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ARTICLE

No evidence for high-pressure melting of Earth’s
crust in the Archean
Robert H. Smithies 1*, Yongjun Lu1, Tim E. Johnson 2,3, Christopher L. Kirkland 2, Kevin F. Cassidy4,

David C. Champion5, David R. Mole6,7, Ivan Zibra1, Klaus Gessner 1, Jyotindra Sapkota1,

Matthew C. De Paoli1 & Marc Poujol 8

Much of the present-day volume of Earth’s continental crust had formed by the end of the

Archean Eon, 2.5 billion years ago, through the conversion of basaltic (mafic) crust into sodic

granite of tonalite, trondhjemite and granodiorite (TTG) composition. Distinctive chemical

signatures in a small proportion of these rocks, the so-called high-pressure TTG, are inter-

preted to indicate partial melting of hydrated crust at pressures above 1.5 GPa (>50 km

depth), pressures typically not reached in post-Archean continental crust. These inter-

pretations significantly influence views on early crustal evolution and the onset of plate

tectonics. Here we show that high-pressure TTG did not form through melting of crust, but

through fractionation of melts derived from metasomatically enriched lithospheric mantle.

Although the remaining, and dominant, group of Archean TTG did form through melting of

hydrated mafic crust, there is no evidence that this occurred at depths significantly greater

than the ~40 km average thickness of modern continental crust.
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S ilica-rich (felsic) granitic rocks, the dominant rock type of
Earth’s continental crust, exhibit a wide range of chemical
compositions that are indicative of their origin. Within the

range of crustal melting that produces voluminous granitic rocks,
variations in K2O/Na2O ratios mainly reflect variations in source
composition. The dominance of sodic (i.e., K2O/Na2O < 0.6)
granites of the tonalite–trondhjemite–granodiorite (TTG) series,
particularly in the Archean, reflects the fact that most of these
were derived from a hydrated basaltic source1,2, and this trans-
formation to felsic compositions3–6 accounts for as much as 70%
(5) of the Earth’s current volume of continental crust. Melting of
these source rocks occurred under a range of pressures (depths)
that can be monitored through changes in trace element ratios
that are controlled by various pressure-sensitive minerals. Most
important are Sr/Y and La/Yb ratios, which rapidly increase at
pressures above which melting leaves increasingly abundant
garnet (sequesters Y and Yb and other heavy rare earth elements
(HREE)) but decreasing amounts of plagioclase (sequesters Sr) in
the residual source. Thus, it is recognized that melting mafic crust
more enriched in incompatible trace elements such as La, Th, Sr
and K1,7,8, but otherwise compositionally similar to average
modern mid-oceanic ridge basalt, at pressures >1.0 GPa, produces
sodic felsic melts enriched in Sr and La but depleted in Y and Yb,
with Sr/Y and La/Yb both >40, similar to many TTG1,8–10

(Fig. 1a). However, significant volumes of compositionally
appropriate Archean source material have not been identified7,11.

The difficulty in separating the competing effects of source
enrichment from melting pressures are well known6,12. However,
with broad assumptions on the composition of the mafic source,
experimental data and trace element modeling permit a distinc-
tion between medium-pressure (MP) TTG, complying with
compositional ranges expected for melts leaving plagioclase-poor,
garnet-rich, amphibolite residues at 1.0–1.5 GPa (depths of
35–50 km; >60% of global TTG9), and less common high-
pressure (HP) TTG, leaving rutile-bearing eclogite residues at
>2.0 GPa (>70 km; <25% of global TTG)9 (Fig. 1a). Recent studies
have demonstrated the sensitivity of garnet stability to the Mg#

(100 × atomic Mg/(Mg+ Fe) of the source rock, and have shown
that MP TTG may be stable to pressures as low as 0.7 GPa13

(~25) km, well within the depths of modern continental crust
(35–40 km14,15). However, conditions inferred for formation of
HP TTG require crustal melting at extreme depths, seen today
only at tectonic plate boundaries during continental collision or
during deep subduction.

Compositional similarities between TTG and volcanic adakites
(Fig. 1a), a rare product of modern subduction settings, have
fueled arguments that TTG formed during melting of deeply
subducted oceanic crust8–10,14,16. However, it has been argued
that the thermal state of early Earth did not allow for subduction
as we know it today17, or for efficient lithosphere thickening18,
and that HP TTG were extracted from gravitationally unstable
lower crust as it dripped into the mantle16,19,20.

Here we show that whereas HP TTG probably did originate at
high pressures, the chemical signatures used to infer this more
likely reflect source enrichment rather than high melting pres-
sures, and this source was metasomatized lithospheric mantle—
not any form (subducted, dripped) of lower crust. This means
that formation of MP TTG reflects the deepest levels of crustal
melting in the Archean—a process that did not require depths
significantly greater than the ~40 km average thickness of modern
continental crust.

Results
Here, we study a geochemical dataset (Supplementary Data 1) of
Neoarchean felsic volcanic and sub-volcanic rocks from the

Kalgoorlie region of the c 2.7–2.64 Ga Eastern Goldfields
Superterrane (EGST) of the Yilgarn Craton, Western Australia
(Fig. 2). The EGST is a classic Archean granite–greenstone ter-
rane, comprising a basalt-dominated supracrustal greenstone
succession with komatiite, overlain by a dominantly felsic vol-
canic and volcaniclastic succession. These overlie and are intru-
ded by granitic rocks broadly subdivided into TTGs that were
mostly emplaced between 2.69 and 2.66 Ga, and more potassic
monzodioritic to syenogranitic rocks largely formed through re-
melting of pre-existing crust, including TTG, most of which were
emplaced between 2.66 and 2.63 Ga21,22. Within the Kalgoorlie
region, the felsic supracrustal succession is the 2.68–2.66 Ga23

Black Flag Group (BFG), which is dominated by sodic volcanic
and volcaniclastic rocks and compositionally identical
hornblende–plagioclase porphyritic subvolcanic intrusions. The
stratigraphy underlying the BFG is locally intruded by horn-
blende ± plagioclase porphyritic dykes of sodic high-Mg diorite
called sanukitoid (Fig. 3), with magmatic crystallization ages that
overlap those of the BFG24. Rocks of the BFG all record a variable
greenschist facies metamorphic overprint. Therefore, our geo-
chemical data has been filtered to minimize the cryptic geo-
chemical effects of metamorphism and hydrothermal alteration
(see Methods).

Chemical characteristics of sanukitoids. Sanukitoids have high
concentrations of light rare-earth elements (LREE), Sr and Ba and
high Sr/Y and La/Yb ratios like TTG, but additionally have high
MgO, Cr and Ni contents, many with Mg# >60(25) (Fig. 1)
reflecting compositions that equilibrated with mantle peridotite.
Hence, rather than melting of basaltic crust, sanukitoid is thought
to have formed through low-degree partial melting of the litho-
spheric mantle25. The sanukitoid underlying the BFG, for
example, has the same radiogenic Nd isotopic composition as
spatially and temporally related25, and geochemically similar,
mantle-derived lamprophyre (Figs. 1 and 4). As with lampro-
phyre, the enriched geochemical features in primitive sanukitoid,
or their parental magmas, are thought to reflect earlier enrich-
ment of a lithospheric mantle source in incompatible trace ele-
ments, possibly by fluids or melts derived from delaminating
lower crust or subducting oceanic crust25–27.

Petrogenetic affinities of the BFG. Because of broad composi-
tional similarities with TTG, the BFG has been attributed to
melting of deeply subducted basaltic crust28 (Fig. 1). However,
our data indicate a different petrogenesis. The BFG volcanic rocks
form a continuous compositional array extending over a sig-
nificant silica interval (56–73 wt%), and most have much higher
Mg# and higher concentrations of MgO, Cr, Ni, LREE and Sr
than other EGST felsic magmas at silica contents below ~68 wt%
(Fig. 4). The BFG volcanic rocks are eruptive or near-eruptive
sodic sanukitoids and, at low silica contents, are geochemically
and isotopically identical to the age-equivalent sanukitoid intru-
sions from the underlying stratigraphy (Fig. 4). The volcanic
rocks are the evolved equivalents of the sanukitoid intrusions and
represent the first confirmed occurrence of sanukitoid volcanics.
The BFG (including the intrusive sanukitoids) can also be dis-
tinguished by their high La/Nb and low Nb/P ratios (Fig. 4) from
all other felsic rocks of the EGST. Two exceptions include a small
number of high silica (>70 wt%) sodic, high Sr/Y, TTG-like rocks,
which possibly also represent evolved sanukitoid, and rare
hornblende-bearing granites (referred to as the mafic granites29),
the most abundant high-Sr subset of which are also sanukitoids29

(Fig. 5).
The expanded BFG compositional array is also distinct from

global MP TTG, which has lower Mg#, is typically less sodic and
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is relatively enriched in Nb and possibly Zr (Fig. 6). Notably, at
silica contents >68 wt%, the BFG array evolves directly into the
field of HP TTG (Figs. 1, 4 and 6). However, although formed at
mantle depths, the composition of silica-rich BFG is not a
reflection of melting at high pressure. Primitive BFG, with MgO
as high as 8.4 wt% and Mg# >73, already contained ~600 ppm Sr
and ~40 ppm La. Their source was a hydrous plagioclase-poor (or
absent) peridotite. High Sr concentrations and Sr/Y ratios,
therefore, cannot be related simply to melting of plagioclase,
but were an intrinsic feature of this source, which was
lithospheric mantle, not crust. The continuity of the BFG
compositional array over such a wide silica interval strongly
suggests that the composition of silica-rich BFG samples was
achieved through fractional crystallization of primitive BFG
magmas.

Hornblende fractionation of metasomatized mantle melts.
Previous studies30 have suggested that the lamprophyre and
sanukitoid intrusions underlying the BFG are related through
hornblende fractionation. Such a direct genetic relationship is
consistent with our data, which show these rocks to be miner-
alogically transitional, spatially and temporally related25, and to
have virtually identical geochemical and Nd isotope compositions
(Fig. 4). Hydrous and incompatible trace element-enriched
compositions show both lamprophyres and primitive (~8 wt%
MgO; Mg# >70) sanukitoid to reflect very low-degree partial
melting of trace element-enriched peridotite, irrespective of
whether they are directly related magma series.

Experimental work on mantle peridotite under water-saturated
conditions31,32 has demonstrated the stability of amphibole up to
3 GPa and 1050 °C, and the likelihood of subduction-related
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metasomatizm forming hornblende-rich lherzolite at depth as
shallow as ~50 km, with a zone of maximum water-storage
capacity at depths of 80–100 km. Experimental data also show
that hornblende joins the liquidus assemblage before olivine in
hydrated (>6.5 wt% dissolved H2O) mantle-derived mafic mag-
mas33. These results are consistent with requirements that
sanukitoid crystallized from magmas with >7 wt% dissolved
H2O (ref. 34), and with the common occurrence of amphibole
cumulates in the sanukitoid of the Kalgoorlie area (Fig. 3) and
elsewhere34.

A plot of Nb/Ta against Zr/Sm (Fig. 7) has been used to
emphasize the need for an amphibole-rich residual mineralogy

during melting of a mafic source to form TTG35, which typically
plot in the high Zr/Sm, low Nb/Ta field because hornblende, at
Mg# <70, strongly partitions Sm and Nb in preference to Zr and
Ta. The Kambalda lamprophyres and sanukitoid intrusions
studied here have lower Zr/Sm and higher Nb/Ta and,
unsurprisingly, plot in the field expected for arc magmas. The
Nb/Ta ratios for the primitive rocks scatter widely around
primitive mantle values possibly because high Mg# amphibole in
ultramafic source rocks does not effectively fractionate Nb from
Ta35 or because amphibole was exhausted during melting of the
peridotitic source. Irrespective, the combined data for the
lamprophyres, intrusive sanukitoids and BFG shows a distinct
evolutionary trend to higher Zr/Sm and lower Nb/Ta that
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strongly implicates hornblende fractionation and, as seen
previously (Figs. 1, 4 and 6), drives compositions into the field
for HP TTG. A significant control on the low Zr/Sm ratios in
many of the primitive BFG and associated rocks might be the
LREE-enriched metasomatic additions to otherwise incompatible
trace element poor peridotitic source compositions. Sanukitoids
from the Pilbara Craton27, with similar silica contents to those
from the EGST, have higher Zr/Sm (and La/Nb) ratios perhaps

indicating a more significant silicate melt contribution to the
metasomatic addition (see also Fig. 4).

We tested whether the BFG compositional array itself could
also reflect fractional crystallization of a hornblende-rich
assemblage (Fig. 8). In view of the scatter in data for some trace
elements, we computed linear best-fits to the data and verified
these models against trends in kernel density diagrams. In this
way, we estimated the compositions of a primitive and evolved
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BFG sanukitoid in a single evolution interval from 56 to 69 wt%
SiO2 (Supplementary Table 1).

Only models involving Rayleigh fractional crystallization of
hornblende-dominated fractionation assemblages, with minor
apatite and accessory zircon, closely matched the target
compositions (Fig. 8), and the required 20 to 30% crystallization.
These crystallization estimates are consistent with the modeled
increase in silica from 56 to 69 wt% and demonstrate the strong
affect that fractionation of silica-poor minerals such as horn-
blende (~45 wt% SiO2) have on expediting the transition from
mafic to felsic magma compositions. Close matches between
model and target compositions were obtained for 30% removal of
an assemblage comprising 96.8% hornblende, 3% apatite and
0.2% zircon (Supplementary Table 1), although the modeled
melts developed a slight positive Eu-anomaly. Addition of a small
amount of plagioclase to the assemblage (81.7% hornblende, 15%
plagioclase, 3% apatite and 0.3% zircon) reduced the effect that
amphibole removal had on Eu and produced overall tighter fits
with the model target liquids. Concentrations of LREE, Nb and
Ta increased marginally instead of showing a predicted constant

to marginal decrease in concentration but remained well within
the natural array of the BFG. For the modeled fractionating
assemblages, the bulk distribution coefficients for Nb (ƩDNb) are
close to unity (1.02 and 0.90). Several studies of calc-alkaline
magmas indicate DNb values for amphibole higher36–38 than the
value selected here (0.8 (ref. 39)), ranging to 2.5, which might
account for the observed trends for Nb, including the inflection to
decreasing values at SiO2 >68 wt%, although this might also
reflect the late onset of zircon fractionation (zircon DNb ~ 50;
Supplementary Table 1) at a similar SiO2 concentration
(Supplementary Fig. 1). Hornblende and apatite preferentially
incorporate Dy over Yb (i.e., DDy >DYb; Supplementary Table 1)
and so fractionation of these minerals should lead to decreasing
Dy/Yb in residual magmas (considered the hallmark of
hornblende fractionation40). Both the BFG compositional array
and our model results, show a very slight overall increase in Dy/
Yb, although this ratio initially decreases in the BFG array over a
wide silica interval up to ~68 wt% SiO2 (Supplementary Fig. 1),
where subsequent increase might again reflect the onset of zircon
saturation and removal (DDy « DYb in zircon; Supplementary
Table 1).

Modeling evolution at SiO2 contents >69 wt% was not
attempted because of the added complications that significant
removal of plagioclase and zircon (and potentially other accessory
minerals) might have, as heralded by downward inflections in Sr
and possibly Zr concentrations at SiO2 >66 wt%. Although the
data for Sr are very scattered, the combined data for the
sanukitoid intrusions and the broad trend in data for the BFG
data does indicate a relatively strong initial increase in Sr
concentrations to a plagioclase saturation point at ~66 wt% SiO2

and at ~1100 ppm Sr, followed by a rapid decrease in Sr
concentration. For a primitive magma with ~56 wt% SiO2 and
~700 ppm Sr, and assuming Sr is perfectly incompatible (i.e.,
plagioclase is unstable), concentrations of ~1,100 ppm Sr are
attained through only slightly more than 25% crystallization.
Hence, the requirement for a minor amount of plagioclase
fractionation is realistic, providing this occurs relatively late in the
crystallization history (i.e., reflects only the evolution interval
after the Sr inflection at ~66 wt% SiO2).

HP TTG are hornblende-fractionated mantle melts.
Hornblende-dominated fractionation of hydrous mantle-derived
calc-alkaline basaltic melts has long been advanced as an alter-
native to deep crustal garnet-present melting for the formation of
sodic felsic magmas with the high Sr/Y and La/Yb ratios of
adakite or TTG41. These ideas have typically been rejected for
TTG, primarily because neither the lower-silica segment of such a
putative liquid line of descent (or crystallization path) nor the
complimentary hornblende ± garnet cumulates are commonly
recognized in the fragmented record of Archean terranes6. The
absence of appropriate residual mineral assemblages is a problem

Fig. 4 Compositional comparisons between the Black Flag Group (BFG) and contemporaneous regional felsic volcanics. Variations in selected major and
trace elements, trace element ratios (Mg# (a), MgO (b), Cr (c), La (d), Yb (e), Sr (f), Nb (g), Sr/Y (h), La/Nb (i) and Nb/P2O5 (j)) and initial Nd isotope
compositions (k) with SiO2 (calculated volatile free) for rocks of the BFG (yellow dots), and regional felsic volcanic rocks from throughout the Eastern
Goldfields Supertarrane (EGST) (green field), and sodic TTG of the EGST (purple field). Nd isotope data are plotted in Ɛ notation and calculated at 2.69 Ga
(see Supplementary Table 2) (maximum error in Nd isotope determinations equate to ±0.5 Ɛ units—see error bar in Fig. 4k). Dashed lines outline kernel
density plots comprising 90% of the data (see Methods). Red lines in a and c are the lower limit for sanukitoid at ~60 wt% SiO2 (ref. 25).
Contemporaneous sanukitoid intrusions (black dots) into the stratigraphy beneath the BFG are also shown. These are typically less altered than their
volcanic equivalents and show better constrained trends for Sr, although this follows the trend of highest data density within the filtered BFG dataset,
suggesting the scatter in BFG data at lower Sr concentration reflects plagioclase-destructive alteration that filtering has not removed. The regional felsic
volcanic data include the volcanic equivalents of the main intrusive (granitic) suites recognized throughout the EGST29 (see also Fig. 5). Unlike many
sanukitoids, the BFG have low Nb concentrations with wide ranges in La/Nb, mainly reflecting variable La at relatively constant Nb. This points more to
source enrichment through fluid rather than melt-metasomatism.

N
b 

pp
m

P2O5 wt%

30

20

10

0
0.0 0.1 0.2 0.3 0.4 0.5

HFSE granites

Low-Ca granites

High-Ca granites (∼TTG)

Mafic granites

Black flag group

(Sanukitoid intrusions)

Fig. 5 Compositional comparison between sanukitoids and other granitic
rocks of the Eastern Goldfields Supertarrane. Variation in Nb
concentration with concentrations of P2O5, comparing sanukitoids
(including the volcanic rocks of the Black Flag Group) with granites of the
eastern Yilgarn Craton. Granites in the Yilgarn Craton have been divided
between two main groups29 (High-Ca and Low-Ca granites) and two minor
groups (high field-strength element (HFSE) granites and mafic granites).
See Data Availability for the source of geochemical data for the eastern
Yilgarn Craton granites.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13547-x

6 NATURE COMMUNICATIONS |         (2019) 10:5559 | https://doi.org/10.1038/s41467-019-13547-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


regardless of the model chosen to explain TTG genesis but sug-
gests that the lower-crustal segments where these rocks formed is
nowhere exposed or preserved. In terms of the required liquid
line of descent, the greenstones of the Kalgoorlie region are
among the most studied major Archean supracrustal sequences
on Earth. Here, the full high Sr/Y sodic liquid line of descent
connecting primitive sanukitoid magmas with Mg# >70 to HP-
TTG-like compositions forms one of the most conspicuous
stratigraphic components of the regional greenstone sequence
but, to date, is a feature that has not been recognized. Removing
amphibole, with only ~45 wt% SiO2 can drive a BFG-type magma
from ~56 to ~70 wt% SiO2 through <30% crystallization, con-
sistent with our trace element modeling. Consequently, inter-
mediate links in a liquid line of descent, here and in other
Archean terranes, might simply have been overlooked. If evidence
for the primitive stages of a liquid line of descent is not available
or not recognized, an assumption that evolved (i.e., SiO2 >70 wt
%) rocks reflect melting of mafic crust at very high pressure could
incorrectly be made.

A closer comparison with the global TTG data shows that the
evolved end of the BFG array consistently intersects only a
specific, albeit significant, part of the HP TTG field (Fig. 6) (high-
Sr TTG). This is well demonstrated on a plot of Sr/Y vs. Y
(Fig. 6g), but these sodic, (trondhjemitic), fractionated BFG rocks
all carry critical compositional attributes of TTG; most samples
having K2O/Na2O < 0.5, Sr/Y > 100, Sr > 700, Yb < 0.4 ppm, and
La/Yb > 60 at SiO2 > 70 wt%, with a negligible or no Eu-anomaly.
The remainder (second group) of the HP TTG samples typically
lie within or marginal to the field for MP TTG for most
compositional criteria, including elements such as Sr and Nb,

used to infer the stability of pressure-sensitive minerals such as
plagioclase and rutile. The trend for Sr vs. SiO2 (Fig. 6h) for the
second group closely replicates that for MP TTG and is distinct
from the steep trend shown by the high-Sr TTG. Members of the
second group are probably better regarded as MP TTG than as
very high-pressure crustal melts. Likewise, it is also very unclear
that the high-Sr TTG reflect high-pressure crustal melts. Like the
BFG rocks, these rocks clearly have compositions consistent with
melting of metasomatized mantle lithosphere, and subsequent
hornblende-dominated fractionation. The high-Sr TTG might
reflect cases where an apparent absence of evidence for the
primitive stages of a liquid line of descent has resulted in
incorrect petrogenetic interpretations. What is also apparent is
that the abundance of TTG that could be interpreted as very high-
pressure crustal melts, based on geochemistry, has likely been
significantly overestimated.

We further examine potential genetic links between sanukitoid
and rocks with HP TTG-like signatures by considering Nd
isotopic compositional variations in c. 2.66–2.70 Ga granitic rocks
from the Eastern Goldfields Superterrane that either fall within
the high-Sr field of the hornblende-bearing mafic granites
(regional sanukitoid plutons)21,29,42, or that can be confidently
classified as TTG (i.e., K2O/Na2O < 0.6, Sr/Y and La/Yb both > 40;
see Methods), none of which were available to the global TTG
dataset of ref. 9. The EGST TTG were subdivided in the same way
as the global HP TTG data set. This produced a high Sr/Y
subgroup (EGST high-Sr TTG) with HP TTG-like signatures and
that follows the trend defined by the high-Sr mafic granites, and a
second, lower Sr/Y, subgroup that closely overlaps the field for
MP TTG (EGST MP TTG subgroup; Fig. 9a). The former
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subgroup is compositionally indistinguishable from the high-Sr
TTG subgroup of the global HP TTG data that followed the BFG
hornblende fractionation trend (Fig. 9). It also shows a broad
range of radiogenic Nd isotope compositions (ƐNd +1.0 to +3.6)
that approaches Depleted Mantle values and that completely
encompasses the range for the BFG (ƐNd mostly +1.5 to +2.7),

sanukitoid and lamprophyre intrusions from the stratigraphy
underlying the BFG (ƐNd mostly +1.6 to +2.7), as well as
extensively overlapping the range for the most radiogenic basaltic
and komatiitic units of the regional greenstone stratigraphy (ƐNd
+1.8 to +5.4 (ref. 43)) (Fig. 9d). This isotopic range is largely
distinct from that of the generally less radiogenic EGST MP TTG
(ƐNd +1.5 to –1.3), which clearly requires a petrogenesis
involving greater interaction with isotopically evolved crust.

In the case of the EGST high-Sr TTG, requirements that the
mafic source for TTG was significantly more enriched in
incompatible trace elements than typical Archean tholeiite7,44,
rules out melting of lower crustal equivalents to the MORB-like
tholeiitic magmas that dominate all eastern Yilgarn greenstone
sequences, unless that bulk source also incorporated a Th- and
LREE-enriched crustal component, which our Nd isotope data do
not permit. The EGST high-Sr TTG are compositionally and
isotopically equivalent to the evolved BFG and the mafic granites
which evolved through hornblende-dominated fractionation.
Based on the high MgO content and Mg# (up to 8.4 wt% and
73, respectively) of primitive BFG rocks and on their isotopic and
compositional equivalence with temporally and spatially asso-
ciated lamprophyres (MgO up to 11.7 wt%, Mg# up to 73),
primitive BFG magmas were partial melts of incompatible trace
element enriched and hydrated peridotite. Average depleted
mantle model ages (T2DM

45—the average mantle extraction age of
all components in the bulk source), ~2.83 Ga for the lampro-
phyres and ~2.86 Ga for the BFG, are close to the magmatic ages
and indicate metasomatic source enrichment occurred only
shortly before magmatism.

Discussion
Rocks that have been classified as HP TTG form <25% of global
TTG data9 but are considerably less common in Australian
Archean cratons (<3% in the Pilbara Craton; no data for the
Yilgarn Craton). We suggest the global figure is a significant
overestimate. It comprises rocks that are better classified as MP
TTG that did not form through melting at extraordinary depths,
and fractionated sodic sanukitoids representing relatively small
volume magmas derived through melting of enriched mantle
lithosphere, not of mafic crust. Thus, there is no clear evidence for
melting of Archean mafic crust at extraordinary depths.

Evidence for subduction in the Archean points more to short-
lived periods of incipient, or failed, subduction46–48, ephemeral
within a prevailing stagnant-lid regime46. This process, never-
theless, permits early slab-breakoff and the return of mafic
material to the mantle49, required to balance the production of
new primary mafic crust in other environments. Arguably more
important in terms of recycling crust is dripping of gravitationally
unstable residual assemblages of mafic lower crust that has
already yielded a felsic melt9,14,16. Neither model necessarily relies
on extraction of TTG melts during crustal recycling itself, but
both environments have been suggested as sites where the
inferred very high-pressure Archean felsic crust formed. Our
evidence is that TTG has not been directly extracted from sub-
ducting or dripping mafic crust, and that HP TTG-like signatures
do not form evidence for these recycling models. MP TTG reflect
the deepest range of crustal melting during the Archean. These
form through direct partial melting of mafic crust, which is a far
more efficient means of producing the large felsic magma
volumes typical of MP TTG than fractional crystallization6,50.
Available data indicate that this melting occurred at depths of
25–45 km, still within the range of modern continental crust
(35–40 km14,15). They nevertheless preserve evidence for garnet-
present melting that is only rarely seen in granites from con-
vergent margins, where modern felsic crust is formed41. Hence,
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we suggest that it is the composition and crustal level of melt
zones that has changed through time, not crustal thickness
(Fig. 10).

Post-Archean felsic crust forms in the mid- to lower crustal
regions of continental arcs above subduction zones. Here,
hydrated mantle-derived magmas intrude, crystallize and dehy-
drate, and melt and mix with pre-existing, evolved and compo-
sitionally heterogeneous crustal sources51. Melting conditions
vary between those of water-fluxed melting51 and fluid-absent
reactions consuming biotite, but hornblende-bearing felsic melts
are common.

In contrast, the voluminous MP TTG that dominate Archean
crust, and particularly the Archean cratons of Western Australia,
typically contains biotite but little or no hornblende across a wide
silica range52,53. Previous suggestions that TTG represented an
Archean analog of modern hornblende-rich adakite8–10,14,16

highlighted a need for a significantly hydrated source. However,
the dominance of biotite over hornblende reflects generally drier
or more evolved source compositions54,55. Since the source of
TTG was mafic, it seems likely that it was indeed typically not as
hydrated as the source of the hornblende-rich felsic magmas
commonly found in post-Archean subduction settings. Sanuki-
toid represents the main expression of Archean hydrous mafic to
felsic melts, and are rare.

We suggest that in the absence of water-fluxing, crustal melting
to form MP TTG occurred at or near the base of garnet-
amphibolite crust at higher temperatures through reactions
consuming hornblende in more homogeneous, plateau-like mafic
crust7,13. This was likely driven by thermal perturbations, plumes
or mantle upwellings, resulting from delamination or dripping of
dense residuals produced during earlier melting events19,20,56.

In the case of the EGST, our data show the bulk source for MP
TTG to be too evolved in terms of Nd isotopes and too enriched
in incompatible trace elements to be tholeiitic material similar to
the basaltic rocks that dominate the greenstone sequences. These
data require a source that was contaminated with pre-existing
felsic crust, potentially older TTG itself, and highlight a process
whereby TTG simply represents one end member in a
continuum11,53 of sodic to more potassic granites, incorporating
Transitional TTG52,53, reflecting a range of melting conditions
and a source comprising homogeneous mafic crust with varying
proportions of pre-existing felsic material11,52,53. Significant
volumes of isotopically primitive crust with high incompatible
trace element concentrations, appropriate for the source of end
member Archean TTG, have not been identified7. However, an
intriguing possibility is that this source simply reflects tholeiitic
lower crust contaminated, homogenized and weakly hydrated by
primitive sanukitoid, in lower crustal magma chambers.

The source regions of sanukitoids themselves were probably a
local result of mantle metasomatism resulting from localized
incipient, or failed, subduction, or through dehydrating delami-
nating, or dripping, crust. The first recognized occurrence of
upper-crustal sanukitoid at c. 2.95 Ga27 reflects a point where
Neoarchean lithospheric strengthening18 allowed the develop-
ment of lithospheric structures that facilitated efficient extraction,

Fig. 9 Compositional comparisons between the high-Sr mafic granites
and various TTG-like intrusions in the Eastern Goldfields Superterrane
(EGST). a, As with Fig. 6g, we use variations in Sr/Y vs. Y to identify a
group of EGST TTG that lie on the same trend as sanukitoid (in this case
the high-Sr subset of the regional mafic granites42 see Data Availability) –
the EGST high-Sr TTG. b, c, EGST high-Sr TTG, like many rocks classified as
high pressure (HP) TTG, lie at the evolved end of the liquid line of descent
defined by the Black Flag Group (BFG) (black lines) and the high-Sr mafic
granites, whereas the remainder of the EGST TTG fall into the field of
medium pressure (MP) TTG (blue field as from Fig. 6) based on a range of
compositional criteria (c.f. Figure 6h, i); d, Nd-isotope data plotted against
Sr concentration showing the range of overlap, at primitive or radiogenic
isotope ratios, between the high-Sr mafic granites and the EGST high-Sr
TTG, and the limited overlap with EGST MP TTG, which trend to lower ƐNd

at lower Sr concentrations. Also shown is the Nd-isotope range for the BFG
and associated sanukitoid and lamprophyre intrusions as well as for
regional basaltic and komatiitic rocks43. Nd-isotope data are from
refs. 43,60. Maximum error in Nd isotope determinations equate to ±0.5 Ɛ
units—see error bar in Fig. 9d).

55 60 65 70 75

SiO2 wt%

Log Sr ppm

4

2

Regionally voluminous
tholeiites and komatiites

0

0 100 200 1000 1100

S
r/

Y
ε N

d

1000

1400

500

S
r 

pp
m

8

6

0

N
b 

pp
m

a

d

b

c

EGST MP TTGHigh-Sr mafic granites
EGST high-Sr TTG

Lamprophyre 

Sanukitoid
Black flag group

Y ppm

1000

500

0
0 5 10 15 20

E
rr

or

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13547-x ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:5559 | https://doi.org/10.1038/s41467-019-13547-x | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


channeling and upper-crustal emplacement of such deep-sourced
magma (Fig. 10b). Earlier, or in the absence of such structures,
sanukitoid magmas mostly stagnated (Fig. 10a) and contributed
to overlying lower-crustal melt zones and to the wide composi-
tional diversity of MP TTG and Transitional TTG. This process
may perhaps explain the cryptic incompatible element and
volatile enriched components required in TTG source regions.
Those sanukitoid magmas that did ascend to mid-crustal levels
rapidly became felsic through amphibole-dominated fractiona-
tion and have potentially been misidentified as HP TTG.

Methods
Sample location. Samples of the BFG were collected from the Kalgoorlie-
Kambalda area within a 70 × 200 km NW-trending belt bounded between long-
itudes 120.91° and 121.82° and latitudes –31.35° and –30.24°. Samples of regional
felsic volcanic rocks are from sites throughout the EGST and specific locations are
cited in Supplementary Data 2.

Sample selection and data handling. Metamorphic recrystallization of green-
stone lithologies at a minimum of greenschist facies is near ubiquitous in the
EGST. Variable degrees of whole-rock silicification, and weak to moderate
carbonate-sericite-epidote alteration of feldspars is also widespread. Never-
theless, all BFG samples collected specifically for this study are from diamond
drill core and represent, based on visual inspection, the freshest material
available. Many of these drill holes were sited on mineral exploration targets and
so measures were taken to minimize the potential effects of hydrothermal
alteration. In addition to excluding visually altered samples and veined samples,
the following geochemical screens were employed. All samples with analytical
loss on ignition (LOI) >5 wt% were removed. All samples with an aluminium
saturation index >1.1 were removed. Samples with SiO2 (calculated on an
anhydrous basis) >74 wt% were removed. At SiO2 (anhydrous) >60 wt%, only
samples with K2O+Na2O > 4 wt% (anhydrous) were retained. Plotting the
remaining data in terms of CaO vs SiO2 produced well constrained negative
trend, but with distinct outliers constituting >5% of the dataset; these outliers
were removed. These filters left 143 freshest samples (Supplementary Data 1)
from an initial dataset of 205 analyses. Tightly constrained mantle-normalized
trace element plots (Fig. 1) suggest that these measures have certainly minimized
the effects of alteration within samples of the BFG. For typically alteration-
mobile trace elements such as Sr, whose concentration variations are important
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for petrogenetic interpretation of TTG, adakites and sanukitoids and other rocks
in which plagioclase is an important component, filtering still leaves a moderate
scatter of data, but with a clear higher density cloud at high Sr- concentrations
(Figs. 4f and 6c) which concentrates around the better-defined Sr vs. SiO2 trend
for the less altered intrusive sanukitoids that are the intrusive equivalent of
the BFG.

For realistic comparison with our new data, TTG data from ref. 9 was filtered to
remove data with K2O/Na2O >0.6 and Sr/Y <40. The two major granite groups
identified in the EGST have been termed high Ca granites and low Ca granites21,29.
The former typically have K2O/Na2O <1.0 and are broadly equated with TTG. The
latter show extreme enrichments in incompatible trace elements, generally have
K2O/Na2O >1.0 and are melts of compositionally variable crust and were excluded
from this work. Only those high Ca granites with K2O/Na2O <0.6 and Sr/Y >40
were used for comparison with our data. For global Precambrian sanukitoids, we
use the dataset of ref. 58. Sanukitoids show a wide range in K2O/Na2O ratio
reflecting variations in source enrichment, fractional crystallization and crustal
contamination. Again, we restrict our discussion to sodic (K2O/Na2O <0.6)
sanukitoid.

Kernel Density plots included in Figs. 1, 4, 6 and 9 were created using ioGAS
version 7 software (REFLEX). The intensity of the shade increases with increasing
data density (i.e., the number of data points within a given volume) and the
outlined fields enclose 90% of all data points.

Whole-rock geochemical analysis. New data included in this study were collected
at Bureau Veritas, Perth, Western Australia. Samples were crushed in a plate jaw
crusher and milled in a low-Cr steel mill to produce a pulp with a nominal particle
size of 90% <75 µm. Major and minor elements (Si, Ti, Al, Cr, Fe, Mn, Mg, Ca, Sr,
Ba, Na, K and P) were determined by X-ray fluorescence (XRF) spectrometry on a
fused glass disk and loss on ignition was determined by thermogravimetric analysis.
Trace elements (including Ag, As, Ba, Be, Bi, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Ga,
Gd, Ge, Hf, Ho, La, Lu, Nb, Nd, Ni, Pb, Pr, Rb, Sc, Sm, Sn, Sr, Ta, Tb, Th, Tl, Tm,
U, V, W, Y, Yb, Zn and Zr) were measured by laser ablation ICP–MS on a
fragment of each glass disk earlier used for XRF analysis. Data quality was
monitored by blind insertion of sample duplicates, internal reference materials, and
the certified reference material OREAS 24b. BV Minerals also included duplicate
samples, certified reference materials (including OREAS 24b), and blanks.
Total uncertainties for major elements are ≤1.5%, those for minor elements are
<2.5% (at concentrations >0.1 wt.%) and those for most trace elements are ≤10%
(Lu ±20%).

Sm-Nd isotope analysis. Sm-Nd isotopic values were determined on whole-rock
samples at the Géosciences Rennes Laboratory using a 7 collector Finnigan MAT-
262 mass spectrometer. Samples were spiked with a 149Sm–150Nd solution and
dissolved in a HF-HNO3 mixture. They were then dried and taken up with con-
centrated HCl. In each analytical session, the unknowns were analyzed together
with the Ames Nd-1 Nd standard, which during the course of this study yielded an
average 143Nd/144Nd value of 0.511948 (±5). All the analyses of the unknowns have
been adjusted to the long-term value 143Nd/144Nd value of 0.511963 for Ames Nd-
1. Mass fractionation was monitored and corrected using the value 146Nd/144Nd=
0.7219. Procedural blank analyses yielded values of 200 pg for Nd and are therefore
considered to be negligible.

Data availability
All new geochemical and locational data for samples of the Black Flag Group are provide
in Supplementary Data 1 and Nd-isotope data are provided in Supplementary Table 2.
These data can also be downloaded form from the Geological Survey of Western
Australia’s WACHEM database (http://geochem.dmp.wa.gov.au/geochem/) using the
GeoChem Extract tool and selecting the Whole State option.
The source for geochemical data for samples of the regional felsic volcanic rocks is

given in Supplementary Data 2 and includes published data59 as well as data that can be
downloaded using the given sample numbers from the Geological Survey of Western
Australia’s WACHEM database (http://geochem.dmp.wa.gov.au/geochem/) using the
GeoChem Extract tool and selecting the Whole State option, and from Geoscience
Australia’s OZCHEM National Whole Rock Geochemistry Dataset [https://ecat.ga.gov.
au/geonetwork/srv/eng/catalog.search#/metadata/65464].
Data for Yilgarn Craton granites, including mafic granites are also from Geoscience

Australia’s OZCHEM National Whole Rock Geochemistry Dataset [https://ecat.ga.gov.
au/geonetwork/srv/eng/catalog.search#/metadata/65464].
The high-Sr subset of the mafic granites includes the Liberty, Lanarkshire, Lawlers,

New Celebration, Dinky Boys, Bonnievale, Victory (1 & 2) and Kambalda (1 & 2)
intrusions, and geochemical data for these is available from refs. 21,40.
Data for HP TTG and MP TTG are from ref. 9 but have been filtered to remove data

with K2O/Na2O >0.6 and Sr/Y <40.
Data for sodic sanukitoids are those samples from ref. 58 with K2O/Na2O <0.6.
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