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Abstract. A new method is proposed to select clear days from data sets of solar irradiation recorded with ground-13 

based instruments. The knowledge of clear days for a given site is of prime importance both for the study of 14 

turbidity and for the validation of empirical models of Global Solar Radiation (GSR). Our innovative method is 15 

based on the Normalized Least Mean Square (NLMS) algorithm that estimates noise according to a GSR model. The 16 

developed method named Clear Day Selection Method (CDSM) is compared to the well-known clearness index 17 

criteria (kt) taking data collected at Tamanrasset in Algeria during the period 2005-2009. The root mean square error 18 

(rmse), the mean absolute percentage error (mape) and the dependence of model error (mbe) are considered for the 19 

comparison. A different number of clear days is found with both methods, with additionally a kt dependency for the 20 

clearness index criteria. The average values of rmse, mape and mbe between the daily average of the measured GSR 21 

and its estimate using a model are better in case of CDSM for the period 2005-2009. Indeed, we found 25.28 W/m2, 22 

4.61 % and 2.09 W/m2 respectively for CDSM and 42.48 W/m2, 7.63 % and -5.91 W/m2 for the clearness index 23 

method with kt = 0.7. We also found that GSR of clear days is well correlated with the model in case of CDSM, 24 

which gives good confidence in our results. 25 
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1- Introduction 27 

 The Global Solar Radiation (GSR) is the total amount of solar radiation received by the Earth surface and 28 

corresponds to the contribution of direct, diffuse and reflected solar radiation. Direct solar radiation is the 29 

propagation of the beam directly through the atmosphere to the surface of the Earth, while diffuse solar radiation is 30 

scattered in the atmosphere. Solar radiation is affected during its propagation through the atmosphere by atoms and 31 

molecules (ozone, water vapor, carbon dioxide ...) as well as by liquid and solid aerosols dispersed or grouped in 32 

clouds (Kaskaoutis 2008). Solar radiation measurements on the ground then depend on the site location. The 33 

location must indeed be taken into account when we are interested in the quality and amount of solar radiation. GSR 34 

is one of the most important parameters in solar energy designs and/or applications (Badescu et al. 2013; Reno et al. 35 

2012). Analyzing solar radiation properties in a given location requires long-term data and both use of empirical, 36 

semi-empirical or physical models and specific techniques such as neural networks (Senkal 2015; Mohandes 2012).  37 

Many studies were carried out to estimate and/or predict solar radiation using available meteorological (air 38 

temperature, relative humidity ...) and geographical (sunshine hours, latitude ...) parameters (Wong and Chow 2001; 39 

Victor et al. 2016; Gueymard 2012). These models are needed to obtain the correct designs and outputs of solar 40 

power plants in case of clear sky conditions. Selecting clear days from recorded datasets is the first step in modelling 41 

solar radiation under these conditions. The clearness index method, based essentially on the calculation of a 42 

parameter ݇௧ related to measured solar radiation, is widely used for this purpose (Alves et al. 2013; Khem et al. 43 

2012; Mellit et al. 2008). Authors then sorted day types using the ݇௧ parameter according to their own criteria. The 44 

sky is, for some, clear when its value is between 0.65 and 1, partly cloudy when ͲǤ͵  ݇௧  ͲǤͷ and cloudy if Ͳ 45 

݇௧  ͲǤ͵ (Gueymard 2012; Alves et al. 2013). For other authors, a clear sky is when ͲǤͷ  ݇௧  ͲǤͺͷ (Bendt et al. 46 

1981; Ahmed et al. 2008), higher than 0.6 (Reindl et al. 1990) or 0.7 (Li and Lam 2001; Li et al. 2004). Iqbal 47 

considers that the sky is clear when ݇௧ is between 0.7 and 0.9 (Iqbal 1983). ݇௧ also varies in time (Serban 2009) and 48 

depends on regions. Its value in most tropical regions is between ͲǤͺ and ͲǤͷ for a clear sky (Ndilemeni et al. 49 

2013). We see clearly with this short bibliographic that there is a great disparity in the definition of a clear sky using 50 

this parameter and there is no clear method for its estimation. The choice of its value can be crucial to distinguish 51 

clear days from turbid ones. A wrong choice will affect mainly the number of clear and turbid days in a dataset 52 

analysis and, therefore, modelling of solar irradiance data will depend heavily on�݇௧. This brief retrospective around 53 
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the issue of the clearness index choice led us to develop a new method for classifying clear and turbid days. The 54 

method is based on the Normalized Least Mean Square algorithm (Sharma and Mehra 2016; Dixit and Nagaria 55 

2017), which is an adaptive algorithm based on minimization of the norm of differences between estimate and real 56 

signal. This method is often used in signal processing for noise identification or cancellation (Sahu and Sinha 2015; 57 

Gupta and Bansal 2016) and is therefore suited for GSR measurements. Indeed, its perturbations are due to solar 58 

radiation propagation through the atmosphere and are well assimilated as noise in our process. In this work, we first 59 

present the clearness index algorithm used to distinguish clear and turbid days, and then introduce CDSM, the 60 

NLMS method for Clear Days Selection. A comparison of these methods will then be made and the results 61 

discussed. 62 

2- The Clearness index method 63 

The clearness index ݇௧ was introduced by Liu and Jordan to quantify stochastic property conditions for a given site 64 

(Liu and Jordan 1960). Interval values for ݇௧ are taken to separate clear and turbid days but are often site dependent 65 

(see Section 1), which leads to misinterpretation of the results, especially when authors compare and study empirical 66 

models. The clearness index ݇௧ is defined over time ݐ as the ratio between the terrestrial global solar radiation 67 

 : 68ܩ ሻ on a horizontal surface and the extraterrestrial oneݐሺܴܵܩ

����������������������������������������������������������������������������������������������������������݇௧ ൌ ீௌோሺ௧ሻ
ீబ

                                                                       (1) 69 

where ܩ in ܹ/݉ଶ is given by: 70 

ܩ���������������������������������� ൌ ௦ܿܫ כ ሾͳ  ͲǡͲͲ͵͵ כ ேଷହכሺଷݏܿ ሻሿ כ ሺܿݏ߶ כ ߜݏܿ כ ߱ݏܿ כ ߶݊݅ݏ כ  ሻ                           (2) 71߱݊݅ݏ

௦ܫ  is the Total Solar Irradiance (TSI) equal to 1361 ܹ/݉ଶ (Myhre et al. 2013) and N the day number in the year 72 

(N=1 is the first day in the year and N=365 the last one). ߶, ߜ and ߱ are respectively the latitude of the location, the 73 

solar declination angle and the hour angle at sunrise in degrees.  74 

An algorithm based on the instantaneous clearness index was first developed for our work to automatically select 75 

days from a huge dataset. The main steps of the algorithm are: 76 

x Selection of ܴܵܩሺݐሻ records of a given day where the Sun elevation is higher than 10°.  77 
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This condition is only intended to prevent the presence of haze early in the morning or late in the afternoon. 78 

This could lead to considering a clear day as not being one. 79 

x Calculation of the extraterrestrial solar radiation ܩ for the same day. 80 

x Calculation of the instantaneous clearness index ݇௧ between sunrise and sunset using Equation 1. 81 

3- Normalized Least Mean Square Method for Clear Days Selection 82 

We present in this section the Normalized Least Mean Square (NLMS) algorithm and then how we use it to select 83 

clear days from data sets. 84 

3-1. The NLMS algorithm 85 

The Least Mean Square (LMS) algorithm was first developed by Widrow and Hoff in 1959 for speech recognition 86 

applications. It is today one of the most widely used algorithms in adaptive filtering mainly due to its efficiency and 87 

computational simplicity. LMS algorithms are a class of adaptive filters used to generate a desired filter that 88 

produces least mean squares of the error signal i.e. difference between desired and real signal. The algorithm starts 89 

by assuming small weights (zero in most cases) at each step and finding the gradient of the estimated error. Weights 90 

are then updated according to the following equation (Dixit and Nagaria 2017):  91 

ାଵݓ ൌ ݓ  ߙ ൈ ݁ሺ݊ሻ ൈ  ሺ݊ሻ 92ݔ

Here ݔሺ݊ሻ is an input vector with ܮ delayed values in time. w(n) = [w0(n) w1(n) w2(n) … wL-1 (n)]T is a vector with 93 ܮ 

components containing the tap weight coefficients of the adaptive FIR (Finite Impulse Response) filter at time ݊, 94 

݁ሺ݊ሻ is the estimated filter error at ݊ and the subscript ܶ stands for transpose operator. The ߙ parameter is known as 95 

the step size parameter and is a small positive constant. This parameter controls the influence of the updating factor. 96 

Selection of a suitable value of ߙ is imperative for the performance of the LMS algorithm. The time taken by the 97 

adaptive filter to converge into the optimal solution will be too long if its value is too small. The adaptive filter 98 

becomes unstable if ߙ is too large and its output diverges (Sharma and Mehra 2016; Dixit and Nagaria 2017). The 99 

stability condition of the LMS algorithm is Ͳ ൏ ߙ ൏ ௫ߣ ௫, whereߣ/ʹ  is is the largest eigenvalue of the 100 

autocorrelation matrix of the input signalݔ�ሺ݊ሻ. The main disadvantage of LMS algorithm is the fixed step size 101 
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5  

parameter for every iteration. This requires knowledge of the input signal statistics prior to starting the adaptive 102 

filtering operation. The NLMS algorithm is an extension of the LMS one, which by passes this issue by calculating 103 

the maximum step size value. This step size is proportional to the inverse of the total expected energy of 104 

instantaneous coefficients of the input vector ݔሺ݊ሻ. The recursion formula for NLMS algorithm is given by 105 

(Hamidia and Amrouche 2016): 106 

ሺ݊ݓ                                                              ͳሻ ൌ ሺ݊ሻݓ  ఓ
ఢା௫ሺሻൈ௫ሺሻ ൈ ݁ሺ݊ሻ ൈ  ሺ݊ሻ                                           (4) 107ݔ

where Ͳ ൏ ߤ ൏ ʹ is the adaptation step size of NLMS and ߳  Ͳ is a regularization constant used to avoid division 108 

by zero. 109 

The NLMS algorithm is implemented according to the following steps: 110 

x The output signal ݕሺ݊ሻ of the adaptive filter is calculated by: 111 

ሺ݊ሻݕ                                                                       ൌ ሺ݊ሻ்ݓ ൈ  ሺ݊ሻ                                                                (5) 112ݔ

x The estimated filter error signal ݁ሺ݊ሻ at step (n) is computed as the difference between the desired signal and 113 

the filter output: 114 

                                                                      ݁ሺ݊ሻ ൌ ݀ሺ݊ሻ െ  ሺ݊ሻ                                                                   (6) 115ݕ

x The filter tap weights are updated in preparation for the next iteration using Equation 4. 116 

 

Figure 1. Adaptive filtering 

Basic modules of an adaptive filter are shown in Figure 1 (Dixit and Nagaria 2017). The output of the adaptive filter 117 

and the desired response are processed to assess its quality with respect to requirements of a particular application. 118 

This module generates the filter output using input signal measurements. The filtering structure is linear or nonlinear 119 

according to the designer and its parameters are adjusted by the adaptive algorithm. 120 
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Figure 2. Flowchart of CDSM 

3-2. The CDSM algorithm 121 

Our proposed method for selecting clear days present in dataset is based on the NLMS algorithm and any parametric 122 

GSR model. The Capderou model has been used in this work (Capderou 1987). This parametric model uses the 123 

Linke turbidity to compute the global, direct and diffuse components of clear sky solar radiation. The main idea of 124 

the method is to compare estimated GSR with measurements i.e. GSR resulting from adaptive filtering when taking 125 

GSR measurements as input are compared to GSR model of clear sky. CDSM is summarized by the following steps 126 

(Figure 2) (Quadri et al. 2017): 127 

 128 
Figure 3. Examples of daily recorded GSR (dashed line) superposed to the clear sky model (full line). 

x Each daily GSR is fitted with a clear sky GSR model. 129 

x The measured GSR is subjected to a parameterized FIR filtering with ݓ coefficients (see previous section): 130 
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a sample of the modeled GSR is obtained. 131 

x The estimated filter error between samples of modelled GSR and clear sky GSR model is calculated. 132 

x The obtained estimated filter error is used to calculate the next step that is used to readjust FIR filter 133 

coefficients (ݓାଵ) 134 

x Steps 1-4 are considered for all samples of the measured GSR 135 

 

Figure 4. CDSM behavior in case of a clear (left) and a turbid day (right). 

Figure 3 plots an example of daily measured GSR (dashed line) superposed to the clear sky GSR model (full line) 136 

for both clear (left plot) and turbid (right plot) days. Figure 4 shows CDSM behavior to estimate GSR in case of 137 

clear (left plot) and turbid days (right plot). The adaptive filter takes a measured GSR as input and produces a 138 

modeled GSR by recursively adjusting the filter parameters to handle the disturbances present in the GSR 139 

measurement.  Figure 5 plots the estimated filter error obtained when CDSM is run on data of Figure 4. We see that 140 

the method allows having a modelled GSR more or less disturbed according to the data considered. It will be close 141 

to the GSR model when the estimated filter error is small i.e. the case of clear days. We will consider in our study 142 

that clear days correspond to the estimated filter error less than 20 ܹ/݉ଶ ; otherwise they are considered as turbid. 143 
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Figure 5. Estimated filter error of the GSR estimate for a clear (left) and a turbid day (right). 

4- Comparison of clear day selection methods. Results and discussion. 144 

We use GSR data recorded from 2005 to 2009 in southern Algeria to compare the efficiency of CDSM relative to 145 

other methods. Let us first present the data set. 146 

4-1. Data set of solar radiation 147 

Data used in this work were collected at the Regional Meteorological Center (Direction Météo Régional Sud, Office 148 

National de la Météorologie, Algeria) at Tamanrasset (22.79°N, 5.53°E, 1377 m a.s.l.) in southern Algeria between 149 

2005 and 2009. Instruments and methods for data collection are the same as those described in detail by Djafer and 150 

Irbah (Djafer and Irbah 2013). The main difference is that the three components of solar radiation are recorded every 151 

minute at Tamanrasset together with temperature, humidity and pressure. Instruments that measure direct, global and 152 

diffuse solar radiation components are EKO type instruments (http://eko-eu.com/) (see Figure 6). They are cleaned 153 

two to three times a week depending on weather conditions and calibrated every three years. Data were calibrated 154 

with the TSI of 1367 ܹ/݉ଶsince it was the current value at this period (2005 - 2009). A correction factor is applied 155 

to the data since the TSI of 1361 ܹ/݉ଶ is now adopted. This factor is the ratio between current and previous TSI. 156 
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Figure 6. Radiometric station for measuring global, direct and diffuse solar radiation: (1) Pyranometer for measuring 

the global solar irradiance. (2) Pyranometer for measuring the diffuse. (3) Pyrheliometer for measuring the direct 

solar irradiance, (4) Shaded pyranometer. (5) The 2-axis solar tracker. 

4-2. Results and discussion 157 

We used the five years of GSR measurements (see section 4.1) and determined clear days present in the data set with 158 

the clearness index, wavelet based method (Djafer et al. 2017) and CDSM. Results are given in Table 1 and plotted 159 

in Figure 7 where error bars are one standard deviation. ݇௧ values widely used in the literature to select clear days 160 

were considered for the comparison, that is ͲǤͷ  ݇௧  ͲǤͺ. 161 

Table 1. Number of clear days per year selected with different methods 

Years 2005 2006 2007 2008 2009 

Wavelet method 59 30 65 98 24 

CDSM 136 133 173 173 120 

 305 322 319 316 303 0.5=࢚

 254 274 279 254 244 0.6=࢚

 139 170 158 133 114 0.7=࢚

 7 14 6 7 2 0.8=࢚
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Figure 7. Number of clear days selected with the different methods: number per year (left) and per month (right). 

We observe in the left plot of Figure 7 that the number of clear days per year obtained with CDSM is close to what is 162 

found with ݇௧ ൌ ͲǤ. Lower ݇௧ values overestimate the number of clear days while higher ones underestimate it. The 163 

wavelet method seems to underestimates the yearly number of clear days due to excessive constraints on GSR 164 

disturbances when setting the selection threshold. The three methods show the same trend of the yearly number of 165 

clear days with a maximum around 2008. If we look at the monthly values of clear days computed over the period 166 

2005-2009, we observe a difference between CDSM results and those obtained with the clearness index with ݇௧ ൌ167 

ͲǤ (see right plot of Figure 7). Curves have similar shapes but the number range for the clearness method is large 168 

relative to the CDSM one. There is quasi no clear days found for months between May and August with ݇௧ ൌ ͲǤ 169 

leading to suppose that its value needs to be adjusted during processing as reported in section 1. We note that the 170 

number of clear days at Tamanrasset is lower during the months of May and September-October compared to the 171 

others.  172 

Finally, we compared GSR of clear days obtained with both ݇௧ ൌ ͲǤ and CDSM to those estimated by the model 173 

described in Zaiani et al. (2017). This parametric model used Artificial Neural Network to estimate GSR of a given 174 

clear day. We used several parameters to quantify the comparison among which are the root mean square error 175 

(rmse), the normalized root mean square error (nrmse), the mean absolute percentage error (mape), the dependence 176 

of model error (mbe) and the normalized dependence of model error (nmbe). Comparison results are given in Table 177 

2. We note that the model fits better the measured GSR of clear days determined with CDSM. Indeed, we have a 178 

mean ܴଶ of 0.97, an rmse of 25.28 ܹ/݉ଶ, an mbe of 2.09 ܹ/݉ଶ and a mape of 4.16 % while we have a mean ܴଶ of 179 
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0.94, an rmse of 42.58 ܹ/݉ଶ, an mbe of 1.97 ܹ/݉ଶ and a mape of 7.55 % for the clearness index method. Figure 8 180 

plots the correlation between daily average measured GSR of clear days selected with CDSM (left plot) and with the 181 

clearness index method (݇௧ ൌ ͲǤ) (right plot) versus daily average calculated GSR. We note that GSR of clear days 182 

selected with CDSM are very well correlated with the model compared to what we obtain with the clearness index 183 

method. The correlation factor is 0.99 for CDSM and 0.95 using ݇௧ criteria. We may conclude when looking at this 184 

plot that we can be confident in the results obtained from CDSM. 185 

Table 2. Annual average errors between measured and calculated GSR 186 

Method Errors 2005 2006 2007 2008 2009 Average 

CDSM 

rmse (ܹ/݉ଶ) 24.63 24.72 26.75 25.51 24.79 25.28 

nrmse (%) 3.63 3.64 4.43 4.19 3.54 3.88 

mape (%) 4.26 4.27 5.33 5.01 4.20 4.16 

mbe (ܹ/݉ଶ) 2.01 2.00 2.25 2.15 2.05 2.09 

nmbe (%) 0.27 0.27 0.59 0.55 0.27 0.39 

ܴଶ 0.99 0.99 0.95 0.95 0.99 0.97 

kt 

rmse (ܹ/݉ଶ) 42.00 41.45 44.11 37.47 47.84 42.58 

nrmse (%) 6.92 6.60 7.07 5.89 7.38 6.77 

mape (%) 7.56 7.29 7.82 6.68 8.40 7.55 

mbe (ܹ/݉ଶ) 1.24 2.97 2.89 2.54 -0.2 1.97 

nmbe (%) 0.11 0.43 0.40 0.35 0.03 0.27 

ܴଶ 0.94 0.94 0.94 0.95 0.93 0.94 

 

Figure 8. Correlation between daily average of calculated and measured GSR obtained with CDSM (left) and with 187 

the clearness index�with �୲ ൌ ͲǤ�ሺ�����ሻ�. 188 
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5- Conclusion 189 

A new method to select clear days in data sets of solar radiation is presented in this work. This method we denoted 190 

CDSM, is based on NLMS algorithm. We first compared CDSM to the clearness index method taking the most used 191 

value ݇௧ ൌ ͲǤ and found that our method gives a higher number of clear days when using the same data set. We 192 

took a data set of 5 years of solar radiation measurements collected at the Tamanrasset ONM. We then validated 193 

CDSM using the clear days selected by both methods to model daily GSR. The analysis of the difference between 194 

GSR of the clear days selected with CDSM and calculated for these days with the model shows a very good 195 

agreement. We found that yearly values vary between (i) 4.20 and 5.33 % for mape, (ii) 0.95 and 0.99 for ܴଶ, (iii) 196 

24.63 and 26.75 ܹ/݉ଶ for rmse and (iv) 2.00 and 2.25 ܹ/݉ଶ for mbe. Finally, we performed a comparison of daily 197 

average GSR of clear days obtained with both CDSM and the clearness index method with ݇௧ ൌ ͲǤ and those 198 

estimated with the model. We found that the GSR of clear days selected with CDSM are better correlated with the 199 

model than those obtained with the clearness index method. The correlation coefficient is 0.99 for CDSM and 0.95 200 

using ݇௧ criteria. We can emphasize that our method was developed using daily measured GSR but may also be 201 

adapted to detect clear and turbid short periods in measurements. These short periods are very useful for studying 202 

the environment and regional frequency of clouds. In addition, knowledge of the occurrence of clear days on a site 203 

also has many other interests. This is particularly the case before any photovoltaic or thermal installation for which 204 

solar radiometric measurements over a longer or shorter period are necessary. Our work is then very useful to give 205 

the relevant information on the number of clear days for a given site and consequently to predict the energy that 206 

these facilities will produce in this region. 207 

References  208 

Ahmed MA, Ahmad F, Akhtar MW (2008) Estimation of Global and Diffuse Solar Radiation for Hyderabad, Sindh, 209 

Pakistan. Journal of Basic and Applied Sciences 5: 73-77 210 

Alves MdC, Sanches L, Nogueira JDS, Silva VAM (2013) Effects of Sky Conditions Measured by the Clearness 211 

Index on the Estimation of Solar Radiation Using a Digital Elevation Model. Atmospheric and Climate 212 

Sciences 3: 618-626 213 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



13  

Badescu V, and Gueymard CA, Cheval S, Oprea C, Baciu M, Dumitrescu A, Iacobescu F, Milos I, Rada C (2013)     214 

Accuracy analysis for fifty-four clear-sky solar radiation models using routine hourly global irradiance 215 

measurements in Romania. Renewable Energy 55: 85-103 216 

Bendt P, Collares-Pereira M, Rabl A (1981) The frequency distribution of daily insolation values. Solar Energy 27: 217 

1-5 218 

Capderou M (1987) Modèles Théoriques et Expérimentaux. Atlas Solaire de l’Algérie, Tome 1, Vol. 1 et 2, Office 219 

des Publications Universitaires, Algérie 220 

Dixit S, Nagaria D (2017) LMS Adaptive Filters for Noise Cancellation: A Review. International Journal of 221 

Electrical and Computer Engineering (IJECE) 7: 2520 2529 222 

Djafer D, Irbah A (2013) Estimation of atmospheric turbidity over Ghardaia city. Atmospheric Research 128: 78-84 223 

Djafer D, Irbah A, Zaiani M (2017) Identification of clear days from solar irradiance observations using a new 224 

method based on the wavelet transform. Renewable Energy 101: 347- 355 225 

Gueymard CA (2012) Clear-sky irradiance predictions for solar resource mapping and large-scale applications: 226 

Improved validation methodology and detailed performance analysis of 18 broadband radiative models. 227 

Solar Energy 86: 2145-2169 228 

Gupta N, Bansal P (2016) Evaluation of Noise Cancellation Using LMS and NLMS Algorithm. International Journal 229 

of Scientific & Technology Research 5: 69-72 230 

Hadei SA, lotfizad M (2010) A Family of Adaptive Filter Algorithms in Noise Cancellation for Speech 231 

Enhancement. International Journal of Computer and Electrical Engineering, Vol. 2, No. 2 232 

Hamidia M, Amrouche A (2016) Improved variable step-size NLMS adaptive filtering algorithm for acoustic echo 233 

cancellation. Digital Signal Processing 49: 44-55 234 

Iqbal M (1983) An Introduction to Solar Radiation. Academic Press, Toronto 235 

Kaskaoutis DG, Kambezidis HD (2008) Comparison of the Angstrom parameters retrieval in different spectral 236 

ranges with the use of different techniques. Meteorol Atmos Phys 99: 233–246  237 

Khem NP, Binod KB, Balkrishna S, Berit K (2012) Estimation of Global Solar Radiation Using Clearness Index and 238 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



14  

Cloud Transmittance Factor at Trans-Himalayan Region in Nepal. Energy and Power Engineering 4: 415-239 

421 240 

Li DHW, Lam JC (2001) An analysis of climate parameters and sky condition classifications. Building and 241 

Environment 36: 435-445 242 

Li DHW, Lau CCS, Lam JC (2004) Overcat sky conditions and luminance distribution in Hong Kong. Building and 243 

Environment 39: 101-108 244 

Liu BYH, Jordan RC (1960) The interrelationship and characteristic distribution of direct, diffuse and total solar 245 

radiation. Solar Energy 4: 1-19 246 

Mellit A, Kalogirou SA, Shaari S, Salhi H, Hadj Arab A (2008) Methodology for predicting sequences of mean 247 

monthly clearness index and daily solar radiation data in remote areas: Application for sizing a stand-alone 248 

PV system. Renewable Energy 33: 1570-1590 249 

Mohandes MA (2012) Modeling global solar radiation using Particle Swarm Optimization (PSO). Solar Energy 86: 250 

3137-3145 251 

 Myhre G, Shindell D, Bréon FM, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque JF, Lee D, Mendoza B, 252 

Nakajima T, Robock A, Stephens G, Takemura T and Zhang H (2013) Anthropogenic and Natural Radiative 253 

Forcing. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the 254 

Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 255 

Ndilemeni CC, Momoh M, Akande JO (2013) Evaluation of clearness index of Sokoto Using Estimated Global 256 

Solar Radiation. Journal of Environmental Science, Toxicology and Food Technology 5: 51-54 257 

Okogbue EC, Adedokunb JA, Holmgrenc B (2009) Review Hourly and daily clearness index and diffuse fraction at 258 

a tropical station, Ile-Ife, Nigeria. International Journal of Climatology 29: 1035-1047 259 

Quadri A, Manesh MR, Kaabouch N (2017) Noise Cancellation in Cognitive Radio Systems: A Performance 260 

Comparison of Evolutionary Algorithms. IEEE 7th Annual Computing and Communication Workshop and 261 

Conference (CCWC) 262 

Radhika C, Ramkiran DS, Khan H, Usha M, Madhav BTP, Srinivas PK, Ganesh GV (2011) Adaptive Algorithms for 263 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



15  

Acoustic Echo Cancellation in Speech Processing. Ijrras 7 :38-42 264 

Reindl DT, Beckman WA, Duffie JA (1990) Diffuse fraction correlation. Solar Energy 45: 1-7 265 

Reno MJ, Hansen CW, Stein JS (2012) Global Horizontal Irradiance Clear Sky Models: Implementation and 266 

Analysis. Sandia National Laboratories SAND2012-2389 267 

Sahu K, Sinha R (2015) Normalized Least Mean Square (Nlms) Adaptive Filter for Noise Cancellation. International 268 

Journal of Proresses in Engineering, Management, Science and Humanities 1: 49-53 269 

Senkal O (2015) Solar radiation and precipitable water modeling for Turkey using artificial neural networks. 270 

Meteorol Atmos Phys. DOI 10.1007/s00703-015-0372-6 271 

Serban C (2009) Estimating Clear Sky Solar Global Radiation Using Clearness Index, for Brasov Urban Area. 272 

International Conference on Maritime and Naval Science and Engineering, ISSN: 1792-4707 273 

Sharma L, Mehra R (2016) Adaptive Noise Cancellation using Modified Normalized Least Mean Square Algorithm. 274 

International Journal of Engineering Trends and Technology (IJETT) 34: 215-219 275 

Victor HQ, Almorox J, Mirzakhayot I, Saito L (2016) Empirical models for estimating daily global solar radiation in 276 

Yucatán Peninsula, Mexico. Energy Conversion and Management 110: 448-456 277 

Wong LT, Chow WK (2001) Solar radiation model. Applied Energy 69: 191-224 278 

Zaiani M, Djafer D, Chouireb F (2017) New Approach to Establish a Clear Sky Global Solar Irradiance Model. 279 

International Journal of Renewable Energy Research 7: 1454-1462 280 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65


