Hyperspectral Oceanic Remote Sensing With Adjacency Effects: From Spectral-Variability-Based Modeling To Performance Of Associated Blind Unmixing Methods
Abstract
In a very recent paper, we introduced (i) a specific hyper-spectral mixing model for the sea bottom, based on a detailed physical analysis which includes the adjacency effect, and (ii) an associated unmixing method, which is not blind in the sense that it requires a prior estimation of various parameters of that mixing model. We here proceed much further, by first analytically showing that this model can be seen as a specific member of the general class of mixing models involving spectral variability. Therefore, we then process such data with the IP-NMF and UP-NMF blind unmixing methods that we recently proposed in other works to handle spectral variability. Such a variability especially occurs when sea depth significantly varies over the considered scene, and we show that IP-NMF and UP-NMF then yield significantly better pure spectra estimation than a classical method from the literature which was not designed to handle such a variability.