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Abstract 21 

Vertical stylolites are pressure solution features, which are considered to be caused by 22 

horizontal tectonic loading with the largest principal compressive stress being (sub) parallel to 23 

the earth surface. In the present study we analyze the roughness of such tectonic stylolites 24 

from two different tectonic settings in southern Germany and north-eastern Spain aiming to 25 

investigate their scaling properties with respect to the stress during formation. High resolution 26 

laser profilometry has been carried out on opened stylolite surfaces of nine samples. These 27 

datasets were then analyzed using 1D and 2D Fourier power spectral approaches. We found 28 

that tectonic stylolites show two self-affine scaling regimes separated by a distinct crossover-29 

length (L), as known for bedding parallel stylolites. In addition tectonic stylolites exhibit a 30 

clear in-plane scaling anisotropy which modifies L. Since the largest and smallest crossover-31 

lengths are oriented with the sample vertical and horizontal directions (i.e. σ2 and σ3) and L is 32 

a function of the stress field during formation as analytically predicted we conclude that the 33 

scaling anisotropy of tectonic stylolites is possibly a function of the stress field. Knowledge of 34 

this crossover-length anisotropy would enable the reconstruction of the full 3D stress tensor if 35 

independent constraints of the depth of formation can be obtained.  36 

 37 

1. Introduction 38 

The intriguing variety of pressure solution features and its wide-spread occurrence in 39 

monomineralic rock types provoked a continuous interest and attention in various geoscience 40 

disciplines over the past decades [Tada and Siever, 1989]. One of the most prominent and 41 

complex pressure solution features are stylolites, which are rough dissolution interfaces that 42 

can be found in a large variety of sedimentary rocks [Buxton and Sibley, 1981; Dunnington, 43 

1954; Heald, 1955; Park and Schot, 1968; Railsback, 1993; Rutter, 1983; Stockdale, 1922; 44 

Tada and Siever, 1989]. Until recently stylolite morphology has been described qualitatively 45 

by the use of a descriptive terminology, which grouped stylolites into generic classes. One 46 
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classification uses the orientation of the stylolite plane relative to bedding. Bedding-parallel 47 

stylolites are supposed to have formed due to the layer-normal overburden pressure, while 48 

tectonic stresses cause the formation of stylolites oblique or perpendicular to bedding [Park 49 

and Schot, 1968; Railsback and Andrews, 1995]. A second classification is based on the 50 

orientation of the stylolite teeth relative to the stylolite plane. Here the term "stylolite" is used 51 

for teeth at a high angle to the plane, and ‘slickolite’ for dissolution surfaces where the teeth 52 

are distinctly oblique to the dissolution plane [Bretz, 1940; Gratier et al., 2005; Simon, 2007]. 53 

Finally the shape of the characteristic teeth-like asperities and spikes along the interface has 54 

been used to characterize stylolites [Guzzetta, 1984; Park and Schot, 1968]. 55 

More recently, stylolites have been subjected to more rigorous quantitative analyses to 56 

characterise the roughness of the stylolite surface [Brouste et al., 2007; Drummond and 57 

Sexton, 1998; Ebner et al., 2009a; Ebner et al., 2009b; c; Gratier et al., 2005; Karcz and 58 

Scholz, 2003; Koehn et al., 2007; Renard et al., 2004; Schmittbuhl et al., 2004]. It was 59 

demonstrated that the 1D stylolite roughness obeys a fractal scaling invariance [Drummond 60 

and Sexton, 1998; Karcz and Scholz, 2003]. Investigation of the rough interface of opened 61 

stylolite surfaces by means of laser profilometry revealed that the stylolite morphology shows 62 

two self-affine scaling regimes with two distinct roughness exponents on their respective 63 

scales, which are separated by a characteristic crossover length at the millimeter scale 64 

[Renard et al., 2004; Schmittbuhl et al., 2004] for bedding parallel stylolites. Self-affine 65 

surfaces define a group of fractals, which remain statistically unchanged by the transform: 66 

Δx→b·Δx, Δy→b·Δy, Δz→bH·Δz, where b is a transformation factor, which can take any real 67 

value and H is the Hurst or roughness exponent [Barabasi and Stanley, 1995], which is a 68 

quantitative measure for the roughness of the signal. 69 

Analytical and numerical investigations demonstrated that the growth of the stylolite 70 

roughness is induced by heterogeneities in the host rock that pin the interface and is slowed 71 

down by two stabilizing forces, the elastic and surface energies. The elastic energy dominates 72 
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on larger scales and is represented by a small roughness exponent of 0.3 to 0.5 whereas the 73 

surface energy is dominant on small scales with a roughness exponent of about 1 [Koehn et 74 

al., 2007; Renard et al., 2004; Schmittbuhl et al., 2004]. The characteristic crossover length 75 

(L) that separates these two scaling regimes is a function of the principal normal stress 76 

[Renard et al., 2004; Schmittbuhl et al., 2004] on the interface of a bedding parallel stylolite 77 

This analytical predictions were successfully tested by Ebner et al. [2009b], who 78 

demonstrated on a set of 13 bedding parallel stylolites from varying stratigraphic depth out of 79 

a cretaceous succession that this crossover-length decreases with increasing depth (and 80 

normal stress) and thus exhibit the analytically predicted behaviour. The 1D scaling of 81 

stylolites with two self-affine scaling invariance regimes can be described as the height 82 

difference h of points along the surface separated by a distance Δx as [Ebner et al., 2009b] 83 
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where A is a scaling factor, g is a scaling function and u is the ratio ∆x/L with L being a 85 

crossover-length. HS, HL correspond to the roughness exponents for small and large scales, 86 

respectively. Numerical simulations also demonstrate that the crossover-length is very robust 87 

with regard to the kind and amount of quenched noise (heterogeneities initially present) in the 88 

rock [Ebner et al., 2009a]. Hence, the use of bedding parallel stylolites as a quantitative stress 89 

gauge under the assumption of uniaxial strain (zero horizontal displacement) seems to be 90 

verified. Investigations of the surface morphology of bedding parallel stylolites showed that 91 

their scaling is isotropic within the plane defined by the stylolite [Renard et al., 2004; 92 

Schmittbuhl et al., 2004]. This implies that any arbitrary section through the stylolite interface 93 

that contains the principal stress direction (i.e. normal to the plane) fully characterizes the 94 

complex self-affine roughness of bedding parallel stylolites. A second mechanism claimed to 95 

be responsible for the formation of the characteristic roughness is a stress induced roughening 96 

instability along an initially flat solid-solid interfaces [Angheluta et al., 2008] or a solid-fluid-97 
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solid interface [Bonnetier et al., 2009]. In both cases the instability is triggered by elastic 98 

stresses acting normal on the interface. 99 

Up to now no study has quantitatively investigated the 3D topography of tectonic 100 

stylolites, which formed due to (sub-)horizontal compression resulting in a vertical stylolite 101 

plane. Tectonic stylolites differ in two major characteristics from bedding parallel stylolites. 102 

First, the stress field during the formation of tectonic stylolites is non-isotropic i.e. the in-103 

plane normal stresses differ (i.e. σzz > σxx) whereas bedding parallel stylolites often have equal 104 

in-plane normal stresses σxx = σyy (Figure 1). This would imply that the scaling of tectonic 105 

stylolites is not invariant within the plane, since the crossover-length should scale with the 106 

(non-isotropic) stress field as was shown analytically [Schmittbuhl et al., 2004]. A second 107 

common feature of tectonic stylolites are oblique/tilted teeth with respect to the mean stylolite 108 

plane due to overprinting of pre-existing planes of anisotropy such as joints, bedding planes 109 

and other interfaces. Tilting of the teeth with respect to the stylolite plane also influences the 110 

morphology because it leads to the dominance of long grooves and ridges [Simon, 2007]. 111 

These features could lead to an anisotropic scaling of the stylolite interface in addition to 112 

variations of the in-plane stresses.  113 

The present study investigates such tectonic stylolites which formed in a vertical 114 

orientation. We mainly concentrate on the influence of (i) the orientation of the dissolution 115 

surface with respect to the displacement direction and (ii) the formation stress on the scaling 116 

properties of natural stylolites in limestones. To accomplish this task we use laser 117 

profilometry data of opened interfaces of tectonic stylolites from flat lying Jurassic limestones 118 

of the Swabian Alb in southern Germany and from a Tertiary fold and thrust belt of the 119 

Iberian Chain of north-eastern Spain. 120 

 121 

2. Geological setting 122 
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In the following section we give a brief introduction of the investigated field areas in 123 

southern Germany and north-eastern Spain, which both expose upper Jurassic limestones. The 124 

Swabian Alb of southern Germany forms a region of flat-lying mainly marine Jurassic 125 

deposits [Geyer and Gwinner, 1991]. The studied sections are located 10 km south of the city 126 

of Tübingen and comprise upper Jurassic (Oxfordian to Kimmeridgian) limestones. The basal 127 

part of the sections (UTM 32U; E 0515212 m; N 5362240 m) are made up of well bedded 128 

Oxfordian limestones whereas the upper part of the profile contains massive Kimmeridgian 129 

limestones representing a riff facies with sponges and algae being the main rock forming 130 

species [Etzold et al., 1996; Geyer and Gwinner, 1991]. The bedding is (sub-) horizontal, 131 

dipping slightly (<5°) to the SE on a regional scale. The principal structural features are ENE-132 

WSW striking graben structures, which exhibit a mixed mode displacement with a major 133 

normal and a subordinate dextral component [Etzold et al., 1996; Geyer and Gwinner, 1991] 134 

and can be attributed to a later compressional phase (see below). The investigated stylolites 135 

(Samples: Sa6/1a, Sa6/1b, Sa9/2) form vertical planes which trend WNW-ESE with teeth 136 

pointing parallel to the surface normal direction, hence recording a NNE-SSW compression 137 

(Figure 2a). Additionally small scale reverse-faults and NNE-SSW trending joints confirm the 138 

same kinematic framework. A younger subordinate set of stylolites not investigated in this 139 

study form NE-SW trending vertical stylolite planes which can be related to the prominent 140 

dextral graben structures found in the area [Geyer and Gwinner, 1991; Kley and Voigt, 2008]. 141 

Our relative chronological sequence of deformation events is in agreement with data reported 142 

by Kley and Voigt [2008], demonstrating a change in the stress field from NNE-SSW directed 143 

compression in the late Cretaceous to a NW-SE directed compression in the Neogene. This 144 

second compression phase neither altered the shape nor the orientation of the investigated 145 

stylolites, since layer parallel shortening did not cause any orientational change and 146 

deformation was restricted to stylolite interfaces. 147 
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The Iberian Chain of north-eastern Spain is located south of the Ebro-basin and trends 148 

roughly NW-SE. The succession is composed of up to 6000 m of Mesozoic, mainly Jurassic 149 

and Cretaceous sediments [Capote et al., 2002], although the sequence is significantly 150 

reduced to only 300-400 m in the investigated area. The investigated area belongs to the 151 

Maestrazgo structural domain which forms the transition zone between the NW-SE striking 152 

fold and thrust belt of the Aragon Branch and the NE-SW striking Catalonian Coastal Ranges. 153 

A regional NNW-SSE compression in the sampling area between the small towns of Molinos 154 

and Ejulve is indicated by ENE-WSW striking 100-1000 m scale fold trains with top to the 155 

NNW kinematics. The onset of deformation is estimated to be around Early to Middle 156 

Eocene, whereas the deformational peak is assumed to be during the Oligocene [Capote et al., 157 

2002; Casas et al., 2000; Liesa and Simón, 2009]. Liesa and Simón [2009] report stylolite 158 

data which they argue to be attributed to Betic and Guadarrama compressions both having 159 

their deformational peaks during the Oligocene. The investigated section (UTM 30T; E 160 

07111963 m; N 4518336 m) comprises well bedded limestones in an upper Jurassic upright 161 

antiform which contains several smaller synforms that plunges 25° to the NW. Stylolites were 162 

investigated in a shallow ENE dipping limb (set A in Figure 2b) and from an overturned limb 163 

which dips steeply to the SE (set B in Figure 2b). In the eastwards-dipping limb of the fold the 164 

stylolites (Samples: M4/1, M4/2, M4/3, M4/4) track the far field shortening direction (SSE-165 

NNW) confirmed from field measurements in other outcrops in the area. In the overturned 166 

and steeply dipping fold-limb the stylolites (Samples: M4c/1, M4c/3) are rotated around the 167 

fold axis into a shallow dipping orientation (i.e. a counter-clockwise or clockwise rotation of 168 

65° around the fold axis would transform the stylolite orientation from one limb into the 169 

orientation of the stylolites in the other limb of the fold). Hence, the stylolite formation in this 170 

outcrop predates the folding event. In addition the angle between the stylolite plane and the 171 

bedding (not shown) is consistent in both positions of the fold thus corrugating the evidence 172 

that stylolitization predates the folding event. It has to be noted that stylolites in set A and B 173 



 8

both form in a vertical orientation. Another important feature to notice is that the stylolite 174 

teeth are somewhat oblique (~10°) to the mean stylolite plane, which we interpret as a result 175 

of pressure-solution overprint of a pre-existing joint-set which strikes NE-SW, sub-parallel to 176 

the stylolite planes. 177 

 178 

3. Methodology 179 

The samples collected in the locations described above were all taken oriented in the 180 

outcrop to reconstruct the spatial position of the 3D stylolite morphology after laser 181 

profilometry. For analysis only “closed” specimens were considered. Stylolite surfaces that 182 

were already open in the outcrop and were subjected to an unknown amount of weathering 183 

were ignored. The sampled specimens were opened mechanically along the two opposing 184 

interfaces of the stylolite. This method causes some negligible damage to the surface due to 185 

the interlocking of asperities. The split surfaces were cleaned from any clay material, i.e. the 186 

residuum of the dissolved rock, with a soft brush and distilled water. Areas which did not 187 

exhibit visual mechanical damage were chosen for profilometry.  188 

Optical profilometry is based on a laser triangulation of the surface similar to previous 189 

studies [Renard et al., 2004; Schmittbuhl et al., 2004; Schmittbuhl et al., 2008]. The 190 

triangulation technique uses a laser beam that is focused on the surface of the object, which is 191 

monitored by a nearby CCD sensor. The distance between the object and the sensor changes 192 

as a function of changes of the angle under which the point of consideration is observed. The 193 

distance between the object and the laser-head is then calculated from angular relationships 194 

[Schmittbuhl et al., 2008]. Before every individual measurement a test run was made to 195 

calibrate voltage fluctuations of the laser beam (volt-height relationship is virtually linear in 196 

the chosen range, which gives the estimate of the vertical resolution – small distortions of the 197 

profile height, less than 1%, can be expected.). The laser beam is 30 µm wide and horizontal 198 

steps between measurement points were Δx = Δy = 25µm with a horizontal precision of 1µm. 199 
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The vertical resolution is 2µm. Maps were constructed by movement of the laser-head along 200 

parallel profiles over the specimen (Figure 3). Eight samples have been measured at high 201 

resolution (Δx=Δy=25µm) with map sizes of 1200x1200 (Samples: M4/1, M4/4), 1600x1600 202 

(Samples: Sa6/1a, Sa6/1b, M4/2,M4/3, M4c/1, M4c/3) & 2000x2000 measurement points 203 

(Sample: Sa9/2), which corresponds to square maps with physical side lengths of 30, 40 and 204 

50 mm. The x- and y-directions are arbitrary choices parallel to the principal axis of the 205 

profilometer. The sample is usually oriented in a way to fit the biggest square map on the 206 

respective stylolite interface. Care was taken that from the orientation of map x/y direction the 207 

sample orientation could be reconstructed. 208 

Additionally Sample Sa6/1 was measured twice where the second measurement 209 

(Sa6/1b) was rotated 32° clockwise around a vertical axis with respect to the first 210 

measurement (Sa6/1a). This was done to test the robustness of the measurements used against 211 

possible noise arising from the measurement procedure along discrete profiles. An image 212 

registration [Goshtasby, 1986; 1988] of the two measurements in spatial domain revealed the 213 

same amount of rotation of 32° with an uncorrelated noise in the height difference between 214 

the two images that arises from the discreteness of the two maps (not shown). This height 215 

difference is less than 5% (i.e. the ratio of the standard deviation σ of the height difference is 216 

0.063 mm to σ of the height of the surface 1.477 mm). Hence, there seems to be no significant 217 

error introduced by the measurement procedure.  218 

 219 

4. Data analysis 220 

Before we analyzed the 2D maps in detail the raw data from the laser profilometry was 221 

subjected to a series of pre-treatments (Figure 4). First a mean plane calculated from a least 222 

square fit was subtracted from the raw data (Figure 4a), i.e. the x/y-plane is adjusted to a 223 

global trend and the vertical (z) axis is set to have zero mean height (Figure 4b). To increase 224 

the quality of our Fourier transforms (described below) we used a Hanning window technique 225 
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[Karcz and Scholz, 2003; Press et al., 2007] to force our data to taper to zero at the 226 

boundaries (Figure 4c) in order to reduce spectral leakage (compare Figure 3). This is a 227 

standard technique in signal processing, which does not modify the frequency and amplitude 228 

of the original signal. 229 

 230 

4.1. 1D analysis 231 

From the 2D height-field a 1D profile can be extracted either along the x or y-direction 232 

or in any arbitrary direction. For an arbitrary 1D profile f(x) the Fourier transform F(k) can be 233 

calculated and the power spectrum P(k) ~ |F(k)|2 of the transform can be plotted as a function 234 

of the wavenumber k=2π/λ [m-1],which scales inversely to the wavelength λ [Renard et al., 235 

2004; Schmittbuhl et al., 1995; Schmittbuhl et al., 2004]. In Figure 5 the averaged spectra of 236 

Sample M4/3 along the x and y direction of the measured map are shown. The averaged 237 

spectra are found from calculating the mean of P(k) for every k-value over all 1D profiles in 238 

one direction [Renard et al., 2004; Schmittbuhl et al., 2004]. This averaging procedure 239 

reduces the noise attached to an individual 1D profile. A linear slope of the power spectra 240 

confirms a self-affine scaling invariance. The power spectrum of a self-affine signal behaves 241 

as 242 

HDkkP 2~)( −− ,         (2) 243 

where D is the topological dimension of the signal (D=1 for 1D profiles) and H the Hurst 244 

exponent. The Hurst exponent can thus be calculated from the slope of the power spectra. 245 

When we study the averaged 1D spectra of a tectonic stylolite along specific directions 246 

(Figure 5a) we see that the signal exhibits two slopes, which are separated by a crossover-247 

length (L) in agreement with observations on bedding parallel stylolites [Ebner et al., 2009b; 248 

Renard et al., 2004; Schmittbuhl et al., 2004]. The two observed scaling regimes have typical 249 

Hurst exponents of HS~0.5 and HL~1.1 for the small and large scale (large and small 250 

wavenumber), respectively. These observations indicate that the scaling of bedding parallel 251 
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stylolites (Eq. 1) can be extended to tectonic stylolites (compare Figure 5a). To enable a more 252 

detailed comparison of the power spectra of our tectonic stylolites from two different 253 

(orthogonal) directions we normalize the power spectra along the x-direction with the power 254 

spectrum of the y direction at k=1[mm-1] i.e. Px(k)/Py(1[mm-1]) as shown in the inset of Figure 255 

5a. This normalization yields a collapse of the large k-values (small scales), but a notable 256 

difference for the small k-values (large scales) of the scaling functions. This is basically the 257 

expression of the shift in cut-off between the two linear sub-branches, which is the crossover-258 

length L. Figure 5b shows that the calculated cut-off between the scaling regimes and thus 259 

crossover length differs between them. With 1.22 and 0.62 mm for the x and y-directions the 260 

crossover-length changes by 0.6 mm (Figure 5b). The non-linear fitting plotted as a solid line 261 

in both panels of Figure 5b is a linear-by-parts least square fit in logarithmic space with a 262 

weighting function that changes from the small scale to the large scale fraction of the scaling 263 

law [for details compare Ebner et al., 2009b]. This non-linear model uses a minimization 264 

algorithm to find the least square fit for the crossover-length. The differences found between 265 

the two directions also include a discrepancy in the scaling pre-factor, i.e. a vertical shift of 266 

the power spectra, which is clearly higher for all scales in the y-direction.  267 

To fully quantify rough surfaces it is necessary to characterise this pre-factor of the 268 

scaling function and thus obtain a full description of the surface morphology. In the following 269 

we use the height-height correlation function, to calculate the scaling prefactor. The height-270 

height correlation function [Barabasi and Stanley, 1995],which is defined for a function h(x) 271 

over the spatial variable x by, [ ] 2/12)()()( xxhxhxC Δ+−=Δ ,where  denotes average over 272 

the range of x, which estimates the average height difference between two points of the profile 273 

separated by a distance Δx . For a self-affine profile, the correlation-function follows a power-274 

law such that C(Δx) ~t 
1-HΔ xH 

, where H is the Hurst exponent and t is the scaling prefactor. 275 

The prefactor can be designed as C(t)=t , and thus denotes a length scale, also known as the 276 



 12

topothesy [Renard et al., 2006; Schmittbuhl et al., 2008; Simonsen et al., 2000]. The 277 

topothesy corresponds physically to the length scale for which the slope of the rough profile is 278 

equal to 1. In other words, t is the theoretical length scale over which the rough profile has a 279 

mean slope of 45°. The smaller t, the flatter the profile appears on a macroscopic scale. 280 

Figure 6a shows a scaling of the correlation function with two linear sub-branches 281 

separated by a crossover-length similar to the scaling of the power spectra shown in Figure 5a 282 

with only the slopes being different. The correlation function shows, similar to the power 283 

spectra, two linear sub-branches separated by a distinct crossover-length. We use the same 284 

nonlinear fitting approach as described above (with fixed Hurst exponents of 0.6 and 0.3). 285 

The different scaling exponents compared to the power spectral approach is inline with 286 

reliability of self-affine measurements performed on synthetic signals [Candela et al., 2009; 287 

Schmittbuhl et al., 1995]. These authors have demonstrated that the correlation function 288 

underestimates the input Hurst exponents and thus shows lower values than the power spectra. 289 

The scaling prefactor and thus the topothesies ts and tl for the small and large scale regimes 290 

can be found by intersection of the two sub-branches of the scaling function with the 1/1 line 291 

(Figure 6a). We estimated the topothesy for all orientations on the surfaces (Figure 6b & c) 292 

and found that there is a weak anisotropy in the scaling pre-factor, which shows a correlation 293 

with the highest topothesies being parallel to the horizontal direction in the sample orientation 294 

(Figure 6b) for most samples but this is only visible in the small scale regime. This 295 

observation is similar to what we found from investigation of the power spectra where the 296 

small scale regime is shows very consistent results but the large scale regime reveals a higher 297 

degree of variability e.g. compare inset in Figure 5a. The small scale topothesy are shown in 298 

Figure 6c. The average topothesies range between 0.05-0.15 mm and 0.15-0.3 mm for small 299 

and large scales, respectively. 300 

Both the power spectra (i.e. the cut-off length between the linear sub-branches) and 301 

topothesy of a 1D signal show a considerable degree of anisotropy which is often obscured 302 
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due to the noise associated with an individual 1D profile. We conclude that to account for this 303 

in-plane variation a 1D signal fails to capture all scaling characteristics of tectonic stylolites 304 

and the choice of the investigated profile is not arbitrary as for bedding parallel stylolites. 305 

Hence, tectonic stylolites have a measurable in-plane anisotropy which we want to 306 

characterize in detail with a 2D approach.  307 

 308 

4.2. 2D analysis 309 

For the 2D analysis we used the processed data as described in section 4 (Figure 4c). 310 

First a 2D Fourier transform i.e. a discrete Fourier transform (DFT) was calculated from the 311 

data points of the 2D height-field with the Fast Fourier Transform (FFT) algorithm [Cooley 312 

and Tukey, 1965] implemented in Matlab®. Then the DFT is shifted so that the zero-313 

frequency component lies in the centre of the spectra and the 2D power spectum P(kx,ky) is 314 

again calculated as the square of the absolute magnitude of the Fourier transform. Figure 7a 315 

displays a map of the 2D power spectra P(kx,ky) in which the absolute magnitude squared is 316 

shown as greyscale values and kx and ky range from –((n/2)*Δx)-1 to ((n/2)*Δx)-1 where n is 317 

the number of measurement points in one direction of the map and Δx= Δy is the step size. To 318 

investigate the power law behaviour located in the 1D signals the 2D power spectra had to be 319 

transformed to a double logarithmic space originating from the centre of the map i.e. the zero 320 

frequency component or the smallest wavenumber. This is accomplished by translating every 321 

value pair (kx,ky) by )log( 22
yx kk +  along the direction defined by the direction cosine of the 322 

position vector (kx,ky) with the x-axis of the coordinate system and plotting log(P(kx,ky)) on 323 

the newly formed logarithmic grid. The central point in this case corresponds to the system 324 

size, which imposes the smallest non-zero k. Figure 7b illustrates such a double log-plot of 325 

sample M3/4, in which the power spectra are displayed as a 3D surface. Notice that the view 326 

direction is along the kx-axis. The slopes of the surface, which roughly describe an elliptical 327 
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cone clearly exhibit two linear branches and a distinct crossover region (L) marked by the 328 

arrow in Figure 7b. Thus the 3D representation is consistent with the scaling behaviour found 329 

from the analysis of the 1D signal.  330 

For further analysis of the anisotropy we resample the 3D representation (Figure 7b) 331 

with a 2D logarithmic binning (along kx and ky direction), to get a constant density of grid 332 

points in double-logarithmic representation (Figure 8a). For this reason a fixed grid that 333 

covers the 2D power spectra with a constant bin size (bs) in logarithmic space (log(bs) = 0.4) 334 

in the x and y direction is used to find all kx,ky-value pairs that fall into a certain bin, and the 335 

mean of all power spectra that belong to these kx,ky-value pairs in this bin is then used to 336 

define the binned power spectrum. This procedure allows analyzing the data with an equal 337 

importance for the long and small scales, respectively. In addition this method smoothes the 338 

data by removing the local fluctuations without an alteration of the overall geometry of the 339 

3D representation, that is characterized by the two scaling regimes and the distinct crossover. 340 

We use isopach/contour maps of the binned 2D power spectra to quantify the degree 341 

of anisotropy. Isotropic signals should reveal concentric circular contour lines, which define 342 

the same log(P(kx,ky) value. Concentric circular contour lines would imply that the crossover 343 

length, which separates the self-affine scaling regimes for small and large scales are the same 344 

in every direction. Figures 8 show that this is clearly not the case for tectonic stylolites (also 345 

compare Figure 7a) where the contour lines reveal an elliptical shape (Figure 8a,b). This 346 

shape is clearly different from the circular concentric contours found in bedding parallel 347 

stylolites (compare e.g. to Figure 4 of Schmittbuhl et al., 2004). We use a least square 348 

criterion to estimate the best fit ellipse of the individual contour lines. From the best fitted 349 

ellipse, we calculate the aspect ratio of the principal axis (i.e. a/b; where a and b are the semi-350 

major and semi-minor axis of the best fit ellipse) to get a quantitative measure of the 351 

anisotropy of the 2D binned power spectra (Figure 8c). For the direction of the anisotropy we 352 

utilize the angle Θ between the long axis (a) of the fitted ellipse and the x-direction of the 353 
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coordinate system (Figure 8d). For all investigated samples we recognized an increased 354 

ellipticity toward the centre of the 2D power spectra but only a moderate or no significant 355 

change in orientation of the asymmetry with respect to the position in the power spectra. Note 356 

that in this representation (Figure 8a) high contour lines (small wavenumbers) correspond to 357 

large physical length-scales whereas low contour lines (large wavenumbers) correspond to 358 

small length-scales. 359 

The fact that the large wavenumbers display an isotropic power spectrum i.e. aspect 360 

ratio close to 1 (Figure 8c), whereas the small ones show an anisotropic one, is very consistent 361 

with the result of the 1D data analysis (see previous section). This observation is also in 362 

agreement with the physical interpretation of the mechanism of stylolite formation and 363 

morphogenesis [Ebner et al., 2009b; Koehn et al., 2007; Renard et al., 2004; Schmittbuhl et 364 

al., 2004]: At small scales (large wavenumbers), the balance between surface tension and 365 

disorder is controlling the shape of stylolites. Both are a priori isotropic along the stylolite. In 366 

contrast, the large scale morphologies (small wavenumbers) are normally physically 367 

interpreted as resulting from a balance between the elastic field and the material disorder is 368 

controlling the shape of the stylolites. The fact that an anisotropy is observed at large scales is 369 

thus the signature of an in-plane anisotropy of the stress. Since stylolite teeth are normally 370 

parallel to largest stress direction associated with σ1, this large scale anisotropy should be 371 

associated to a difference between the two principal values of the in-plane stress components, 372 

σ2 and σ3.  373 

The orientation of the long axis of the fitted ellipse relative to the vertical orientation 374 

of the sample is shown in rose diagrams (Figure 9) for all samples. The long axes of the 375 

contours of the power spectrum are associated with a shorter crossover-length L (i.e. 376 

reciprocal to the wavenumber) between the large k isotropic scaling and the small k 377 

anisotropic one (Fig 9j). We will see in the next sections that this can be interpreted as a 378 

variation of the difference between the largest principal stress (normal to the stylolite plane) 379 
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and the two in-plane stress components. The principal stress associated with the direction of  380 

the long axis should thus be the smallest one, i.e. σ3. Arrows show the orientation of a vertical 381 

line projected onto the stylolite plane in its original outcrop orientation. From this 382 

representation (Figure 9) it is evident that the vertical direction is roughly normal to the long 383 

axis of the anisotropy for all samples except M4c/1 and M4c/3 which formed vertically 384 

(compare chapter 2 for details) but were subsequently rotated into a shallow dipping (non 385 

vertical) orientation plane due to folding (Figure 9h,i). They thus serve as a cross check to our 386 

findings since the vertical direction in these samples does not coincide with the vertical 387 

direction during stylolite formation and the anisotropy is therefore not normal to the present 388 

vertical direction in these samples as for samples of the upright limb.  389 

To estimate the crossover length (L) and thus get quantitative information on the 390 

stresses during stylolite formation we again use the elliptical fit as a simplified representation 391 

of the 2D Fourier transform of our data. We assume that the crossover is located at the 392 

position of the biggest change in the local slope of the 2D Fourier transform (compare Figure 393 

7b). We calculate the local slope s as the difference between the long and short axis (a,b) of 394 

the best fit ellipse for succeeding log(P(kx,ky))-contours s=(Δa+Δb)/2. A plot of the 395 

log(P(kx,ky))-contours as a function of the local slope s is shown in Figure 10a. The crossover 396 

is defined to lie at the minimum local slope in this representation and the crossover is 397 

calculated from the principal axis of the best-fit ellipse at this minimum (Figure 10b). It can 398 

be noticed that the maximum crossover-length coincides quite well with the vertical direction 399 

(indicated by arrow in Figure 10b) this is in agreement with our previous observations that the 400 

anisotropy of the power spectra is also oriented (normal) with respect to the sample vertical 401 

orientation (compare Figure 9).  402 

Before we discuss the orientation of the anisotropy and the determined crossover 403 

length-scales in relation to the stress tensor that was present during stylolite growth, we want 404 

to investigate the influence of tilted teeth on the scaling results.  405 
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 406 

4.3. Synthetic data analysis 407 

It is important to prove that the large scale anisotropy we found in the investigated 408 

samples is really related to the stress field during formation and thus exclude the influence of 409 

other factors which might as well cause a scaling anisotropy. The second important 410 

characteristic of tectonic stylolites, as stated in the introduction, is the occurrence of inclined 411 

teeth i.e. slickolites. It is easy to imagine that the ridge and groove morphology of slickolites 412 

with highly inclined teeth can causes a difference in the scaling parallel or transverse to these 413 

elongated morphological features and thus an anisotropy. To systematically investigate the 414 

influence of a tilt of the asperities or teeth we construct synthetic isotropic self-affine surfaces 415 

and tilt the teeth around one arbitrary axis. Tilted or inclined asperities are a common feature 416 

of slickolites [Simon, 2007] and it is commonly assumed that these structures formed when a 417 

stylolite overprinted a pre-existing plane of anisotropy in the host-rock. In this case the 418 

principal stresses are oriented oblique to the pressure solution surface, which has recently 419 

been proven numerically by Koehn et al. (2007). Synthetic self-affine surfaces can be created 420 

following the approaches found in the literature [Meheust and Schmittbuhl, 2001; Turcotte, 421 

1997]. We follow the method described in Meheust and Schmittbuhl (2001) who construct 422 

square white noise maps of size n=512. The self-affine correlation is then introduced by 423 

multiplying the modulus of the 2D Fourier transform of the white noise by the modulus of the 424 

wavenumber raised to the power of -1-H, where H is the roughness exponent. The self-affine 425 

surface is obtained from the inverse Fourier transform. The synthetic surface shown in Figure 426 

11a is constructed with a Hurst exponent of H=0.5 and its 2D Fourier transform has a true 427 

isotropic self-affine behaviour (compare inset in Figure 11a). A pre-defined tilt of the 428 

roughness is then attained from adding a linear trend along the x-axis of the map which 429 

corresponds to a tilt angle α and a subsequent back-rotation around α i.e. multiplying the data 430 

with a 3D rotation matrix of - α. Various tilt angles ranging from 1-50° were realised from the 431 
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map shown in Figure 11a. To analyse single valued functions (with no overhangs) the tilted 432 

surfaces are projected on a plane defined by the mean surface. The data were then analyzed as 433 

described in the previous chapter (section 4.2). The degree (aspect ratio) and orientation 434 

(slope) of the anisotropy is displayed in Figure 11b & c. It is evident that the original data-set 435 

is isotropic with aspect-ratios for log(P(kx,ky)) contours close to 1. With small tilt angles α < 436 

10° an anisotropy for the low log(P(kx,ky)) contours and thus large wavenumbers and small 437 

scales exists, which decreases with increasing α. In addition there is a general increase in the 438 

anisotropy in all scales with tilt angles of α >=20° (Figure 11b) whereas the orientation is 439 

more and more aligned with the rotation/tilt axis (Figure 11c) with increasing tilt angle. The 440 

topothesy of the synthetic surfaces do not exhibit a directional anisotropy but reveal a general 441 

decrease of the average topothesy with increasing tilt angle from a t ~ 0.22 for the original 442 

data down to t ~ 0.09 for a tilt angle of 50°. 443 

 444 

5. Discussion  445 

We have shown that the tectonic stylolites investigated in this study, i.e. stylolites 446 

which form when the principal compressive stress direction is horizontal, differ 447 

fundamentally from bedding parallel stylolites since they show anisotropic scaling relations. 448 

Two self affine scaling regimes (with Hurst exponents of ~0.5 and ~1.1 for the small and 449 

large scale, respectively), which are separated by a crossover-length at the millimeter scale 450 

can be found in bedding parallel and tectonic stylolites. The crossover-length L scales 451 

inversely with the formation stress L ~ σ-2 for bedding parallel stylolites [Ebner et al., 2009b]. 452 

The analytical solution of Schmittbuhl et al. [2004] relates the crossover length (L) to the 453 

stress-field during stylolite formation. Their stress term is a product of mean and differential 454 

stress and can be used to calculate the stress magnitudes in addition to the determination of 455 

principal stress directions. The analytical solution shows that  456 
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 L =
γ E

β σ m σ d

,         (3) 457 

where E is the Young’s Modulus, γ is the solid-fluid interfacial energy, 458 

β = ν(1− 2ν ) /π  is a dimensionless constant with ν the Poisson’s ratio, σm and σd, are the mean 459 

and differential stresses respectively. Since for bedding parallel stylolites perfect confinement 460 

can be assumed (that is uniaxial strain or zero horizontal displacement) the stresses and thus 461 

the crossover length L is independent of the orientation within the stylolite surface (Figure 462 

1a). For a tectonic stylolite with a vertical stylolite plane the scenario is different (Figure 1b) 463 

and it can be assumed that the in-plane stresses are dissimilar. One in-plane principal stress 464 

component should be dependent on the amount of overburden and should be oriented 465 

vertically whereas the second stress component should have a horizontal orientation. Since 466 

the crossover-length L scales inversely with the product of mean and differential stress and 467 

the mean stress should be constant, variations of the crossover should reflect variations of the 468 

differential stress |σ1-σinplane| [compare to Schmittbuhl et al., 2004]. Therefore the crossover-469 

length has to increase from a minimum in the direction of the least principal stress σ3 (x-axis 470 

in Figure 1b) and thus the direction of the largest differential stress |σ1-σ3| to a maximum in an 471 

in-plane orientation normal to this direction, which corresponds to the direction of the largest 472 

inplane stress σ2 (the vertical direction in Figure 1b), and the smallest differential stress |σ1-473 

σ2|. In conclusion it can be assumed that the orientation of largest and smallest crossover-474 

length coincide with the vertical and horizontal direction (i.e. σxx< σzz) respectively. 475 

Indeed we found a scaling anisotropy in our data, which shifts the crossover-length 476 

accordingly (Figure 9). The 1D analysis (Figure 5) and the 2D data analysis (Figure 9 & 10) 477 

reveal that the long axis of the detected anisotropy is normal to the vertical direction with a 478 

crossover-length maximum in this direction implying that σ2 has a vertical orientation. This 479 

observation holds for both investigated areas although there is a slight deviation of up to ±10° 480 

for some samples. Only the samples (M4c/1, M4c/3 from the overturned fold limb) which 481 
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formed vertically but experienced a passive rotation subsequently to stylolite formation due to 482 

folding (compare Figure 2b and Figure 9h,i) differ significantly. This can be explained by the 483 

fact that the stylolite formation was prior to folding as can be concluded from the structural 484 

relationships in the field data (Figure 2). Thus the present orientation of the samples in the 485 

overturned fold limb does not coincide with the orientation during formation of the stylolites. 486 

We noticed a small difference (<10°) between the orientation of the stylolite teeth and 487 

the pole of the mean stylolite plane for the samples from north eastern Spain. This is due to 488 

the fact that the stylolites overprint a pre-existing joint set that is subnormal to the principal 489 

shortening direction, which influenced stylolite formation as stated above. To investigate the 490 

effect of the tilt of the stylolite teeth and its contribution to the observed scaling anisotropy we 491 

used synthetic self-affine surfaces which were systematically tilted to get slickolite similar 492 

structures as explained above (Figure 11). The effect of the tilt of the teeth with respect to the 493 

mean plane of the stylolite can be characterized by (i) an anisotropy for the large 494 

wavenumbers i.e. on the scale of individual teeth or asperities for small tilt angles (<10°) and 495 

(ii) a general homogeneous increase of the anisotropy for all scales with an increase of the tilt 496 

angle for angles >10°. This anisotropy caused by the imposed tilt of the asperities differs 497 

significantly from the anisotropy of real stylolites. Therefore we conclude that the 3D 498 

formation stress is the dominant force that influences the scaling anisotropy of the 499 

investigated samples. However one has to note that tilted teeth imply that the principal stress 500 

components are not necessarily oriented within the stylolite plane. Therefore only tectonic 501 

stylolites with plane-perpendicular teeth should be used to recalculate principal stress 502 

orientations and magnitudes.  503 

The analytical solution [Schmittbuhl et al., 2004] is only strictly valid for 2D stress 504 

cases where the principal stresses parallel to the stylolite plane are invariant along the third 505 

direction, which is truly the case for bedding parallel stylolites as discussed by Ebner et al. 506 

[2009b]. But since a solution for the 3D case is not available we argue that the above equation 507 
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(Eq. 3) could serve as an ersatz, of a first approximation to calculate the order of magnitude 508 

and the difference between the principal stresses for such tectonic stresses. We assume that 509 

the crossover-length in a specific direction is mainly a function of the stresses in the plane 510 

normal to the stylolite surface along the direction of investigation and that the out of plane 511 

stresses are invariant. This would imply that the differential stresses for the vertical and 512 

horizontal directions could be defined as zzyydv σσσ −=  and xxyydh σσσ −=  and Eq. 3 could 513 

be solved if the depth of stylolite formation and the material properties during stylolite 514 

formation are known. For the stylolites from the Swabian Alb with a vertical crossover of 515 

0.95 mm and a horizontal crossover of 0.7 mm, assuming a Poisson’s ratio of 0.25, a surface 516 

free energy of calcite of 0.27 J/m2 , a Young’s Modulus of 14 GPa [Ebner et al., 2009b] and a 517 

vertical stress component (σ2) of 6 MPa (assuming a vertical load of 220 m of sediments with 518 

a density of 2.7 g/cm3 in agreement with sedimentological constraints) the tectonic stress 519 

component (σ1) is about 17.7 MPa and the horizontal in-plane stress (σ3) component is 1.8 520 

MPa. See appendix for details of the calculation. The theoretical stresses of stylolite 521 

formation calculated here can not serve as realistic values since we unjustifiably borrow from 522 

the analytical solution for the isotropic case but should give a first order estimate under the 523 

limiting assumptions stated above. Nevertheless we would expect stresses during tectonic 524 

stylolite formation to be close to the compressive lithospheric strength, i.e. σ1-σ3 ~ 14 MPa 525 

[Banda and Cloetingh, 1992] but much smaller than uniaxial compressive strength of 526 

laboratory measurements for limestones, which are in the range of ~50-200 MPa [Pollard and 527 

Fletcher, 2005]. Utilizing the solution given in the appendix the resulting stress magnitudes 528 

are surprisingly close to expected values. 529 

For our samples in Spain we do not calculate the stresses because the principal stresses 530 

are quite likely not aligned with the stylolite plane as discussed above. We argue that even if 531 

it would be possible to calculate the stresses for tectonic stylolites in a fold and thrust belt like 532 

in northeastern Spain the stresses deduced from stylolites might be completely different form 533 
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that of the folding event. The main reason is that stylolites probably form rather quick, in the 534 

order of hundreds of years [Schmittbuhl et al., 2004]. This would allow several generations of 535 

stylolites to form (revealing different finite orientation) during a single folding event the 536 

analysis of a single set of stylolites would thus result in a snapshot from the geologic history 537 

not necessarily revealing the full picture. Even if the stylolites can be attributed to the same 538 

kinematic framework as the folding event both most likely have a rather diverse history in 539 

terms of stress. 540 

 541 

6. Conclusions  542 

Vertical tectonic stylolites investigated in this study show a 1D scaling invariance that 543 

resembles those of bedding parallel stylolites investigated in previous studies [Ebner et al., 544 

2009b; Renard et al., 2004; Schmittbuhl et al., 2004]. They have a self-affine scaling 545 

invariance, which is characterized by a Hurst exponent of 1.1 for long and 0.5 for short scales 546 

and a distinct crossover-length at the millimeter scale that separates these two scaling 547 

regimes.  548 

High resolution laser profilometry of tectonic stylolites provides quantitative 3D 549 

information of these pressure solution surfaces that enables a 2D analysis of the surface 550 

morphology. We demonstrate that our samples of tectonic stylolites have an anisotropic 551 

scaling that is not independent of the orientation of the investigated section within the plane 552 

of the stylolite. This anisotropy’s main characteristic is a systematic shift of the crossover 553 

length that separates the scaling regimes. The presented analysis also confirms that the 554 

anisotropy observed in our vertical samples is oriented with respect to the horizontal and 555 

vertical direction and thus coincides with the principal stress directions within the stylolite 556 

plane for vertical stylolites e.g. σ2 & σ3 as depicted in Figure 2b. The long axis of the 557 

anisotropy and thus the smallest crossover length consistently coincides with the horizontal 558 

direction in the stylolite plane, whereas the largest crossover-length is found in a vertical 559 
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section. This observation is consistent with the fact that the horizontal in-plane stress is 560 

generally smaller than the vertical in-plane stress, which should be the case for tectonic 561 

stylolites (Figure 1b). They are also both smaller than the normal stress orientated 562 

perpendicular to the stylolite plane, which should be oriented horizontally. Therefore the 563 

crossover-length should be smaller in a horizontal section than in a vertical section (Eq. 3) 564 

using analytical considerations [Schmittbuhl et al., 2004].  565 

In addition we studied the influence of inclined teeth and asperities on the scaling 566 

behavior of stylolites. Using synthetic ‘slickolites’ with various tilt angles we found that the 567 

evolving anisotropy is negligible and clearly different from the anisotropy we observed in the 568 

investigated samples. We thus conclude that the scaling anisotropy of the investigated vertical 569 

tectonic stylolites can be related to the 3D formation stress. 570 

 571 

7. Appendix: Stress Calculation 572 

Part I 573 

In this appendix we will show how the tectonic stress (σ1) and the smaller in-plane stress 574 

component (σ3) can be calculated if the vertical stress component can be approximated using 575 

vertical loading conditions. According to equation (4) the vertical and horizontal crossovers 576 

(Lv and Lh) can be calculated by [Schmittbuhl et al., 2004]  577 

 578 

Lv =
γE
β

1
σ mσ dv

 Lh =
γE
β

1
σ mσ dh

      (A1) 579 

where E is the Young’s Modulus, γ is the solid-fluid interfacial energy, β = ν(1− 2ν ) /π  is a 580 

dimensionless constant with ν the Poisson’s ratio, σm and σdv/h, are the mean and differential 581 

stresses respectively. Since the mean stress is the same for both directions we can reformulate 582 

equation A1 to  583 

σ m =
γE
β

1
Lvσ dv

, σ m =
γE
β

1
Lhσ dh

      (A2) 584 
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and join both equations so that  585 

Lvσ dv = Lhσ dh .          (A3) 586 

If we now define the differential stresses using the main principal stress components with σ1 = 587 

σyy; i.e. acting normal to the stylolite plane; σ2 = σzz; i.e. the vertical in plane stress component 588 

and σ3 = σxx; i.e. the horizontal in plane stress component (compare Figure 1b); as 589 

zzyydv σσσ −=  and xxyydh σσσ −=  equation A3 becomes 590 

Lh

Lv

=
σ yy −σ zz

σ yy −σ xx

         (A4) 591 

and solving for the xx component 592 

σ yy −σ xx =
Lv

Lh

σ yy −σ zz( ), 593 

σ xx = σ yy −
Lv

Lh

σ yy −σ zz( )= σ yy −
Lv

Lh

σ yy +
Lv

Lh

σ zz      (A5).  594 

Part II 595 

For simplification we substitute all material parameters of Equation 4 which are assumed to 596 

be constant, according to 597 

a =
γE
β

. 598 

Then we use equation 4 for the horizontal cross-over  599 

Lh = a 1
σ mσ dh

 600 

or  601 

 602 

σ mσ dh =
σ xx + σ yy + σ zz

3
σ yy −σ xx( )=

a
Lh

  603 

and  604 

σ xx + σ yy + σ zz( )σ yy −σ xx( )= 3 a
Lh

       (A6)  605 
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Now we include equation A5 into equation A6 and solve for σ yy  606 

2σ yy + σ zz −σ yy
Lv

Lh

+ σ zz
Lv

Lh

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ σ yy

Lv

Lh

−σ zz
Lv

Lh

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 3 a

Lh

    (A7) 607 

and multiplying the components gives 608 

2σ yy
2 Lv

Lh

−σ yy
2 Lv

Lh

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+ 2σ yyσ zz
Lv

Lh

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

−σ yyσ zz
Lv

Lh

−σ zz
2 Lv

Lh

−σ zz
2 Lv

Lh

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

− 3 a
Lh

= 0. (A8) 609 

Rearranging equation A8 in order to solve a binomial formula gives 610 

σ yy
2 + σ yy

2σ zz
Lv

Lh

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

−σ zz
Lv

Lh

2 Lv

Lh

−
Lv
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⎛ 
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⎜ 

⎞ 

⎠ 
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2 −
σ zz
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Lh
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⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

− 3 a
Lh

2 Lv

Lh

−
Lv

Lh

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2 = 0   (A9) 611 

and the solution of the binomial formula is then 612 

σ yy1,2
= −0.5

2σ zz
Lv

Lh
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(A10). 614 

 σxx can be derived from equation A5. 615 

 616 
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Figure captions: 718 
 719 
Figure 1: Schematic drawing of the formation stress state for (a) bedding parallel and (b) 720 

tectonic stylolites. The largest compressive stress direction (σ1) is indicated by a white arrow. 721 
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Below the sketch map an idealized graph of the in-plane differential stress is plotted as a 722 

function of the orientation within the stylolite plane. For bedding parallel stylolites (a) the 723 

horizontal normal stresses are equal and thus the differential stress is equal in every direction. 724 

For tectonic stylolites (b) the in-plane normal stresses are dissimilar and σzz is generally larger 725 

than σxx. Thus the in-plane differential stress scales inversely with the magnitudes of the σxx 726 

and σzz directions having a maximum along the x-axis. 727 

 728 

Figure 2: Lower hemispheric equal area projection (Schmidt’s net) of the field data and 729 

schematic cross-sections of the investigated outcrops. (a) The Swabian Alb of southern 730 

Germany (n=22). Right panel shows the flat lying Jurrassic strata with vertical stylolites 731 

limited to individual beds (b) Iberian Chain of north-eastern Spain (n=32). Right panel shows 732 

a cross-section of NE plunging fold and the position of set a and set b within the fold. All 733 

samples are taken from well bedded Jurassic strata. In the overlying massif Jurassic 734 

limestones (vertical stripes) and conglomerates (circles) no stylolites were found. Notice that 735 

in (a) only the poles to the stylolite planes are displayed since the shortening direction is 736 

normal to that plane. In panel (b) two populations are shown which correspond to the two 737 

investigated fold limbs. Poles to planes (circles) diverge slightly from the orientation of the 738 

long axis of the teeth (triangle); See text for detailed explanation. 739 

 740 

Figure 3: Oblique view of the 3D morphology of the surface of an opened stylolite (sample 741 

M4/4) reconstructed from optical profilometry. A linear trend is removed from the raw data 742 

(compare Figure 4 for details). 743 

 744 

Figure 4: Greyscale maps of sample M4/3 where (a) shows the raw data from profilometry 745 

(notice a general trend from the top left to bottom right); (b) detrended data i.e. linear trend is 746 

removed and mean height is set to be zero; (c) detrended data which is modified with a 747 
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Hanning window technique where the data is forced to taper off to zero at the boundaries (for 748 

explanation see text). Light colours correspond to peaks and ridges and dark colours represent 749 

local depressions. 750 

 751 

Figure 5: 1D data-analysis of sample M4/3; (a) shows the averaged Power spectra P(k) (solid 752 

line) and the respective binned spectra (circles) plotted as a function of the wavenumber along 753 

the x and the y direction of the measured map. The inset in (a) again shows the power spectra 754 

for both directions but the x direction is now normalized with respect to the y direction 755 

Px(k)/Py(1mm-1). This yields a collapse of the large k-values (small scales), notice that for the 756 

small k-values (large scales) the scaling functions deviate considerably (b) non-linear fit of 757 

the binned spectra for both directions used to estimate the crossover length L (triangle). Along 758 

the x-direction the crossover-length is larger (L=1.22) than along the y-direction (L=0.62). 759 

The slope of the branches of the non-linear model corresponds to Hurst exponents of 1.1 and 760 

0.5 for small and large scales, respectively. 761 

 762 

Figure 6: 1D analysis of the scaling prefactor i.e. the topothesy of tectonic stylolites. (a) A 763 

loglog plot of the correlation function C(Δx) of a 1D slice of sample M4/3 oriented parallel to 764 

the x direction of the analyzed surface with the nonlinear fit (compare text for details) and the 765 

topothesies ts and tl for small and large scale sub-branches. The topothesy is constructed from 766 

the intersection of the linear sub-branches with the 1/1 line. (b) The topothesies ts and tl of 767 

sample M4/3 plotted as a function of θ i.e. the counter clockwise angle from the x-direction of 768 

the map. Note that the correlation functions are averaged over 5° intervals. Arrow indicates 769 

the vertical direction projected onto the stylolite plane. Note that only the ts shows a clear 770 

correlation with the sample orientation. (c) The small scale topothesy ts for all samples plotted 771 

as a function of θ.  772 

 773 
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Figure 7: 2D data-analysis of sample M4/3; (a) 2D Fourier transform plotted on a regular 774 

grid as a function of  kx and ky  which range from –((n/2)Δx)-1 to (n/2)Δx)-1 where n is the 775 

number of measurement points in one direction of the map and Δx is the step size. (notice that 776 

the zero frequency component lies in the centre of the map). A clear anisotropy of the data 777 

can be observed sub-parallel to the ky-axis (vertical axis). To investigate the power law 778 

scaling exhibited by the 1D analysis the 2D Fourier transform is converted to a double log-779 

space where log(kx, ky) is plotted as a function of the logarithm of the power spectra (b); the 780 

2D power spectra are plotted as a surface whose height corresponds to log(P(kx, ky)). The 3D 781 

surface is viewed along the kx-direction and the arrow indicates the crossover-length L, which 782 

separates the two scaling regimes i.e. the two linear subparts of the slope of the cone.  783 

 784 

Figure 8: Quantification of the 2D scaling anisotropy of sample M4/3; (a) oblique 3D view 785 

of the binned 2D power spectra (grey mesh) with an overlay of coloured contour lines of 786 

constant log(P(kx, ky))-values. (b) Map view of the contours calculated from the conic 2D 787 

power spectra. These contours were utilized to calculate best-fitting ellipses using a least 788 

squares approach; (c) Aspect ratio (a/b) of the fitted ellipse for every log(P(kx, ky))-contour. 789 

An increasing aspect ratio towards the centre of the map is characteristic for all samples 790 

investigated. (d) Slope (i.e. the counter clockwise angle from the x-direction of the measured 791 

map) of the long axis of the fitted ellipse plotted for the contour intervals. 792 

 793 

Figure 9: Rose diagrams of all samples i.e. a histogram with a constant bin size of 10° 794 

plotting the relative orientation of the long axis of the fitted ellipse to the vertical direction of 795 

each sample. Arrow in each panel shows the intersection of the vertical direction of the 796 

oriented sample with the mean stylolite plane. (a) sample Sa6/1a, (b) sample Sa6/1b, (c) 797 

sample Sa9/2, (d) sample M4/1, (e) sample M4/2, (f) sample M4/3, (g) sample M4/4, (h) 798 

sample M4c/1, (i) sample M4c/3; Notice that for all samples the long axis and thus the 799 
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direction with the smallest crossover length is roughly normal to the vertical direction (except 800 

for h & i; for explanation see text). This direction corresponds typically to the largest 801 

differential stress, which is also the smallest in-plane stress (v and h correspond to the vertical 802 

and horizontal directions, respectively). (j) Schematic drawing of the relationship between the 803 

wavenumber contour [mm-1] (compare Figure 8), the crossover-length L [mm], the principal 804 

in-plane stresses and the sample orientation i.e. horizontal and vertical direction. Refer to text 805 

for detailed explanation.  806 

 807 

Figure 10: Crossover length from the contour data of the maps for sample M4/3 and Sa6/1a. 808 

(a) Slope of the 2D power spectra calculated as the mean difference between the principal 809 

axis of the fitted ellipse (a,b). The biggest change in slope (arrow) is assumed to be the 810 

contour at which the crossover is located. (b) The crossover-length plotted as a function of the 811 

counter clockwise angle from the x-direction of the measured map. The vertical direction in 812 

the stylolite plane is indicated for both samples and roughly corresponds to the largest 813 

crossover-length i.e. the smallest differential stress as shown in Figure 1. 814 

 815 

Figure 11: Greyscale map (a) of a synthetic self affine square surface with a side-length of 816 

512 and a Hurst exponent of 0.5. Inset displays a 2D Fourier transform of that map, which 817 

clearly exhibits isotropy with respect to its centre, similar to bedding parallel stylolites. This 818 

dataset is then utilized to construct slickolites i.e. stylolites with oblique teeth and asperities 819 

(see text), with various tilt angles (e.g. 10° correspond to oblique asperities that are rotated 820 

10° counter clockwise around the x-direction with respect to the mean plane of the synthetic 821 

surface). (b) Aspect ratio of elliptical fit of synthetic data set. For small tilt angles an 822 

anisotropy on small scales (i.e. large wavenumbers and low log(P(kx, ky))-contours) can be 823 

observed. For large tilt angles a general increase of the aspect ratio over all scales can be 824 

found. (c) Orientation of the long axis of the fitted ellipse (compare Figure 8d). Notice an 825 
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increasing alignment of the long axis of the fitted ellipse towards higher log(P(kx, ky))-826 

contours with increasing tilt angles.  827 

 828 
 829 


