
HAL Id: insu-02377743
https://insu.hal.science/insu-02377743

Submitted on 24 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pore pressure evolution in deforming granular material:
A general formulation and the infinitely stiff

approximation
L. Goren, E. Aharonov, D. Sparks, Renaud Toussaint

To cite this version:
L. Goren, E. Aharonov, D. Sparks, Renaud Toussaint. Pore pressure evolution in deforming gran-
ular material: A general formulation and the infinitely stiff approximation. Journal of Geophysical
Research : Solid Earth, 2010, 115 (B9), �10.1029/2009JB007191�. �insu-02377743�

https://insu.hal.science/insu-02377743
https://hal.archives-ouvertes.fr


Pore pressure evolution in deforming granular material: A general
formulation and the infinitely stiff approximation

L. Goren,1 E. Aharonov,2 D. Sparks,3 and R. Toussaint4

Received 7 December 2009; revised 20 April 2010; accepted 29 April 2010; published 30 September 2010.

[1] The physics of deformation of fluid‐filled granular media controls many geophysical
systems, ranging from shear on geological faults to landslides and soil liquefaction. Its
great complexity is rooted in the mechanical coupling between two deforming phases: the
solid granular network and the fluid‐filled pore network. Often deformation of the
granular network leads to pore fluid pressure (PP) changes. If the PP rises enough, the
fluid‐filled granular media may transition from a stress‐supporting grain network to a
flowing grain‐fluid slurry, with an accompanying catastrophic loss of shear strength.
Despite its great importance, the mechanisms and parameters controlling PP evolution by
granular shear are not well understood. A formulation describing the general physics of pore
fluid response to granular media deformation is developed and used to study simple
scenarios that lead to PP changes. We focus on the infinitely stiff end‐member scenario,
where granular deformation is prescribed, and the PP responds to this deformation.
This end‐member scenario illustrates the two possible modes of pore fluid
pressurization: (1) via rapid fluid flow when fluid drainage is good and (2) via pore
volume compaction when drainage is poor. In the former case the rate of deformation
controls PP evolution, while in the latter case, fluid compressibility is found to be an
important parameter and the amount of pressurization is controlled by the overall
compaction. The newly suggested fluid‐induced mechanism (mechanism 1) may help
explain observations of liquefaction of initially compact soils and shear zones.

Citation: Goren, L., E. Aharonov, D. Sparks, and R. Toussaint (2010), Pore pressure evolution in deforming granular material:
A general formulation and the infinitely stiff approximation, J. Geophys. Res., 115, B09216, doi:10.1029/2009JB007191.

1. Introduction

[2] Soils, unconsolidated rocks, and fault gouge may be
described as porous skeletons composed of contacting grains.
Often the pores are filled with fluid. The grains and the fluid
form two intertwined networks: the grains connect via fric-
tional contacts forming a heterogeneous deformable solid
network, while the fluid flows in the complementary network
of pores. The coupled solid‐fluid system may deform in
response to applied stresses, and deformation naturally arises
on all timescales: from slow compaction in response to sed-
iment load, to catastrophic failure during earthquakes and
landslides. The granular network may deform elastically or
through irreversible rearrangements (e.g., pore collapse).
Such deformation changes the pore volume and by that
affects the pore fluid pressure (PP). On the other hand, gradients

in PP exert forces that may cause grains to move and the
solid network to deform. The coupling between the solid
matrix deformation and the value of PP is possibly the most
important aspect of solid‐fluid coupling: elevated PP modi-
fies the way in which saturated granular soils and rocks
respond to stresses, and often controls devastating natural
phenomena such as earthquakes [e.g., Sleep and Blanpied,
1992], landslides [e.g., Voight and Faust, 1982; Iverson et al.,
1997] and soil liquefaction [Das, 1993; Kramer, 1996]. A
continuum view of how PP modifies the system response to
stress is formulated in the law of effective stress [Terzaghi,
1943]. The most important aspect of this law is the fact that
the shear resistance, t, of saturated granular material de-
creases linearly with increasing PP, P, since t / s − P,
where s is the confining stress [Terzaghi, 1943; Scholz,
1990]. Therefore, the ability of saturated soils to resist
shear is crucially dependent on the state of their PP: under
normal conditions, when P < s, grain‐networks behave like
solids that can sustain shear stresses. However, if for some
reason the PP is elevated to a level where P = s the shear
resistance vanishes, and ‘liquefaction’ occurs, a situation in
which the grain‐fluid system flows like a fluid in response to
even small shear stresses. When PP within a landslide shear
zone approaches the confining stress, the slide may accelerate
catastrophically. When fault gouge material experiences high
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values of PP, the dramatic reduction of shear resistance may
lead to dynamic acceleration and an earthquake in response to
background tectonic stresses that were previously sustained
by the fault resistance to sliding. In soils, an increase in PP
leading to liquefaction may cause collapse of previously
supported infrastructure.
[3] Traditionally, the mechanics of fluid‐filled soils,

landslides’ shear zone and gouge material are studied sep-
arately. Indeed, a major difference between these three
systems is their characteristic depth. While soil liquefaction
is a phenomenon of the very shallow crust and is usually
restricted to few tens of meters below the surface, the depth
of landslides’ shear zones ranges between several meters to
few kilometers [e.g., Sidle and Ochiai, 2006], and the depth
of fault gouge is restricted to the seismogenic zone, nor-
mally 2–30 km. The different depths result in differences in
the effective confining stresses. This range of depth is also
accompanied by a range of drainage conditions [Saar and
Manga, 2004].
[4] Despite depth and drainage differences, the basic cou-

pledmechanics of grains and fluidmay be applied similarly to
soils, shear zones, and gouge layers. Indeed, it will be shown
here that the formulation of pore fluid response to granular
matrix deformation is depth independent. For that reason,
conclusions from various studies (some of them reviewed in
Appendix A) that deal with pore fluid pressurization for one
system may be applied also to the other systems. Therefore
the term ‘liquefaction’ is used here to address the general
case of PP equals the confining stress, regardless of the
geological setting (soil, landslides’ shear zone, and gouge
layers). Caution should be practiced when interpreting the
results, as the PP required to liquefy soils is smaller by orders
of magnitude than that required to completely liquefy gouge
layers. In the rest of the introduction, the importance of PP to
soil liquefaction and pressurization along gouge layers is
reviewed separately, but the mechanics controlling PP evo-
lution is presented and discussed uniformly.
[5] Soil liquefaction [Das, 1993; Kramer, 1996] is trig-

gered by and contributes to the devastation of earthquakes,
and may cause collapse of infrastructure foundations, and
initiate landslides. In the process of soil liquefaction, seismic
waves induce cyclic loading, which causes the PP to rise. As a
consequence, the granular system, which under normal con-
ditions behaves like a solid that resists shear, loses its shear
resistance and may flow as a fluid. As a result, liquefied soil
can no longer support the infrastructure that is rooted in it and
a catastrophic collapse of buildings, roads, bridges and other
structures with foundations may take place (e.g., damage
during earthquakes at Niigata, 1964 [Kawakami and Asada,
1966], or Izmit, 1999 [Cetin et al., 2004]). In some earth-
quakes, the damage caused by liquefaction exceeds the damage
by direct ground acceleration. For example, the 1995 earth-
quake in Kobe, Japan, caused liquefaction that resulted in
more than 5500 deaths, and an estimated economic loss of
over $US 130 billion [Scawthorn and Yanev, 1995].
[6] Since liquefaction models are a practical necessity in

geotechnical engineering, phenomenological models of
coupled solid‐fluid deformation have been developed (for a
review, see Sawicki and Mierczynski [2006]). These models
are usually based on continuum mixture theory formula-

tions, and use experimental data for model calibration. A
major effort to determine the mechanisms involved in
earthquake‐induced soil liquefaction by comparing centri-
fuge experiment with phenomenological numerical models
took place as part of the VELACS project [Popescu and
Prevost, 1995]. None of the models accurately predict the
set of experimental outcomes and by themselves show a
wide and inconsistent range of predictions [Manzari et al.,
1994]. Recently, more sophisticated phenomenological
models have improved the predictability of PP buildup and
dissipation [Zienkiewicz et al., 1999].
[7] Catastrophic pore fluid pressurization may occur not

only in response to cyclic loading induced by earthquakes,
but also as a result of continuous shearing of fluid‐filled
granular layers. This is the most studied scenario for lique-
faction within shear zones of landslides and gouge‐filled
faults. In these cases, drainage conditions and porosity
evolution were shown to control PP evolution and thus layer
strength. Dynamic dilation and compaction of gouge and
shear zone material are shown to be a function of shearing
velocity [Marone et al., 1990] and stress conditions [Iverson
et al., 2000; Aharonov and Sparks, 2002]. When the fault is
sealed dilation often leads to stable sliding as it causes PP
reduction and fault hardening [Scholz, 1990; Segall and Rice,
1995; Moore and Iverson, 2002], while shear‐enhanced
compaction of under‐compacted gouge may lead to extreme
weakening and unstable sliding [Blanpied et al., 1992]. Pore
fluid pressurization and migration also control communication
between fault zones and earthquakes sequencing [Yamashita,
1999; Miller and Nur, 2000].
[8] In terms of the physics of the granular‐fluid system, a

matrix of granular media may deform elastically through
small reversible deformation at grain contacts, and/or plas-
tically through irreversible rearrangements (e.g., pore col-
lapse). The term poroplasticity [Kherbouche et al., 1995] is
used here to describe such irreversible deformation of
granular media in a way that modifies the shape and size of
pores and the contact network between grains, and is
unrelated to microscopic dislocation glide; that is, rearrange-
ments take place by grains sliding and rolling relative to
each other, and thus change the matrix configuration. The
traditional approach suggests that poroplasticity may lead to
fluid pressurization and may cause liquefaction [Sawicki and
Mierczynski, 2006]. More recently a different view on the
mechanics of liquefaction was suggested: poroelasticity
was offered to be the possible cause of liquefaction induced
by earthquakes [Bachrach et al., 2001]. Sections 1.1 and
1.2 briefly review poroplastic and poroelastic approaches
and demonstrate that the physical understanding of the
mechanisms by which matrix deformation generates large
enough PP for soils and gouge layers to liquefy is not
complete. The rheological regime that controls PP evolu-
tion, poroplasticity or poroelasticity, is still debated and so
are the relevant boundary conditions (drained and
undrained), and the importance of physical parameters such
as fluid compressibility.

1.1. Poroplastic Path to Liquefaction: Current State
of Understanding

[9] The poroplastic view of liquefaction relates the gen-
eration of high PP to irreversible collapse of pore volume
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under undrained conditions [Sawicki and Mierczynski,
2006]. This mechanism is supported by laboratory experi-
ments showing that when loose sediments compact under
cyclic shear [Casagrande, 1936; Youd, 1972], PP rises
under undrained conditions [Castro, 1969]. Many models of
poroplastic deformation assume specific deformation laws
of the porous configuration: in the context of soil liquefac-
tion with matrix compaction induced by mechanical vibra-
tions [Snieder and van der Beukel, 2004], in relation to
crustal processes with material precipitation within pores
[Walder and Nur, 1984], and in the context of gouge
material with porosity that depends on slip [Yamashita,
1999] and slip velocity [Segall and Rice, 1995; Samuelson
et al., 2009].
[10] Recently, fully coupled grain‐scale models of grains

and pore fluid were developed to study the relation between
general deformation of a granular matrix and soil liquefaction
[e.g., El Shamy and Zeghal, 2007; Okada and Ochiai,2007;
Li et al., 2007]. Such models use the discrete element
method and are capable of simulating both poroelastic and
poroplastic grain rearrangements. Here we review two of
these studies that demonstrate the inconsistency in the
assumed physics of soil liquefaction: (1) El Shamy and
Zeghal [2007] study a drained system (where the fluid is
allowed to flow freely out of the top boundary) with forcing
induced by cyclic shear acceleration at the base of the sys-
tem and assume that pore fluid is completely incompress-
ible, an assumption that follows many engineering
interpretation of experiments [e.g., Garga and Zhang, 1997;
Kozlov et al., 1998]. (2) Okada and Ochiai [2007] study an
undrained system (with impermeable boundaries) placed
under contractive strain, and assume a compressible pore
fluid. Both studies report the generation of high enough PP
for liquefaction to occur, while the latter study emphasizes
that high PP was generated only in initially loosely packed
systems. Thus, these two works study the same problem but
assume different physics (incompressible versus compress-
ible fluid) and different boundary conditions (drained versus
undrained). The results of Okada and Ochiai [2007] can be
interpreted within the classical framework of soil liquefac-
tion, as they observe high PP when compacting a loosely
packed undrained granular system. However, the results of
El Shamy and Zeghal [2007] are somewhat unexpected
because they observe liquefaction under drained conditions
with incompressible fluid. Indeed, a similar model that is
described by Itasca Consulting Group Inc. [2005], stresses
that liquefaction cannot be simulated with an incompress-
ible fluid because then the model “does not include a
mechanism for generation of pore pressure under strain.”
In section 6 we supply a physical explanation for this
apparent violation of the classical view of liquefaction and
show that the two models of El Shamy and Zeghal [2007]
and Okada and Ochiai [2007] represent different end‐
members of the same physical system.

1.2. Poroelastic Path to Liquefaction: Current State
of Understanding

[11] Poroelastic theory for coupled solid‐fluid deformation
[Terzaghi, 1943; Biot, 1941, 1956a, 1956b, 1962; Skempton,
1960; Wang, 2000] assumes infinitely small reversible
deformations, (an assumption better suited for rocks and

cohesive matter than for granular media) and calculates solid
deformation and PP. The poroelastic view attributes PP
variations to the coupling between the elastic deformation
of pores and the porous flow induced by the passage of
P‐waves [Bachrach et al., 2001]. A Biot based model is
developed by Bachrach et al. [2001], which shows that
compressible fluid and low shear modulus of the granular
matrix may lead to PP that exceeds the loading. A similar
formulation, but without inertial terms, is developed byWang
[2000] for the general study of PP response to cyclic loading
from a poroelastic point of view. Section 3 shows that PP rise
using this mechanismmay lead to soil liquefaction only in the
very top of the sediment column, and to gouge liquefaction
only if the fluid was initially highly pressurized.

1.3. Overview

[12] The diversity of models and approaches and the
ongoing debates regarding the basic physics of liquefaction
indicate that a coherent physical theory that explains how PP
evolves in response to general deformation of the granular
matrix is still missing. Such a unifying theory should be able
to explain as particular cases the various field, experimental
and numerical observations and the links between existing
models. It should also address some basic questions that
were left unanswered: What is the role of fluid compress-
ibility [Garga and Zhang, 1997]? Can liquefaction take
place under drained conditions [Das, 1993]? And how does
liquefaction occur in initially over‐compacted soils [Soga,
1998]?
[13] The work presented here aims to do exactly that. In

order to achieve this goal, we first develop a general theory
and then apply it within the scope of the infinite stiffness
approximation, where the granular deformation is prescribed
and the pore fluid responds to this deformation, without
affecting solid matrix deformation. The study of this simple
end‐member case allows derivation of analytical solutions
for the mechanics of pore fluid pressurization, and com-
parison to numerical solutions. The behavior of this end‐
member situation is simple but yet rich enough to highlight
the mechanisms that control liquefaction.
[14] In this paper we develop a mass and momentum

conservation based formulation for the general PP response
to granular matrix deformation in section 2. This formula-
tion is not restricted to a particular type of deformation and
may be used to study both elastic reversible processes and
irreversible plastic deformation. The question of poroelastic
versus poroplastic rheology is discussed in section 3. Then,
to study pore fluid behavior under the infinite stiffness
approximation, section 4 describes the application of the
formulation to a simple system of uniform grains immersed
in fluid and subjected to shear loading. Section 5 analyzes
the equation that lies at the heart of the pore fluid formu-
lation, and reveals different physical processes that control
the evolution of PP. One of these processes may explain
liquefaction events in initially over‐consolidated granular
material under drained conditions. Analysis and implications
are discussed in section 6, and we present our conclusions in
section 7. In Appendix A we show that our formulation for
the pore fluid pressure is a generalization of previous models
and thus we can uncover the missing links between them. In
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Appendix B we develop a general analytic solution for the
basic equation that describes pore fluid pressurization.

2. Theoretical Model

[15] In this section, mass and momentum conservation
laws are used for the development of an equation describing
the spatial and temporal evolution of excess pore fluid
pressure in response to granular or porous matrix deforma-
tion. Let F be the porosity, t the time, rs and rf the mass
densities of the bulk material of the grains and of the fluid,
respectively, and us and uf the grains and fluid velocities,
respectively. The velocities are considered at a representative
scale for Darcy’s law; that is, they are defined for mesoscopic
volumes containing at least a few grains. First, mass con-
servation equations are written for the grains and for the
fluid:

@½ð1� FÞ�s�
@t

þr � ½ð1� FÞ�sus� ¼ 0; ð1Þ

@½F�f �
@t

þr � ½F�f uf � ¼ 0; ð2Þ

where r· is a divergence operator related to grains/fluid
advective processes. The quantity F(uf − us) corresponds to
the Darcy velocity [Anghel et al., 2006], i.e.,

Fðuf � usÞ ¼ � k

�
rP; ð3Þ

where k is the permeability, m is the fluid viscosity and P is
the excess (over hydrostatic) fluid pressure. Equation (3),
Darcy’s law, is derived from Stoke’s equation, and is a
reduced form of the momentum equation under the
assumption of negligible fluid inertia. The fluid density is
given by the fluid state equation:

�f ¼ �0ð1þ �PÞ; ð4Þ

where r0 is the fluid density at a reference hydrostatic pres-
sure level, and b is the adiabatic fluid compressibility, b =
(1/rf)(∂rf /∂P). Using the adiabatic compressibility means
assuming no significant heat exchange between the over-
pressured and underpressured zones during fast motion. We
assume that grain compressibility is negligible relative to the
fluid compressibility, as expected for natural sand filled with
fluid such as water, so that rs can be approximated as con-
stant, and equations (1) to (4) lead to

�F
@P

@t
¼ r � ð1þ �PÞ k

�
rP

� �
� ð1þ �PÞr � us � �Fus � rP:

ð5Þ

This derivation is based on the same basic principles as the
approach used successfully to model instabilities in the flow
of granular media and fluids [Vinningland et al., 2007a,
2007b; Johnsen et al., 2006, 2007, 2008], and hydrofracture
[Flekkøy et al., 2002]. The value of the excess PP, P, has, for
the cases considered, an upper bound set approximately by
the difference between the lithostatic and hydrostatic stresses,
sd = (rs − rf)gh, where h is the depth at which matrix

deformation occurs. Indeed, when P = sd the effective stress
vanishes, and liquefaction may occur. For that reason the
analysis presented here considers the case of

�P � ��d � 1: ð6Þ
Taking fluid compressibility of b = 4.5 × 10−10 Pa−1 [Garga
and Zhang, 1997, and references therein], equation (6)
bounds sd � 2.22 GPa and h � 150 km. This restriction
on h does not limit the analysis since soil liquefaction is a
phenomenon of the shallow crust, and fault gouge material is
restricted by the base of the seismogenic zone. It should be
noted that here we consider a single fluid with low com-
pressibility, such as water, in the pore space. If the pore space
is filled with water/air mixture, the mixture compressibility is
expected to increase significantly with respect to pure water
and equation (6) might not hold. This situation is not con-
sidered in the present paper. Following (6), equation (5) is
rewritten as

�F
@P

@t
¼ r � k

�
rP

� �
�r � us � �Fus � rP: ð7Þ

The first and fourth term of equation (7) compose together
the Lagrangian derivative of the PP, the second term de-
scribes PP diffusion and the third term may be viewed as the
forcing, due to spatial differences in grain velocities.
[16] To investigate the relative magnitude of the different

terms in equation (7), a non‐dimensional analysis is per-
formed. Let us define the characteristic magnitude of the
variables in the model: P = P̂/b, us = ûsu0, k = k̂k0, and t =
t̂t0, where the^notation denotes non‐dimensional variables,
and u0, k0, and t0 are the velocity, permeability, and time-
scale factors, respectively. The divergence arising from
equations (1) and (2) represents grain‐scale rearrangements.
Therefore, the derivatives in these operators are scaled by
d−1, a characteristic grain diameter, and r · = r̂1 · /d.
However, the gradient operator in equation (3) represents a
larger length scale, over which Darcy law applies. Therefore
the derivatives in this operator are scaled by lk

−1, the PP
diffusion length scale, and r = r̂2/lk. lk is bounded from the
top by h, and is presumably much larger than d. A natural
choice for lk is

ffiffiffiffiffiffiffi
Dt0

p
, where D = k0/bmF is the PP diffusion

coefficient, and t0 = d/u0 is the timescale of deformation.
Assigning the non‐dimensional variables in equation (7)
results in

@P̂

@ t̂
¼ D

lku0
r̂1 � ðk̂r̂2P̂Þ � 1

F
r̂1 � ûs � d

lk
ûs � r̂2P̂: ð8Þ

[17] In equation (8), the coefficients of both the second
and the fourth terms may be expressed as functions of either
a Peclet number, or a Deborah number, which are identical

to each other: D/lku0 =
ffiffiffiffiffiffiffiffiffiffi
Pe�1

p
=

ffiffiffiffiffiffiffiffiffiffiffi
De�1

d

q
, and d/lk =

ffiffiffiffiffi
Pe

p
=ffiffiffiffiffiffiffiffi

Ded
p

. The Peclet number, Pe = du0/D, expresses the ratio
between the rate of advection, u0, and the rate of PP diffu-
sion across a single grain, D/d [McNamara et al., 2000]. The
Deborah number, Ded = td/t0, is defined as the ratio of
relaxation timescale and a characteristic process timescale
[Osswald, 1998, p. 54]. Here, the relaxation timescale, td =
d2/D, is the timescale for PP diffusion across a single grain,
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and the characteristic process timescale, t0, is the timescale
of deformation.
[18] In the following, we use the Deborah number nota-

tion, Ded, where subscript d is added because later in this
paper an additional relaxation timescale will be considered.
Ded is termed the grain Deborah number. There are two
limits to equation (8), one when Ded � 1, and then the
second diffusion term in equation (8) is negligible, and one
when Ded � 1, and then the last term in equation (8) is
negligible. The case of Ded > 1 is an unnatural end‐member.
Assuming pore fluid water, Carman‐Kozeny permeability
(k / d2), and deformation rate <10 m/s, this end‐member
occurs only if grain size in unrealistically small (the order of
100 nm). In fact, for most natural cases, and in particular for
the cases considered in this paper, Ded � 1. As a result, the
fourth term (the gradient part of the Lagrangian derivative) in
equation (8) may be neglected. Equation (8) may then be
rewritten as

@P̂

@ t̂
¼

ffiffiffiffiffiffiffiffiffiffiffi
De�1

d

q
r̂1 � ðk̂r̂2P̂Þ � 1

F
r̂1 � ûs; ð9Þ

where only three terms are left. In a dimensional form,
equation (9) reads

@P

@t
¼ 1

�F�
r � ½krP� � 1

�F
r � us: ð10Þ

[19] Such a non‐dimensional analysis is not commonly
performed in engineering applications of soil liquefaction.
Instead, the first time dependent term in equation (10) is
normally neglected due to the small value of fluid com-
pressibility, b [e.g., Garga and Zhang, 1997; Kozlov et al.,
1998]. However, a simple thought experiment can demon-
strate its importance: Consider a sealed system, with initially
uniform pressure, that is loaded uniformly. The diffusive
term in equation (10) is thus zero. If the time dependent term
would have been neglected, then equation (10) would
reduce to r · us = 0; that is, no deformation could take place
due to fluid resistivity to both flow and compression.
[20] The form of the forcing term in equation (10) is

intuitive in the framework of poroplasticity: when a fluid‐
filled granular system compacts and pore volume collapses,
r · us < 0, and the PP is expected to rise. When the system
dilates,r · us > 0, and the PP will drop. Furthermore, the
form of the forcing as dependent on the local grain velocities
suits a straightforward plugging of equation (10) in a model
of coupled grains and fluid implemented with discrete ele-
ments method of the form of Okada and Ochiai [2007].
[21] It is sometimes convenient to express the forcing term

as a function of the porosity evolution rather than the
divergence of the solid grains velocity. From grain mass
conservation, equation (1):

ð1� FÞr � us ¼ @F
@t

þ us � rF: ð11Þ

When the initial porosity and the rate of porosity evolution
are assumed uniform [e.g., Walder and Nur, 1984; Snieder

and van der Beukel, 2004] us · rF = 0 and (1 − F)r · us =
∂F/∂t. Under these restrictions equation (10) may be
rewritten as

@P

@t
¼ 1

�F�
r � ½krP� � 1

�Fð1� FÞ
@F
@t

: ð12Þ

[22] Formulations similar to our equations (10) or (12)
arise in other works dealing with the response of PP to
specific situations of granular and porous matrix deforma-
tion [Walder and Nur, 1984; Wang, 2000; Samuelson et al.,
2009], some of them specifically in the context of soil
liquefaction [Bachrach et al., 2001; Snieder and van der
Beukel, 2004]. Appendix A demonstrates how these mod-
els may be directly compared to our formulation.

3. Poroelastic Pore Fluid Pressurization
and Liquefaction

[23] As the formulation presented here is not restricted to a
specific rheology (poroelastic or poroplastic), the possibility
of generating high PP with a poroelastic mechanism is next
examined. For that, we revisit a formulation developed by
Wang [2000] describing one‐dimensional spatiotemporal
evolution of PP in response to temporal stressing of a fluid‐
filled porous material [Wang, 2000, equations 3.65 and 6.14]:

@P

@t
¼ k

�S

@2P

@z2
� �

@�zz

@t
; ð13Þ

where S is the uniaxial specific storage in Pa−1, g is the
dimensionless loading efficiency, and szz is the external
elastic loading stress in Pa. k/mS is a space and time constant
diffusion coefficient, and g∂szz/∂t is the forcing term.
Appendix A shows that equation (13) is equivalent to our
equation (10) when we assume that r · us occurs by elastic
deformation only, and also demonstrates the equivalency
between equation (13) and the formulation of Bachrach et al.
[2001] under the assumption of negligible inertia. Thus, any
conclusion drawn from the analysis in this section applies
also to the formulation discussed in section 2. Equation (13) is
most suitable for investigating the poroelastic liquefaction
hypothesis because its forcing term is given in the form of
time dependent elastic stress loading, such as a seismic
pressure wave. Indeed, Wang [2000] studied the response of
equation (13) to loading by stress wave.
[24] Wang [2000] solved analytically equation (13) in a

half‐space, with a forcing, szz, of the form

�zzð0; tÞ ¼ ��0 expði!tÞ ð14Þ

where s0 is the amplitude of the pressure wave and w is the
loading frequency. The top of the domain is taken as drained
and hence P(z = 0, t) = 0. Figure 1 shows the resultant PP
magnitude, ∣P∣, scaled by gs0, as a function of the scaled
depth, z/lk. Note that the maximum value of the loading
efficiency, g, is 1. This maximum value corresponds to the
case of low shear modulus for which Bachrach et al. [2001]
find the maximum value of PP. Figure 1 and Wang’s [2000]
analysis indicate that when the loading efficiency is maxi-
mal, the maximum value of PP obtained in a fluid‐filled
poroelastic medium when a seismic P‐wave passes is
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bounded by 1.07s0. That is, the PP cannot exceed the
stress wave amplitude by more than 7%.
[25] For liquefaction to occur, PP must reach lithostatic

values [Sawicki and Mierczynski, 2006]. If we consider a
saturated soil column with a thickness of 1 m, the lithostatic
pressure at its base is about 25 kPa, while the hydrostatic
pressure is 10 kPa. Therefore there is a need to generate
excess of P = 15 kPa for liquefaction to occur at a depth of
1m. For the poroelastic liquefaction to occur, the forcing
magnitude then must be 14 kPa, two orders of magnitude
larger than typical amplitudes of seismic pressure waves
[Bachrach et al., 2001]. If we consider a fault gouge at depth
of 15 km, the excess PP needed for complete liquefaction is
about 0.2 GPa. The excess PP generated by the poroelastic
mechanism with a forcing wave of 100 Pa is a negligible
fraction of the needed value. These simple examples indicate
that the poroelastic path to liquefaction is applicable only for
the top few centimeters of the grains‐fluid column, or when
PP is initially very close to lithostatic values. Therefore, in
section 4 we turn back to study the classical poroplastic
volume collapse mechanism using a simple prescribed plastic
matrix deformation model.

4. Infinite Stiffness Approximation

[26] The formulation presented so far is applicable to a
general fully coupled system. But in order to actually solve
the fully coupled grain‐fluid deformation, another equation
for the evolution of solid grain momentum should be pre-

scribed. In this equation, PP gradients exert forces on the
granular matrix [e.g., McNamara et al., 2000], sometimes
referred to as seepage forces [Mourgues and Cobbold, 2003;
Rozhko et al., 2007]. However, here we first solve a simpler
scenario, the infinitely stiff system, which means that the
matrix deformation is externally prescribed and the PP only
responds to this deformation. The reason we do not imme-
diately solve also the other direction (that of the deformation
of the solid matrix in response to PP gradients), is twofold:
First, because currently there is no first principles based
theory that predicts the general (elastic and plastic) granular
matrix deformation induced by a PP field that varies spa-
tially and temporally. Moreover, currently there is not even
a first principles based theory that predicts the deformational
response of a dry granular matrix to general loading
[Forterre and Pouliquen, 2008]. To overcome this limita-
tion, previous works that solve for the fully coupled system
with a continuum approach use phenomenological relations
to describe the porosity evolution in response to external
loading and PP variations [e.g., Snieder and van der Beukel,
2004; Samuelson et al., 2009] and in rocks [Hamiel et al.,
2005]. Consequently, they are restricted to a specific type
of deformation, material properties, and boundary condi-
tions. A second possible method to obtain a general solution
for the effect of PP variation on the matrix deformation, and
thus a fully coupled solution for the general deformation of
grains‐fluid system, is via a granular dynamics algorithm
[e.g., McNamara et al., 2000; El Shamy and Zeghal, 2007;
Okada and Ochiai, 2007]. The second reason to use the
infinitely stiff approximation is that it may be solved ana-
lytically, and although it is a simple end‐member, its solution
already provides a wealth of behaviors that should be con-
sidered as the basis for understanding the fully coupled
system.
[27] The infinite stiffness approximation assumes that local

pore volume collapse and expansion arc externally prescribed
and are characterized byr · us < 0 in equation (10) or _F < 0
in equation (12). These will lead to pore fluid pressurization
and depressurization and to the generation of PP gradients. In
a fully coupled formulation the pressure gradients will
oppose the pore collapse deformation by exerting a force that
will act to push the pore walls aside in the case of compaction
and push the pore walls inward in the case of expansion.
Thus, the PP gradients somewhat relax the source of pres-
surization. For that reason the maximum PP within a fully
coupled system is limited by the order of magnitude of the
confining stress that drives pore volume change. In that
sense the magnitude of the PP achieved under the infinite
stiffness approximation serves as an upper boundwith respect
to a fully coupled system.

4.1. Application to Shearing of Fluid‐Filled Uniform
Granular System

[28] Here we explore the physical behavior of equation (10)
under poroplastic conditions. This exploration is a first step
in mapping the conditions that will cause liquefaction by
irreversible pore volume collapse during shear of a granular
system. For that, a simple system of hexagonally packed
uniform grains immersed in fluid is studied (Figure 2).
Packed uniform grains were previously considered theoreti-
cally [e.g., Rowe, 1962; Iverson, 1993], experimentally [e.g.,
Iverson and Lahusen, 1989; Frye and Marone, 2002], and

Figure 1. Half‐space solution of system of equations (13)
and (14), describing the spatial evolution of PP in a por-
oelastic material under periodic stress loading and drained
top. Maximum magnitude of PP, ∣P∣, is plotted as a function
of normalized depth. ∣P∣ is bounded by 1.07gs0, where g ≤
1 is the loading efficiency and s0 is the amplitude of the
pressure wave forcing. The relation between ∣P∣ and s0
indicates that a poroelastic mechanism for liquefaction (see
text) is limited to the very top of the soil column. Adopted
from Wang [2000, Figure 6.11], with permission from
Princeton University Press.
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numerically [Makedonska et al., 2010]. In the system we
consider here, the top boundary is sheared at a constant shear
velocity, Vsh, in the +x direction. The system is assumed to
respond by localized shear deformation along one row of
grains (Figure 3a, sliding row in grey). Along the x direction
the system is assumed periodic and hence the divergence of
the velocity in equation (10) is reduced to r · us = ∂usz/∂z,
where usz is the z component of the solid grains velocity,
and the problem becomes one dimensional. The porosity, F,
and the granular velocity perpendicular to the shear direction,
usz, of the sliding row of grains are functions of time, t (and
thus of displacement, x):

usz ¼ Vsh
cosð�=3Þ � Vsht 0=d½ �

A

F ¼ 1� �

4A

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ½cosð�=3Þ � Vsht 0=d�2

q
:

ð15Þ

where t ′ = (t + x′/Vsh) mod (d/Vsh), and 0 ≤ x′ ≤ d depends on
the initial conditions as explained below. The simulated
domain of thickness 2z is assumed to be buried at depth
h (where 2z ≤ h), so that excess PP of P = sd is interpreted as

resulting in zero effective stress and the onset of liquefaction.
The shearing row is located at distance z from the boundaries
of the system.
[29] In the simulations, we aim to study the influence of

the drainage boundary conditions on the evolution of PP.
For that, there is a need to define an additional Deborah
number, Dez = tz/t0, termed the system Deborah number.
Dez expresses the ratio between tz = z2/D, the timescale of
PP diffusion over the system half thickness, and t0, the
timescale of deformation. When Dez � 1, PP can easily
diffuse from the shearing row to the boundaries in the
timescale of deformation, and as a result the PP along the
shearing row feels the drainage conditions on the bound-
aries. When Dez � 1, the PP diffusion front originating
along the shearing row does not reach the boundaries in the
timescale of deformation. Therefore, the PP along the
shearing row is indifferent to the drainage conditions along
the boundaries.
[30] Three scenarios are tested. In the first two cases z is

relatively small and therefore Dez � 1: In a drained system,
a constant PP of P = 0 is assumed at the top of the system, as
if an open fracture drains the buried domain at its top. In an
undrained system, zero fluid flux across the top boundary is
assumed, simulating an impermeable layer that lies on top of
the domain. In these two cases the bottom boundary is
assumed undrained. In the third case, z is relatively large
resulting in Dez � 1. In this case the prescribed boundary
conditions have no effect of the evolution of PP within the
shearing row. The third case is termed boundary‐independent.
Table 1 summarizes the parameters used in the simulations.
[31] Two types of initial conditions are studied: In the

first, denoted here as dense packing, the sliding row is ini-
tially in a hexagonal configuration (Figure 3a, sliding row in
grey), and x′ = 0. In this case, sliding is accompanied by
initial dilation until a cubic configuration is reached along
the sliding row. Then, the system compacts until hexagonal
packing is reached again. A full period is the duration
between two consecutive hexagonal configurations. In the
second initial condition, termed here loose packing, the
sliding row is initially placed in a cubic configuration with
respect to the row below it (Figure 4a), and x′ = 0.5d. In this
case, the system first compacts to a full hexagonal config-
uration and then dilation along the sliding row brings it back
to a cubic configuration. Here a full period is the duration
between two consecutive cubic configurations.
[32] The set of equations (10) and (15) together with

Carman‐Kozeny equation (Table 1) for the relation between
porosity and permeability are solved numerically using a 1D
Crank‐Nicholson scheme.
4.1.1. Dense Initial Packing
[33] First, the case of dense initial grain packing is stud-

ied; that is, all rows are initially hexagonally packed.
4.1.1.1. Drained
[34] Simulation results show that when the system is

drained, the excess PP, initially taken as zero, becomes nega-
tive when the system starts to dilate as it shears (Figure 3b,
red curve). As deformation continues, fluid influx from the
top boundary, driven by the pressure gradient that forms
between the top of the domain and the location of defor-
mation, decreases the magnitude of this negative value. When
a cubic configuration is reached; that is, the system has slid
to its maximal porosity, PP is zero again. During compac-

Figure 2. Model geometry for section 4.1. A hexagonal
packing of fluid‐filled granular material is being subjected
to a constant shear velocity, Vsh. Shear displacement is
accommodated along a single row marked by the grey
grains. The boundaries along the x direction are periodic,
and therefore, ∂usx/∂x = 0; d is a grain diameter, z is the
distance to the boundaries, and 2z is system thickness.
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tion, PP rises until it gets to its maximal value when the
system is back in hexagonal packing.
4.1.1.2. Undrained
[35] For an undrained system, the excess PP becomes

increasingly negative during dilation and returns to zero when
the system compacts again (Figure 3c). This occurs because
during dilation the pore volume expands andr · us > 0. With
no fluid supply from the boundaries, the average PP must
decrease. During compaction r · us < 0, and PP increases
back to the initial zero value. Since PP is negative throughout
this simulation, overpressure is not generated. In fact the
opposite is true as fluid becomes underpressured.

4.1.1.3. Boundary Independent
[36] The third scenario, of a large system with Dez � 1,

shows PP evolution that is a combination of the drained and
the undrained regimes (Figure 3d). Initially, the PP evolves
similarly to an undrained system. However, the effect of
fluid flow oriented toward the shearing row compensates for
the negative value, so that minimum PP is attained before
cubic packing, and PP increases to positive value at the end
of the period similar to a drained system.
4.1.2. Loose Initial Packing
[37] Next, initially loose (cubic) packing systems are

sheared. During the first half of the period, for all boundary

Figure 3. Simulation results of shearing of initially densely packed fluid‐filled granular material at a con-
stant shear velocity, Vsh, with parameters from Table 1. Shear is accommodated in a localized manner along
a single sliding row, depicted by grey filled discs. The system first dilates to a cubic packing and then
compacts back to a hexagonal packing. Dilation and compaction induce time and space dependent
porosity, permeability and granular velocity. (a) Evolution of porosity (blue) and usz/Vsh (green) along the
sliding row as a function of the horizontal displacement, x, scaled by grain diameter, d. (b) PP evolution
along the sliding row, when the top boundary is drained. Maximum PP of 0.21 MPa is attained at the end of
the period and corresponds to zero effective stress at depth of around 14 m. Red curve is the simulation
results and turquoise dashed curve is an analytical prediction following equation (18). (c) PP evolution
along the sliding row when the top boundary is undrained, showing that PP becomes increasingly negative
when the system dilates and then returns to zero upon compaction. (d) PP evolution along the sliding row
when Dez � 1 (boundary‐independent). A combination of the two previous regimes is observed with
maximum positive PP of 3.3 MPa at the end of the second period.
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conditions, the system compacts and PP increases. Maxi-
mum values are attained in the middle of the period when
the systems are in hexagonal configuration (Figure 4). We
next review the systems behavior during the second half of
the period, when they dilate back to cubic packing.
4.1.2.1. Drained
[38] When a drained system starts dilating in the second half

of the period, PP first drops to a negative value and then rises
back to zero due to fluid influx from the boundary (Figure 4b).
4.1.2.2. Undrained
[39] For the undrained system, in the second half of the

period, when dilation starts, PP returns to zero from its
maximal value (Figure 4c, black curve). Here, excess PP is
positive throughout the simulation.
4.1.2.3. Boundary Independent
[40] Simulations of a large systemwith Dez � 1 shows that

in the second half of the period, upon dilation, PP decreases
to a negative value, but the period endswith an increasing trend
(Figure 4d). The overall evolution of PP is a combination of the
drained and the undrained regimes, with minimum PP occur-
ring not immediately upon initiation of dilation, like in a
drained system and not at the end of the period like in an
undrained system, but somewhere in between.
4.1.3. Results
[41] We have performed six simulations with two different

initial conditions (loose and compacted), two system sizes,
and two boundary conditions (drained and undrained). Sev-
eral insights arise. When an undrained layer with Dez � 1
is sheared, then only negative PP is generated when the
packing of grains is initially dense. But when the packing is
initially loose pore fluid is pressurized and reaches 0.16 GPa,
a value corresponding to sd at depth of 10 km, or alterna-
tively, a value that reduces the effective stress along gouge
material buried at depth of 15 km by more than 70%. It
should be remembered that under the infinite stiffness
approximation used here, the value of PP is not limited, and it
is simply a function of the matrix deformation. In this
framework, soil liquefaction at shallower depth is expected
to take place early in the period. For example, reaching P =
sd at a depth of 10 m requires the generation of excess PP of
0.15 MPa, which occurs after 1% of a period (t = 0.01d/Vsh).
When the infinite stiffness assumption is relaxed, the value
of maximum PP is expected to be bounded by the order of
magnitude of the confining stress, because PP gradients
between the system interior and exterior will act to oppose

further pore volume compaction and limit pressurization to
the exact value that dynamically balances the forces acting to
compact pore volume.
[42] In contrast, when some drainage exists pore fluid

pressurization (to positive values) occurs even when the
granular matrix is initially dense (or over‐consolidated, as is
called in soil mechanics), since shear involves first dilation
and then compaction. For the completely drained system,
with Dez � 1, excess PP becomes positive simultaneously
with the initiation of compaction, and reaches a maximum
of 0.21 MPa (for Table 1 parameters) corresponding to the
effective normal stress at depth of 14 m. When Dez � 1, the
PP becomes positive after some delay from the onset of
compaction, and reaches a maximum of 3.3 MPa (for dense
packing), corresponding to the effective stress at depth of
220 m. In these cases pore fluid pressurization occurs even
for initially dense systems as long as there is a compaction
phase that follows the dilation.

5. Physics of the PP Equation

[43] In light of our simulation results, we turn to analyze
the behavior of the PP equation (10) under different drain-
age regimes.

5.1. Drained Boundary Conditions

[44] When the boundaries are well drained, fluid may flow
freely into or out of the system, and PP gradients should
evolve between the layer interior and the boundaries. (Here
the boundary is maintained at a constant PP). Moreover,
since Ded � 1, the non‐dimensional equation (9) reveals
that the diffusion term is large, and the first time dependent
term may be neglected relative to it. The PP equation (10)
may then be approximated as

r � kðx; tÞrPðx; tÞ½ � ¼ �r � usðx; tÞ: ð16Þ
This form of PP response under drained conditions agrees
with a Biot‐based formulation by Iverson [1993]. In the 1D
case, equation (16) may be expressed as

@Pðz; tÞ
@z

¼ �

kðz; tÞuszðz; tÞ þ CðtÞ; ð17Þ

where C(t) is an integration factor. Note that equations (16)
and (17) are independent of the fluid compressibility, b.

Table 1. Model Parameters for Section 4.1

Symbol Value

b Water compressibility 4.5 × 10−10 Pa−1

m Water viscosity 10−3 Pa s
d Grain diameter 5 × 10−4 m
2z Layer thickness for drained and undrained 0.01 m

Layer thickness for boundary‐independent 4 m
Vsh Shearing velocity 0.1 m/s
Fmin Porosity of hexagonal packing 0.093
k Permeability (Carman‐Kozeny) d2F3/180(1 − F)2 m2

D Diffusion coefficient Dc = kmin/bmFmin = 32.45 m2/s
lk PP diffusion length scale

ffiffiffiffiffiffiffiffiffi
Dct0

p
= 0.4 ma

Ded Grain Deborah number td/t0 = 1.54 × 10−6a

Dez System Deborah number for drained and undrained tz/t0 = 1.54 × 10−4a

System Deborah number for boundary‐independent tz/t0 = 24.7a

aCalculated with Dc.
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This corresponds to a regime where the fluid may be con-
sidered as incompressible.
[45] The evolution of PP in our drained simulations (with

Dez � 1) should follow equation (17). The pressure gra-
dient may be estimated as ∂P/∂z = −P/z, and the PP along
the sliding row is then approximated as

P ¼ ���

k
usz: ð18Þ

The PP evolution according to equation (18) is compared to
the numerical solution (Figure 3b, dashed turquoise curve).
The parameters are taken from Table 1, and the permeability

k = kmin is taken as the permeability resulting from the
porosity of the hexagonal packing that is constantly preserved
in the simulations, on top of the sliding row. Excluding the
very onset of the motion that is governed by the time depen-
dent term of equation (10), the analytical approximation,
equation (18), and the numerical solution match.
[46] Equation (18) reveals that in the drained case the

value of the PP along the shearing row depends linearly on
the fluid viscosity, m, the distance to drainage, z, and on the
inverse of the permeability k−1. For Carman‐Kozeny law
(Table 1), k / d2, and thus P / d−2. All these dependencies,
together with fluid compressibility independency, were
verified in a parametric sensitivity study.

Figure 4. Simulation results of shearing of loosely packed fluid‐filled granular material at a constant
shear velocity, Vsh, with Table 1 parameters. Shear is accommodated in a localized manner along a
single sliding row, depicted by grey filled discs. The system first compacts from a cubic configuration to a
hexagonal configuration and then dilates back to cubic order. (a) Evolution of porosity (blue) and usz
(green) along the sliding row as a function of the horizontal displacement, x, scaled by grain diameter, d.
(b) PP along the sliding row that accommodates compaction and dilation with drained top evolves
similarly to shearing of dense packing (Figure 3b), but with a shift of half period. (c) PP evolution along
the sliding row with undrained top showing pore fluid pressurization with maximum of 0.16 GPa,
corresponding to zero effective stress at a depth greater than 10 km, in the middle of the period. The inset
shows simulation results (black curve) for PP evolution along the sliding row when the permeability is
zero throughout the system to oppress PP diffusion, and analytical prediction (turquoise dashed curve)
following equation (20) that assumes no diffusion. (d) PP evolution along the sliding row when Dez � 1,
showing a combination of the two previous regimes.
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[47] Using equation (15), another dependency may be
established: The maximum value for the PP, Pmax, is attained
at the end of the period, when t ′ = d/Vsh. Assigning this
value of t ′ in equation (15), it is found that usz (t ′ = d/Vsh) =
−Vsh/

ffiffiffi
3

p
. Using this usz in equation (18) predicts a linear

relation between Pmax and shear velocity, Vsh, as depicted in
Figure 5.

5.2. Undrained Boundary Conditions

[48] When the boundaries are undrained, fluid cannot flow
into or out of the granular layer, and fluid mass is conserved.
Under such conditions, no pressure gradients arise across
the boundaries. If the quantity of interest is the average
value of PP within the layer, then the second diffusion term
in equation (10) becomes zero (due to both averaging and
zero pressure gradients on the boundaries). The average PP
is then approximated as

PðtÞ ¼ � 1

�

Z t

0

r � usðt 0Þ
Fðt 0Þ dt 0; ð19Þ

where P depends on the fluid compressibility, b.
[49] The PP evolution in our undrained simulations is

expected to follow equation (19). Evaluating r · u as
usz/d and assigning the expressions for usz and F from
equation (15):

P ¼ � 1

�

�

4
ln

�� 4A

�� 4

� �
þ A� 1

� �

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ½cosð�=3Þ � Vsht0=d�2

q
:

ð20Þ

Comparison between equation (20) and the numerical solu-
tion assuming the PP does not diffuse away from the shearing
row shows good fit (Figure 4c, inset). Equation (20) indicates

that in the absence of PP diffusion, P is independent of the
shearing velocity, Vsh, but is a function of the inverse fluid
compressibility, b−1. Small b will increase the PP.

5.3. Boundary Independent

[50] When the system Deborah number is large, Dez � 1,
then the PP within the layer is indifferent to the type of
imposed drainage boundary conditions. Since the bound-
aries are remote from the system interior, relatively mild
pressure gradients are expected to arise, and none of the
terms in equation (10) may be neglected. Here, the evolution
of PP results from the competition between pressurization
and depressurization induced by the time dependent term of
equation (10) and fluid flow originating from the diffusion
term of equation (10).
[51] Our large‐system simulations should follow this case.

It is possible to derive an analytic solution for the full
equation (10), under the restrictions of equation (15), and
assuming that the diffusion coefficient is constant with time,
i.e., D = Dc = kmin/bmFmin. Appendix B shows this deri-
vation, and Figure 6 presents the comparison between the
analytic solution and a boundary‐independent simulation
conducted with an imposed constant diffusion coefficient Dc

along its shearing row. The analytic prediction reveals that
the characteristic pressure scale for the evolving PP may be
expressed as d/b

ffiffiffiffiffiffiffiffiffiffiffiffi
�Dct0

p
. For the parameters of Table 1 this

scale is ∼1.5 MPa, which is the order of magnitude of PP
that is found in Figure 6.

6. Discussion

[52] This section discusses the physics of PP evolution in
response to granular matrix deformation as concluded from
our theoretical analysis and our simulations. We also discuss
the implications of this physics to numerical, experimental
and natural systems. First, we consider the mechanisms that
control PP evolution based on the formulation presented in
section 2 and the analysis presented in section 5. The basic
equations for the PP evolution, equations (10) and (12),
predict two different physical mechanisms that compete in
controlling the evolution of PP, but their relative contribu-
tion is determined by the parameters and boundary condi-
tions of the system. The two mechanisms are PI, porosity‐
change‐induced pressurization and depressurization, and FI,
flow‐induced pressurization and depressurization.

6.1. Pressurization Mechanisms

6.1.1. Mechanism PI
[53] Mechanism PI operates under undrained conditions.

Here, pore fluid that cannot escape and is trapped within a
shrinking pore volume is pressurized (Figure 7a), while pore
fluid that is trapped in an expanding pore volume is de-
pressurized. The evolution of the average PP will follow
equation (19), and the magnitude of pressurization and
depressurization is controlled by the fluid compressibility,
and by the overall pore volume change, DF, that is ex-
pressed by

R
0
tr · us (x, t′)dt′ in equation (19). In that

sense this mechanism holds memory of previous states of
porosity.
6.1.2. Mechanism FI
[54] Mechanism FI operates under well‐drained condi-

tions, and is less intuitive. Because of mass conservation,

Figure 5. Simulation results with drained conditions
(diamonds) for the relation between shear velocity Vsh and
the maximum value of PP attained at the end of a shearing
period. Analytical curve is based on equation (18) assuming
usz = −Vsh/

ffiffiffi
3

p
(see text), Table 1 parameters and perme-

ability, kmin, induced by hexagonal packing porosity (solid
line). The slope of the linear relation between P and Vsh is a
function of fluid viscosity, distance to drainage and inverse
of permeability.
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convergence (or divergence) of grains causes the pore fluid
that resides between the grains, to flow out of (or into) this
region (Figure 7b). Because of fluid momentum conservation
(here Darcy law), pressure gradients must arise between the

location of converging (or diverging) grains and the sur-
rounding, to generate these flows. Here, PP evolves from the
arising pressure gradients, and is governed by equations (16)
and (17). The magnitude of the generated pressure gradient
depends on the rate of grains convergence or divergence, as
expressed by r - us in equation (16). This mechanism holds
no memory of previous states of porosity but pressurization
depends on the instantaneous rate of pore deformation.
Although it is not commonly considered as a mechanism for
liquefaction, flow‐induced PP evolution may lead to signif-
icant pressurization with PP that becomes high enough to
fully support the normal stress [Iverson and Lahusen, 1989].
Moreover, because of its ‘lack of memory’, this mechanism
may lead to generation of high PP even when an initially
dense granular matrix is sheared. Indeed, upon shearing an
over‐compacted layer, it will first dilate (Figure 7b, left to
center), and then oscillate around its critical porosity
[Aharonov and Sparks, 2002;Gabet and Mudd, 2006]. In the
oscillatory stage, any compaction phase, withr · us < 0, will
lead to pressurization despite the fact that the instantaneous

Figure 6. PP along the shearing row for large system with
Dez � 1, when the diffusion coefficient is assumed constant
Dc = kmin/bmFmin. Purple curve is simulation results, and the
dashed turquoise curve is the analytic prediction following
equation (B13).

Figure 7. Two mechanisms control the evolution of PP in equation (10). (a) When fluid is trapped
within a deforming pore volume (here, due to the undrained boundaries marked by double solid lines),
any change of pore volume will cause the PP to evolve following mechanism PI. Compaction will lead to
pressurization, and dilation will lead to depressurization. The magnitude of PP change depends on the
overall change of porosity and on the inverse of fluid compressibility. (b) When fluid may flow freely in
response to matrix deformation, (here, due to the well drained boundaries marked by dashed lines), PP
evolution results from fluid flow following mechanism FI. Pressurization is a function of the instanta-
neous rate of matrix deformation. Upon dilation (left to center), fluid will flow into the system. In order to
facilitate this flow, pressure gradient must arise with low pressure within the system interior. Upon
compaction (center to right), fluid escapes from the system, and opposite PP gradient arises with higher
PP in the system interior.
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porosity may be significantly larger than the initial porosity
(Figure 7b, center to right).
6.1.3. Relative Importance of Pressurization
Mechanisms
[55] The relative importance of the two pressurization

mechanisms for a specific system depends on both its
properties and on its boundary conditions. These may have
different characteristics, such as a strong contrast between
internal and boundary permeabilities. The internal properties
determine Dez, the system Deborah number, that expresses
the ability of PP to diffuse across the whole layer in the
timescale of deformation. When Dez � 1 the drainage
boundary conditions are not felt by the fluid within the
system, and when Dez � 1, drainage boundary conditions
are well‐felt by the pore fluid. For the boundary conditions,
we consider here only the two end‐members of completely
drained boundaries that are connected to a constant pressure
reservoir, and completely undrained boundaries that prevent
fluid inflow and outflow. The exact combination of Dez, and
boundary conditions determines which of the two PP evo-
lution mechanisms will dominate.
[56] We present here a simple two‐stage scheme that

determines which mechanism for PP evolution will dominant,
based on Dez, and the boundary conditions: (1) Evaluate Dez.
If Dez � 1, then both mechanisms of PP evolution, PI and
FI, operate together (like the boundary‐independent simu-
lations that are tested in section 4.1), and there is no need to
deal with the boundary conditions. If Dez � 1, there is a
need to move to the next stage. (2) Evaluate the drainage
boundary conditions. If they are drained then the dominant

mechanism is FI, flow‐induced PP evolution. If they are
undrained then mechanism PI will dominate. Figure 8 sum-
marizes this scheme by presenting the dominant mechanism
of PP evolution along a Dez axis.
[57] To illustrate the physics of these combinations, look

at the last situation of Dez � 1 (zone A in Figure 8), and
undrained boundary conditions. In such a case, when the
system undergoes compaction or dilation, pore fluid cannot
flow away or into the system. However, PP can equilibrate
within the system because PP can reach as far as the
boundaries in the timescale of deformation. As a result, the
evolution of the average PP will follow mechanism PI. Next
in the discussion we apply this scheme to numerical,
experimental, and natural systems.

6.2. Applications to Grains and Pore Fluid Modeling
and Experiments

[58] When modeling a finite system of grains and fluid, the
system parameters and boundary conditions are determined
in advance. If the layer is thin, and PP diffusion can reach the
boundaries in the timescale of deformation (Dez � 1), but it
is undrained, so that pore fluid cannot flow into or out of the
layer, then mechanism PI, of pressurization by change of
pore volume, will dominate. Therefore, fluid compressibility
must be accounted for, but diffusive effects may be neglected,
and the relevant equation to solve is (19). Pore fluid pres-
surization is expected only if the system is compacting with
respect to its initial porosity, and the magnitude of PP is
proportional to the inverse of fluid compressibility and to the
amount of compaction.
[59] When modeling a thin drained layer, pore fluid can

flow between the system interior and exterior. In order to
facilitate this flow, pressure gradients arise between the
system interior and the boundaries (assumed to be main-
tained at some constant pressure). The dominant PP evo-
lution mechanism will be FI, flow‐induced pressurization.
Accounting for fluid compressibility will only introduce a
short‐lived transient effect, and if this effect is not of
interest it is sufficient to solve Poisson equation (16). Pore
fluid pressurization is expected when the system compacts
with respect to any former state and not necessarily with
respect to the initial state. Generated PP is linearly pro-
portional to the compaction rate, fluid viscosity, distance to
drainage, and the inverse of permeability.
[60] When the simulated layer is thick, and PP diffusion

cannot reach the boundaries in the timescale of deformation,
Dez � 1 (boundary‐independent), the drainage conditions
along the boundaries do not affect the system dynamics
and both pressurization mechanisms, PI and FI, operate
simultaneously. In this case, both the diffusive term and
the time dependent term with fluid compressibility should
be accounted for, and the full fluid equation (10) should be
solved (Figure 8).
[61] In light of these insights, we may now turn to analyze

the two numerical models of El Shamy and Zeghal [2007]
and Okada and Ochiai [2007] that are presented in
section 1.1. El Shamy and Zeghal [2007] report the occur-
rence of liquefaction under drained conditions and with
incompressible fluid. Such conditions are predicted to cause
pressurization by mechanism FI due to pore fluid flow across
the boundaries. Okada and Ochiai [2007] report the occur-

Figure 8. PP evolution mechanisms as a function of the sys-
tem Deborah number, Dez = tz/t0, where tz is the timescale of
PP diffusion across the whole layer and t0 is the timescale of
deformation. When Dez � 1 (zone B), both pressurization
mechanisms operate simultaneously, like the case of
boundary‐independent simulations from section 4.1. When
Dez � 1 (zone A), the boundary conditions determine the PP
evolution mechanism: Under undrained conditions, mecha-
nism PI (porosity‐change‐induced) will dominate, and when
the boundaries are drained, mechanism FI (flow‐induced)
will control the evolution of PP. The dashed grey lines show
how the PP evolution mechanism changes during the
acceleration of deformation in the nucleation stage of
earthquakes. Upon acceleration Dez increases. Note that the
starting points of the dashed lines are not to scale. See text for
the evolution of sand and silt.
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rence of liquefaction when compacting loose, undrained
system, with compressible fluid. Such conditions lead to
mechanism PI of PP evolution due to pore volume com-
paction. Thus, these two models simulate the two end‐
member mechanisms that are included in equation (10).
[62] Interpretation of experimental results should follow a

similar scheme. Samuelson et al. [2009] performed a series
of experiments, shearing fluid‐filled granular material using
a triaxial pressure vessel in a double direct shear configura-
tion. We briefly revisit here their system, in order to dem-
onstrate the applicability of our analysis to experiments. The
parameters in the experimental system are z = 2 × 10−3 m,
d = 1.27 × 10−4 m, u0 = 10−6 − 10−4 m/s, F = 0.2, and
k = 4.2 × 10−14 m2. PP was kept constant on the boundaries.
This combination of parameters leads to a drained system,
with Dez � 1 (zone A in Figure 8). As a result, mechanism
FI is expected to control PP evolution. Since Samuelson
et al.’s [2009] experiments start with a well‐compacted
grain layer that dilates with shear, a transient negative PP
leading to hardening is expected, similar to the effect
observed in the beginning of our drained simulation
(Figure 3b, red curve). However, with the parameters used
in their experiments, this transient effect should last < tz =
8.6 × 10−6 s, while the sampling rate was 10−4 s. There-
fore, it is expected that no dilatancy hardening will be
observed. Indeed, Samuelson et al. [2009] report that “little
if any dilatant hardening” occurs in their experiments.

6.3. Application to Natural Systems

[63] The formulation for the PP response to general gran-
ular matrix deformation, developed in section 2, is depth
independent, and does not assume in advance the exact
system properties and its boundary conditions. Therefore, it
is next applied to analyze the mechanisms that control PP
evolution in different field settings with granular layers that
reside at various depths and are characterized by different
boundary conditions: landslides’ shear zones, fault gouge
layers, and soils.
6.3.1. Liquefaction of Shear Zones
[64] As a first natural system we consider shear zones that

accommodate large shear strain, similar to the uniform grain
system that is studied in section 4.1. Critical state theory pre-
dicts, and experiments have shown, that during shear, loose
soils contract while dense soils dilate [Casagrande, 1936]. In
the past, it was suggested that liquefaction only occurs when
loose granular material compacts, which lead to the conclusion
that while loosely packed shear zones may liquefy due to grain
collapse leading to PP rise, dense shear zones inhibit lique-
faction as they do not allow pore fluid to be pressurized
[Iverson et al., 2000]. Indeed, herewe find that if the shear zone
of a landslide (with parameters similar to those studied in
section 4.1) is confined by impermeable barriers, then the PP
evolution within it will followmechanism PI. In that case, only
initially loose shear zones may become pressurized enough to
facilitate mobilization of a landslide into a debris flow, as
discussed by Iverson et al. [2000].
[65] However, in many cases, natural shear zones are

initially highly compacted. It was observed that during shear
motion at the base of landslides and also during earthquakes,
the strain is large enough for the shear zone to dilate, and
reach its critical porosity [Iverson, 2005]. That is, an over‐
compacted shear zone will first dilate, and then after the first

several centimeters to several meters of displacement
[Iverson, 2005; Garagash and Rudnicki, 2003] its porosity
will oscillate around some steady state value. Such oscilla-
tions include also compacting phases, not with respect to the
initial over‐compacted configuration, but with respect to the
critical porosity. If the shear zone is well drained, then
mechanism FI, of flow‐induced pressurization, may operate,
causing significant PP increase during compaction phrases,
and potentially leading to liquefaction and acceleration of
shear.
[66] Gabet and Mudd [2006] report on debris flows

mobilization from initially dense soils, and claim that this
observation is not well understood since “it is generally
accepted that liquefaction only occurs in soils that have
porosity greater than the critical‐state porosity” [Gabet and
Mudd, 2006, p. 213], i.e., by mechanism PI. Following their
observation, Gabet and Mudd [2006] reviewed the possi-
bility that initially dense landslides first slide a limited dis-
tance, being arrested by PP reduction due to dilation, but
then PP is rebuilt and triggers a second sliding phase, this
time from an initially loose configuration. The second
phase leads to liquefaction and to debris flow mobiliza-
tion. Gabet and Mudd [2006] further find a correlation
between debris flow mobilization and fines/sand ratio.
They suggest that soils with a small ratio are mobilized
due to their high hydraulic conductivities allowing for
rapid fluid inflow and PP rise that leads to the second
sliding phase. Following the analysis presented here, it is
suggested that initially dense well‐drained soils suck in
pore fluid during dilation, thus allowing PP rise by mecha-
nism FI during any short compactive stage that follows the
initial dilative phase. Mechanism FI may then be responsible
for mobilization of debris flow in initially dense shear zones,
formulating a continuous version of the mechanics proposed
by Gabet and Mudd [2006].
6.3.2. Soil Liquefaction
[67] Next we address the mechanism of PP evolution

during soil liquefaction. The classical view of soil lique-
faction attributes the rise of PP to cyclic strain of the soil
skeleton [Sawicki and Mierczynski, 2006]. The formulation
developed in section 2 is general and does not assume
specific forcing, but the analysis of shearing uniform grain
system presented in section 4.1 is built upon continuous
shearing. We claim here that if the cyclic strain is large
enough to allow both dilation and compaction of a single
grain layer (shear deformation ≥ grain radius), then the
behavior observed for continuous shearing is analogous to
cyclic shearing. Still, positive PP may evolve only if the soil
experiences some compaction during its deformation, but
the feasibility and magnitude of compaction depend strongly
on the initial porosity and on the duration of the applied force,
that are beyond the scope of this paper. Here we discuss the
mechanisms by which PP may evolve given an optimal
deformation of the soil skeleton.
[68] We start by analyzing the conditions and mechanisms

for soil liquefaction induced by the passage of seismic shear
waves. We account for pore water and use water com-
pressibility and viscosity from Table 1. The porosity is taken
to be F = 0.46, which corresponds to medium void ratio for
3D packing of spheres [Okada and Ochiai, 2007]. We
analyze the situations of medium sand and of silt with grain
diameter of d = 5 × 10−4 and 5 × 10−5 m, respectively, and
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corresponding permeabilities of k = 10−10 and 10−14 m2.
These permeabilities are smaller than predicted by Carman‐
Kozeny (in particular for the silt) as it is assumed that grain
size is not completely uniform. The velocity of deformation
is taken to be the peak ground velocity (PGV) induced by
the seismic waves. We use u0 = 0.1 m/s, which is estimated
to be the minimal PGV to induce liquefaction [Kostadinov
and Towhata, 2002]. We further assume that the source of
liquefaction lies at a depth of 5 m, and this is also the dis-
tance to the drained boundary, z = 5. For these parameters,
the system Deborah number is Dez = 10.34 for the sand, and
Dez = 1.034 × 104 for the silt, so that for both soil types
Dez > 1, and PP cannot reach the boundaries in the timescale
of deformation. Following the scheme presented above, both
mechanisms of PP evolution, PI and FI, should be considered
(zone B in Figure 8).
[69] Larger permeability and smaller PGV will lead to

smaller Dez, and may potentially lead to PP evolution by
mechanism FI. However, such conditions are also expected to
decrease the magnitude of the evolving PP, because in
accordance with equation (18), the PP depends linearly on the
PGV, and inversely on the permeability. For example, if the
permeability of the medium sand is as large as k = 10−9 m2,
and the PGV is u0 = 0.01 m/s, then Dez = 0.1034. In such a
case only mechanism FI of flow‐induced pressurization will
be of importance. However, the maximum PP, according to
equation (18) is 0.05 MPa, while the excess PP needed for
liquefaction at depth of 5 m is 0.075 MPa.
[70] This simple analysis shows that the process of soil

liquefaction should be evaluated via an outline similar to the
boundary‐independent system and that both mechanisms of
PP evolution, FI and PI, are predicted to operate together.
Because mechanism FI contributes to the evolution of PP,
we predict that positive PP may evolve even if the soil is not
strictly compactive, as long as some transient compaction
occurs, similar to the case studied in Figure 4d. A possible
documented example of such a scenario comes from the
liquefaction event in Kobe, Japan, that followed the 1995
Great Hanshin Earthquake (M = 6.9). Soga [1998] reviewed
the damage in the port facilities that were built on reclaimed
island. It was found that soils that were vibro‐compacted, and
therefore are not expected to be compactive, were still
liquefied.
6.3.3. Sliding Nucleation along Faults
[71] Finally in the discussion we address the evolution of

PP during the stage of sliding nucleation along fault zones.
Many fault zone systems are characterized by strong per-
meability and configuration contrasts between the gouge
material and the surrounding blocks, so that the gouge layer
may be considered as the granular system while the sur-
rounding blocks impose the drainage boundary conditions.
We consider here a well‐compacted gouge layer of thick-
ness 2z = 0.1. During the nucleation stage the deformation
velocity accelerates, and as a result the timescale of defor-
mation, t0, decreases. Since the pressurization mechanism
depends on t0, it may change during the nucleation stage.
The dashed grey lines in Figure 8 present this change.
[72] At the initial stage of nucleation, assuming u0 =

10−5 m/s, Dez � 1 for both the sand and the silt that were
considered previously. Therefore, they are located in zone
A of Figure 8, where the boundary conditions dictate the
pressurization mechanism that will operate. If the confining

blocks are impermeable, PP will evolve following mech-
anism PI according to changes of pore volume, and if the
layer is initially over‐compacted, negative excess PP will
develop in response to any dilation, resulting in hardening.
If the confining blocks are highly fractured and allow for
communication with a fluid reservoir, then the PP will evolve
followingmechanism FI; that is, fluid inflowwill compensate
for the newly generated pore volume, and hardening will
not occur [Samuelson et al., 2009]. Upon acceleration, Dez
increases, and when u0 = 0.1 m/s, the sand remains in zone A,
but the silt moves to zone B. Thus, the PP evolution within
the silt gouge will become dependent on both mechanisms,
FI and PI, regardless of the boundary conditions. Therefore,
for small grain size, if the boundaries were previously
drained and they remain so, and if dilation of the gouge
continues during acceleration, some hardening is expected
due to the fact that the systems moves from zone A to zone B
in Figure 8, and mechanism PI starts to affect the system.
This will introduce a force that acts to slow down the
earthquake. If the boundaries were previously undrained and
they become drained (e.g., by fracturing during sliding) then
the initial negative PP will relax, but only after some delay.

7. Conclusions

[73] This paper presents a formulation describing pore
fluid pressurization and flow in response to general granular
matrix deformation, and is thus applicable to both elastic
reversible deformation and to finite irreversible deformation.
The formulation is used to examine the conditions and pro-
cesses by which pore fluid pressure evolves to large enough
values that may lead to liquefaction of soils and shear zones.
[74] It is found that the relative degree of drainage

expressed by a Deborah number and by the boundary con-
ditions is of great importance for the evolution of pore pres-
sure (PP). There are two end‐member mechanisms for PP
evolution: FI, flow‐induced pressurization and depressur-
ization, and PI porosity‐change‐induced pressurization and
depressurization. The first mechanism is newly offered,
while the second mechanism was previously suggested to
control PP evolution, though it was not completely under-
stood. The system Deborah number, Dez = tz/t0, expresses
the ratio between the timescale of relaxation by PP diffusion
across the layer and the timescale of deformation. When
Dez � 1 then the type of boundary conditions determine
which of the pressurization mechanisms operate. If the
boundaries are undrained, PI dominates and pore fluid pres-
surization occurs only for initially loose granular matrices and
is highly dependent on fluid compressibility, with faster
pressurization for smaller compressibility. Under such con-
ditions pressurization is not correlated to the rate of defor-
mation but to the overall volumetric compaction. If the
boundaries are drained, FI dominates and pore fluid pres-
surization occurs due to arising pressure gradients in response
to pore fluid flow. In this pressurization mechanism PP may
rise also in initially dense granular matrices during any later
compaction stage that follows dilation. Here, PP depends on
the compaction velocity, fluid viscosity, system permeability
and distance to drainage, but is independent of fluid com-
pressibility. This regime may explain liquefaction phenomena
in initially dense and well drained soils and shear zones, con-
ditions that were previously thought to be liquefaction resistant
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despite field evidences showing otherwise [e.g., Soga, 1998;
Gabet and Mudd, 2006]. When the system is large, or when
deformation is rapid, Dez � 1, and both fluid compressibility
and the rate of deformation control the evolution of pore
fluid pressure.

Appendix A: Comparison With Other Models

[75] Here, our equations (10) and (12) are compared to
other models studying the response of PP to granular or
porous matrix deformation. To facilitate comparison, the
notation of this paper is adopted where possible.

A1. Elastic Formulations

[76] Wang [2000] presents two equivalent poroelastic
formulations for the temporal and spatial evolution of PP in
response to elastic forcing in a fluid‐filled porous material.
The first formulation describes the forcing as a temporal
evolution of stress and is presented in equation (13). The
second formulation describes the forcing in terms of tem-
poral evolution of strain:

@P

@t
¼ kM

�

@2P

@z2
� 	M

@
zz
@t

: ðA1Þ

Equation (A1) follows Wang [2000, equation (6.18)] with
notation simplification followingWang [2000, equations (3.37)
and (3.64)]. WhereM is Biot’s modulus and a is Biot‐Willis
coefficient. When grains are assumed incompressible, M =
1/bF and a = 1 [Wang, 2000, Table 3.2]. Therefore
equation (A1) may be rewritten as

@P

@t
¼ k

��F
@2P

@z2
� 1

�F
@
zz
@t

: ðA2Þ

This form is equivalent to our equation (10), since the
forcing term ∂
zz/∂t, representing the one dimensional strain
rate, may be rewritten as ∂usz/∂z. For example, for a periodic
strain of the form 
zz = 
0exp(iwt), the corresponding grains
velocity will be usz =

R
z(∂
zz/∂t)dz = i
0wzexp(iwt). It is a

surprising result that equation (A2) that was developed from
a purely elastic point of view, is in fact equivalent to our
equation (10), which did not assume elasticity. The only
difference is Wang’s [2000] assumption of uniform perme-
ability in the diffusion term (first term on the righthand side)
of equation (A2), which does not necessarily hold for the
general formulation of equation (10).
[77] Bachrach et al. [2001] present a study of the propa-

gation of pressure waves in a poroelastic material induced
by stress forcing using Biot’s equations. Next, the equiva-
lency between Bachrach et al.’s [2001] formulation and
equation (13) (which follows Wang’s [2000] equation (6.14))
is demonstrated under the assumption of negligible inertia,
an assumption that is discussed in the following. Combining
Bachrach et al.’s [2001] equations (7) and (11) and ne-
glecting inertial terms, it is found that

@P

@t
¼ k

�
2D 1� 	

2	D

H

� �
@2P

@z2
� 2	D

H

@�

@t
: ðA3Þ

As before, a = 1, is the Biot‐Willis coefficient for incom-
pressible grains. D = (2bF)−1 and H = Kn

(u) = Kn + (bF)−1,
where Kn

(u) and Kn are the undrained and drained uniaxial
bulk moduli, respectively. H and D are resolved following
their definition by Bachrach et al. [2001] and under the
assumption of incompressible solid grains. Assigning the
expressions for a, H and D into equation (A3) results in
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@t
¼ k

�

1

�Fþ K�1
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@2P
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� 1
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@�

@t
: ðA4Þ

Following Wang [2000, equation (3.52)], bF + Kn
−1 = S, and

following Wang [2000, equation (3.85) and Table 3.2],
(Kn

(u)bF)−1 = g. Thus, it is shown that equation (A4) (which
is an inertia free version of Biot’s equations, as expressed in
Bachrach et al.’s [2001] equations (7) and (11)) is identical
to Wang’s [2000] equation (6.14) and to our equation (13).
[78] Next, we wish to determine the limits for the validity

of our assumption of negligible inertia. For that, Bachrach
et al.’s [2001] equations (7) and (11) are reviewed:

�b
@2v
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@2w
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¼ @�
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�f
@2v

@t2
þ m

@2w

@t2
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@z
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k

@w

@t
;

ðA5Þ

where rb is the density of the fluid‐filled porous material,
m is a coupling coefficient, and v and w are the dis-
placement field of the solid matrix and fluid, respectively.
Introducing scale factors for each of the variables: v = w0v̂,
w = w0ŵ, s = P0�̂, P = P0P̂, z = Lẑ, and t = t0̂t, where
t0 = (2pf )−1, and f is the forcing frequency in s−1.
Assigning the scale factors in equation (A5), dropping the^
notation, and considering the magnitude of the densities rf,
rb and the coupling coefficient, m, to be of the same order:

w0�f Lð2� f Þ2
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Taking rf = 103 kg m−3, L = 1 m, P0 = 100 Pa, and
w0 = 10−7 m following the values used by Bachrach et al.
[2001], it is found that the acceleration terms, left‐hand
side of equation (A6), are important only for frequencies
of an order ≥100 Hz, and may be neglected for smaller
frequencies (a conclusion that also agrees with an anal-
ysis by Iverson [1993]). Thus, for smaller frequencies,
Bachrach et al.’s [2001] formulation is equivalent to
Wang’s [2000] equation (6.14) formulation, which by
itself was shown to be similar to our equation (10).

A2. Non‐Elastic Formulations

[79] Walder and Nur [1984] study processes of PP gen-
eration due to porosity reduction, accounting also for non‐
elastic deformation [Walder and Nur, 1984, equation (5)]:

@P

@t
¼ k

�Fð� þ �FÞr
2P � 1

Fð� þ �FÞ
@F
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: ðA7Þ
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In this formulation, bF = (1/F) (∂F/∂P) is the elastic pore
compressibility, and (∂F/∂t)irrev is the irreversible porosity
evolution. With some algebraic transformation equation (A7)
may be rewritten as

@P

@t
¼ k

�F�
r2P � 1

F�
@F
@t rev

þ @F
@t irrev

� �
; ðA8Þ

where the pore compressibility was expanded as bF = (1/F)
(∂F/∂t)rev (∂t/∂P), and (∂F/∂t)rev is the reversible component
of the porosity change. Equation (A8) resembles our
equation (12) under the assumption of space independent
permeability. The forcing term of equation (A8) that is
divided between reversible and irreversible porosity reduc-
tion is expressed as a single term in our equation (12).
Therefore the forcing terms are identical up to a factor of
(1 − F). This factor results from the different definitions of
Darcy’s velocity: Walder and Nur [1984] use uf = − k

�FrP
as if the matrix is stationary, while our formulation assumes
that Darcy’s velocity is given by equation (3).
[80] This appendix demonstrates that former formulation

of PP generation by porous or granular matrix deformation
may be reduced to our equations (10) or (12). That is, the
formulations of Wang [2000], Bachrach et al. [2001],
Walder and Nur [1984], and the formulations of Snieder
and van der Beukel [2004] and Samuelson et al. [2009]
that are not discussed here, all describe the temporal evo-
lution of PP as a combination of a diffusion term and a
forcing term.

Appendix B: Analytical Prediction
for a Boundary‐Independent System

[81] In this appendix we derive an analytical prediction for
the temporal and spatial evolution of PP, for the model of
fluid‐filled uniform granular material, packed in hexagonal
packing, under constant shear velocity, that is presented in
section 4.1. This solution applies to the case of a large
system with Dez � 1 (boundary‐independent). The pre-
diction is derived by solving equation (10) under the
assumption of constant diffusion coefficient, Dc = kmin/
bmFmin, and using the evolution of granular velocity and
porosity from equation (15). The equation to be solved is

@P

@t
¼ Dc

@2P

@z2
� 1

�
Fðz; tÞ; ðB1Þ

where F(z, t) expresses the forcing r · usz/F that is con-
centrated along z = 0 (the shearing row), and is defined as

Fðz; tÞ ¼ �ðzÞVsh � uFðtÞ; 0 < t < t0 ¼ d=Vsh; ðB2Þ

and

uFðtÞ ¼ usz
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d(z) is Dirac delta function with units of m−1, that stands
for the r · operator in equation (10). The solution of

equation (B1) for P(z, t) may be expressed using a Green’s
function by the integral [McKenzie and Brune, 1972]
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Assigning F(zi, ti) from equation (B2), equation (B4) is
evaluated as [McKenzie and Brune, 1972]
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To solve equation (B5), we first expand uF (ti) as a third
order power series of ti using its third order interpolation
polynomial, i.e., uF (ti) =

P
j=0
j=3aj (ti)

j. In the next stage,
uF (ti) is rewritten as a third order power series of (t − ti),
uF (ti) =

P
j=0
j=3bj(t − ti)

j, where bj = bj (t) is found by
solving the system of linear equations:

b0ðtÞ ¼ a0 þ a1t þ a2t
2 þ a3t

3

b1ðtÞ ¼ �a1 � 2a2t � 3a3t
2

b2ðtÞ ¼ a2 þ 3a3t

b3ðtÞ ¼ �a3;

ðB6Þ

and equation (B5) is rewritten as

Pðz; tÞ ¼ � Vsh

2�
ffiffiffiffiffiffiffi
D�

p
Z t

0
exp � z2

4Dðt � tiÞ
� �P j¼3

j¼0 bjðt � tiÞ jffiffiffiffiffiffiffiffiffiffi
t � ti

p dti:

ðB7Þ
Next, the following dimensionless variables are defined
[McKenzie and Brune, 1972]:

P̂ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Dd=Vsh

p
d

P

t̂i ¼ ti=t0
t̂ ¼ t=t0

ẑ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2Dct0

p z

ðB8Þ

and equation (B7) may be written in a non‐dimensional
form:

P̂ðẑ; t̂Þ ¼ � 1

2

Z t̂

0
exp � ẑ2

2ðt̂ � t̂iÞ
� �Pj¼3

j¼0 bjðt̂ Þðt̂ � t̂iÞ jffiffiffiffiffiffiffiffiffiffi
t̂ � t̂i

p dt̂i

¼ � b0ðt̂ Þ 12
Z t̂

0
exp � ẑ2

2ðt̂ � t̂iÞ
� �

1ffiffiffiffiffiffiffiffiffiffi
t̂ � t̂i

p dt̂i

 !

� b1ðt̂ Þ 12
Z t̂

0
exp � ẑ2

2ðt̂ � t̂iÞ
� � ðt̂ � t̂iÞffiffiffiffiffiffiffiffiffiffi

t̂ � t̂i
p dt̂i

 !

� b2ðt̂ Þ 12
Z t̂

0
exp � ẑ2

2ðt̂ � t̂iÞ
� � ðt̂ � t̂iÞ2ffiffiffiffiffiffiffiffiffiffi

t̂ � t̂i
p dt̂i

 !

� b3ðt̂ Þ 12
Z t̂

0
exp � ẑ2

2ðt̂ � t̂iÞ
� � ðt̂ � t̂iÞ3ffiffiffiffiffiffiffiffiffiffi

t̂ � t̂i
p dt̂i

 !

¼ � b0ðt̂ ÞI0 þ b1ðt̂ ÞI1 þ b2ðt̂ ÞI2 þ b3ðt̂ ÞI3½ �; ðB9Þ
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where Ii are the integrals. The solution for I0 from
McKenzie and Brune [1972] is

I0 ¼
ffiffî
t

p
exp

�ẑ2

2̂t
� ẑ

ffiffiffi
�

2

r
erfc

ẑffiffiffiffi
2̂t

p
� �

: ðB10Þ

Integrals I1 − I3 can be integrated by parts and reduced to
I0 as follows:

I1 ¼ 1

2

Z t̂

0
exp � ẑ2

2ð̂t � t̂iÞ
� � ð̂t � t̂iÞffiffiffiffiffiffiffiffiffiffi

t̂ � t̂i
p dt̂i

¼ � 1

2

Z 0

t̂
exp � ẑ2

2

� �
1=2d

¼ � 1

2

2

3
3=2 exp � ẑ2

2

� �� �		0
t̂
� 2

3

ẑ2

2

Z 0

t̂
exp � ẑ2

2

� �
�1=2d

� �

¼ 1

3
t̂
3=2

exp � ẑ2

2̂t

� �
� ẑ2I0

� �
: ðB11Þ

Similarly, it can be shown that

I2 ¼ 1

5
t̂
5=2

exp � ẑ2

2̂t

� �
� ẑ2I1

� �

I3 ¼ 1

7
t̂
7=2

exp � ẑ2

2̂t

� �
� ẑ2I2

� �
:

ðB12Þ

Equations (B6) and (B7)–(B12) give a full solution for
P̂(̂z, t̂ ). Evaluating P̂(̂z, t̂ ) along the shearing row gives

Pð0; t̂ Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Dd=Vsh

p
d

¼ � 1

105

ffiffi
ð

p
t̂ Þð582:929� 1885:66t̂

þ 2667:73t̂ 2 � 1524:38t̂ 3Þ ðB13Þ

where the coefficient of the interpolation polynomial for
uF ( t̂ ) are a0 = 5.5517, a1 = −26.938, a2 = 47.638 and a3 =

−31.758. Figure 6 compares equation (B13) with boundary‐
independent simulation results conducted with a constant
diffusion coefficient, Dc. Figure B1 compares the spatial
pattern of PP at the end of the period (t̂ = 1) between
boundary‐independent simulations and the analytical pre-
diction presented here.
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