for different bulk moduli.

SEDIMENTATION INSTABILITIES: IMPACT OF THE… PHYSICAL REVIEW E 82, 051302 �2010�

051302-3



In Fig. 4 we analyzed the excess path length r�t� of the
lowest layer of N=8000 particles at t=0 s, where the posi-
tion of the ith particle is given by ri�t�. The displacement of
the center of mass of the lowest layer of N=8000 particles is
	rc�t�=rc�t�−rc�0�, and we define the excess path length r�t�
as

r�ts� =



i

N



j=1

s

�ri�tj� − ri�tj−1��

N
− �rc�ts� − rc�0�� , �12�

with the first sum over the particles and the second sum over
the time steps j. If particles are falling straight with this
definition in Eq. �12�, the excess path length is zero. The
excess path length is a measure of the complexity of the
particle trajectories. The time resolution is small enough that
no significant deviation was found when we only used every
second time step instead of every time step.

In Fig. 4 we plotted the average excess particle trajectory
r�t� in relation to the movement in the y direction of the
center of mass 	rc. We notice that the excess trajectory is
almost zero until the particles hit the bottom of the cell at
rc=1.6 cm. This shows that the particles of this lower layer
are falling mostly straight through the gap, independent of
the compressibility of the fluid.

B. When does compressibility become important?

To estimate when compressibility becomes an important
factor and affects the dynamics, we have to check two con-
ditions: first if the weight of the packing of grains is enough
to significantly compress the fluid in the base. In Eq. �5� this
means that the pressure difference is comparable to the back-
ground pressure P0=�T for an ideal gas. In this case we
experience oscillations of the top section if friction is ne-
glected like in our case for a bulk modulus �T�5 kPa. Sec-
ond we can define a skin depth for the pressure drop inside
the porous matrix. For this simplified analysis we start with
Eq. �6� and work in a reference frame moving with the par-
ticles. We assume small deformations of this falling particle
plug, hereby neglecting the relative motion between the par-
ticles. We further take the solid fraction to be homogeneous

� �
� =0 and that the pressure difference in the cell is small

compared to the background pressure P0. This gives P̂	�T
and Eq. �6� simplifies to a diffusion equation:

�P

�t
=

�T�

��
	P . �13�

The fundamental solution to this equation is

P�x� =
1

�4�Dt
e−x2/4Dt, �14�

where D=�T� /��. In Eq. �14� we can define a skin depth s
where the pressure has decayed by P�s�= 1

e . This skin depth
is given by s=�4Dt. We can now compare this skin depth
with the size of the Hele-Shaw cell. For typical values of
�s=0.6, � f�air�=0.018 mPa s, and t=0.01 s, t=0.05 s, and
t=0.32 s, we find a skin depth as shown in Fig. 5. The first
two time steps correspond to the time steps that are in the
range of the observed pressure oscillation period. The last is
the time that the top layer takes theoretically to fall through
the fluid gap, when the velocity of the top layer is given by
the Darcy velocity vd= �� /� f�� P, and the pressure force
balances the weight of the grains �P=�s�mg for a solid frac-
tion of �s=0.6. In this Fig. 5 we have calculated the skin
depth s for different bulk moduli. At the time that the top
layer takes to fall through the fluid t=0.32 s the skin depth is
much larger than the system size for all �T. At the times
connected with the oscillations the figure shows that the skin
depth is in the range of the system size for all �T�5 kPa.
For �T�5 kPa the skin depth gets much larger than the
system size of 7 cm. If we compare now the plot of the
density field in Fig. 2, we can see that the lower compress-
ibility affects rather the system when the skin depth is
smaller than the size of the Hele-Shaw cell. When the pack-
ing of beads starts to fall downward, the pressure in the
bottom of the cell will increase while in the top of the cell
the pressure decreases. In the highly compressible case and
for a homogeneous layer of beads the solution of the simple
diffusion equation �14� has a curved profile and a skin depth
smaller than the system size as shown in Fig. 6. Since the
volume of fluid in the bottom of the cell is much larger than
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FIG. 4. �Color online� The excess path length r�t� in Eq. �12� is
plotted in time. Particles are falling mostly straight downward, and
the bulk modulus hardly affects the excess path length.
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FIG. 5. �Color online� The skin depth for different bulk moduli
at time steps connected with the oscillations: t=0.01 s and t
=0.05 s. At the time that the top layer takes to fall through the fluid
t=0.32 s, the skin depth is much larger than the system size.
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in the top, the movement of the particles will cause the pres-
sure to drop faster in the top of the cell than the pressure
increases in the bottom of the cell. This underpressure in the
top part of the cell will strongly slow down the falling of the
uppermost particles where the pressure gradient is the stron-
gest. Inside the packing, away from the upper layer, the pres-
sure gradient decreases and so does the upward force on the
particles. Due to this decrease in the acceleration on the par-
ticles, the layer expands in the top part, creating the bubbles
of low particle density. If on the contrary the skin depth is
larger than the system size, the pressure profile becomes lin-
ear and the pressure gradient the acceleration of the beads is
constant. The packing shows no noticeable expansion apart
from its decompaction happening at its lower boundary,
which is a different effect. The oscillations of the top layer
can be described in a simplified way through a differential
equation equivalent to a damped harmonic oscillator. The
particles in the top layer shall be considered as a piston with
a constant permeability and no relative movement of the par-
ticles. The initial empty volume in the bottom part is given
by Vb�0� and the top part by Vt�0�. The thickness in the y
direction of the top layer is L and the cross-section area is
A=	xh. Defining Y�t�		Rc�t� as the change in the position
of the center of mass of all particles and M as their total
mass, we can state

MŸ − Mg = − A�Pb − Pt� . �15�

In this simplified picture the cell consists of two compart-
ments separated by a porous piston. The pressure gradient
inside the piston is assumed to be constant and equal to the
overall pressure gradient between the two compartments cor-
responding to the long-term limit of the pressure profile if
the fluid is compressible. The change in the fluid volume in
the bottom compartment Vb�t�−Vb�0� is negative to the
change in fluid volume in the top compartment Vb�t�
−Vb�0�=−�Vt�t�−Vt�0��. There are two possible mechanisms
affecting the fluid volumes. First is the compression or ex-
pansion of the fluid due to the movement of the piston, and
second is the flow through the porous piston. This leads to
the following expression for the fluid volume in the bottom
compartment:

Vb�t� − Vb�0� = �− AY +
A�

�


0

t Pb − Pt

L
dt� . �16�

With the definition of the bulk modulus �T=−V �P
�V , the pres-

sure difference between top and bottom parts can be calcu-
lated as

Pb − Pt = −
�T

Vb�0��− AY +
A�

�


0

t Pb − Pt

L
dt�

−
�T

Vt�0��− AY +
A�

�


0

t Pb − Pt

L
dt� . �17�

Using now Eq. �15� in Eq. �17� and integration results in the
differential equation of a damped harmonic oscillator:

Ÿ + Ẏ + �Y = �t + g , �18�

where the constants are defined by

 =
��TA

�L
� 1

Vb�0�
+

1

Vt�0�� ,

� =
�TA2

M
� 1

Vb�0�
+

1

Vt�0�� ,

� =
��TAg

�L
� 1

Vb�0�
+

1

Vt�0�� . �19�

With a standard ansatz Y�t�=e�t in Eq. �18� two solutions of
the homogeneous equation are found:

�1,2 = −


2

�2

4
− � . �20�

The system will be overdamped if the square root of Eq. �20�
is positive, and oscillations only occur if the square root is
negative. This is the case if

�2�TM

4�2L2 � 1

Vb�0�
+

1

Vt�0�� � 1. �21�

Assuming a system with the constants used in the simula-
tions Eq. �21� predicts a critical bulk modulus of �T
=589.3 kPa for the transition from an overdamped to a
damped system. Here, we furthermore assumed that Vb�0�
=Vt�0�=Ah�1.0 cm� and a solid fraction of �s=0.6. If the
initial volume is Vt�0�=Ah�0.1 cm� and Vb�0�
=Ah�1.9 cm� the critical bulk modulus is �T=111.9 kPa.
Recalling Fig. 3 it can be seen that the transition occurs at
comparable values in the simulations.

C. Effect of the viscosity on the granular Rayleigh-Taylor
instability

In Fig. 7 the influence of the fluid viscosity � f is demon-
strated in plots of the density field in black and white, where
black stands for high particle density. Stripes in gray were
added to emphasize the particle dynamics. The viscosity is
changed from a value close to the viscosity of air � f�air�

FIG. 6. �Color online� The averaged pressure profile as a func-
tion of the depth at t=0.02 s.
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=0.018 mPa s and increased in steps with increasing step
size. When the viscosity is increased a clear difference in the
dynamics in the cell can be observed. The structures get
smaller and the evolution of the dynamics is slowed down.
When the viscosity is increased, the fingers finally disperse
before they have reached the base of the cell. In the further
progress the most advanced bubble of low particle density
accelerates until the top section of compacted grains has
been broken through. After this breakthrough the top section
gets unstable, and the remaining blocks of compacted grains
remain compacted while falling downward. This is a rather
different dynamics, where we have already observed that the
friction with the side plates is an important parameter �12�.

The focus of this paper shall be kept on the start of the
Rayleigh-Taylor instability, which is less sensitive to bound-
ary conditions, and allows us to concentrate on the paramet-
ric study of the viscosity and compressibility effects. Thus,
we have chosen not to study in detail this final stage of the
dynamics, and we concentrate on the beginning of the simu-
lations when the top layer is still intact.

The analysis of the excess path length of Sec. III A in Eq.
�12� performed on the simulations with different viscosities
leads to the plot in Fig. 8. Here, we can see that the first 8000
particles follow a longer trajectory in relation to the move-
ment of their centers of mass the more viscous is the fluid.
There is no simple way to rescale all the plots and collapse
them for all viscosities. This shows that the characteristics of
the patterns in the density field and the dynamics of the
particles are changed due to the viscosity.

To further analyze this change in the mixing dynamics,
we define 	d as the average relative distance of particles
pairs. These pairs were at time t=0 s separated by a distance
	ds�0.028 cm, which corresponds to two particle diam-
eters. In this average only the first 600 particles are consid-
ered corresponding to the first two layers. The reason for this
is that the front where particles disperse from the top section
travels slower for higher viscosity, and the amount of par-

FIG. 8. �Color online� The average excess particle trajectory in
relation to the displacement of the center of mass.

FIG. 9. �Color online� 	d the average distance of particle pairs
in time for low-viscosity fluids in bilogarithmic representation. The
power-law fit with an exponent b=1.0 shows ballistic behavior.

FIG. 10. �Color online� 	d the average distance of particle pairs
in time for high-viscosity fluids in bilogarithmic representation. The
initial separation of the pairs has a diffusive behavior with an ex-
ponent close to b=0.5 in the dashed line. In the progress a crossover
to a turbulent-dispersive behavior is observed with a slope close to
b=1.5 in the solid line.

FIG. 7. The particle density field of simulations with different
viscosities. From left to right time is progressing, and from top to
bottom the viscosity is increased. If not specified the axis units are
given in centimeters. White areas represent particle-free areas.
Bubbles of low particle density can be observed.
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ticles that contribute to the averaged particle pair distance
would depend on the speed the front travels with. Further-
more the dynamic patterns in the cell also depend on the
height from the bottom of the cell and coarsen in time. By
taking the average over the first 600 particles, it can be en-
sured that all the particles almost start moving instanta-
neously. The analysis stops when the first particle has
reached a distance of 0.14 cm to the base of the cell corre-
sponding to ten particle diameters. The average distance be-
tween the particle pairs grows in time while the particles are
falling through the fluid as shown in the bilogarithmic rep-
resentations in Figs. 9 and 10. The pair separation can be
classified into two regimes. The first regime for lowly vis-
cous fluids with 0.018�� f �0.073 kPa s shows a nonhy-
drodynamic or ballistic behavior where the exponent is close
to b=1.0 in a power-law fit of 	d=atb. The particles in this
regime fall with a constant relative velocity. In the second
regime for highly viscous fluids with 0.128�� f
�4.418 kPa s the particle pairs follow an initial diffusive
separation with an exponent close to b=0.5 before they enter
the turbulent-dispersive behavior with an exponent close to
b=1.5. Interestingly the latter exponent of b=1.5 corre-
sponds to the Richardson law that predicts an exponent of
b=1.5 for particle pair separation in fully developed turbu-
lence �20–24�. For later stages this observation however
changes. Looking at a layer of 600 particles at a height of
2000 particles up in the packing, the pair separation displays
a slope of around b=3.6 for particles emerged in high-
viscosity fluids �see Fig. 11�. The ballistic behavior for par-
ticles emerged in low-viscosity fluids is slightly more stable

and holds for a layer of 600 particles until a height of 4000
particles up in the packing �see Fig. 12�. In both plots the
slopes increase systematically with the fluid viscosity. In ad-
dition to the coarsening of the dynamic pattern the more
rugged interface at later stages can cause this behavior. The
more rugged interface at later stages causes the particles to
disperse from the compacted layer at different times and can
also contribute to a higher slope of the pair separation in the
bilogarithmic representation.

IV. CONCLUSION

As a conclusion we can state that the compressibility of
the interstitial fluid affects the dynamical patterns much less
than the viscosity. Under the conditions discussed in Sec.
III B that the skin depth of the pressure is larger than the
system size and that the weight of the grains does not lead to
a significant compression of the fluid in the empty zone of
the cell, the compressibility can be neglected. This results in
an increase in the computational speed by a factor of around
20 for the present model from 480 to 24 h on a cluster with
eight nodes. In the second part of this paper the viscosity was
proven to have a strong effect on the dynamics of the par-
ticles. In terms of the mixing behavior the increase in the
additional path length due to the increase in the fluid viscos-
ity will result in a better mixing of the particles the more
viscous the fluid is if internal friction is negligible. For some
regions in the flow next to the initial fluid-grain pack bound-
ary, a transient power-law behavior is observed for the de-
pendence on time of particle pair separation. The exponent
characterizing these power laws is observed to increase as a
function of the fluid viscosity.
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