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Quantifying nutrient attenuation at watershed scales requires long-term water chemistry

data, water discharge, and detailed nutrient input chronicles. Consequently, nutrient

attenuation estimates are largely limited to long-term research areas or modeling

studies, constraining understanding of the ecological characteristics controlling nutrient

attenuation and complicating efforts to protect or restore water quality in developed

and developing regions. Here, we combined long-term data and a broad suite of

biogeochemical parameters from 49 watersheds in northwestern France to test how well

instantaneous measurements can predict nitrogen (N) and phosphorus (P) attenuation

at watershed scales. We evaluated 13 biogeochemical and 12 hydrological proxies

of hydrological flowpaths, residence time, and biogeochemical transformation. Across

the 49 watersheds, nutrient attenuation ranged from 88 to −2% for N and 99–96%

for P. The strongest biogeochemical proxies of N attenuation were NO−

3 isotopes,

rare earth elements (REEs), radon, and turbidity, together explaining 75% of observed

variation. For P attenuation, REEs, NO−

3 isotopes, molecular weight of dissolved organic

matter, and radon were the strongest proxies, but only explained 27% of observed

variation. However, a single hydrological parameter—annual runoff—explained 91% of N

attenuation and the relative abundance of schist bedrock explained 56% of P attenuation.

We discuss how runoff both controls and reflects watershed hydrology, biogeochemistry,

and nutrient attenuation. For example, runoff was correlated with long-term decreases

in nutrient concentration, demonstrating how leakier watersheds recover more quickly

from nutrient saturation. Given the immense fertilization capacity of modern society,

we propose that eutrophication can only be solved by reducing nutrient inputs, though

hydrochemical proxies can provide valuable information on where to carry out essential

food production activities.
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INTRODUCTION

Since the Industrial Revolution, humans have more than doubled
reactive nitrogen (N) inputs (Gruber and Galloway, 2008) and
quadrupled phosphorus (P) inputs (Elser and Bennett, 2011)Q6

into the Earth’s ecosystems (Seitzinger et al., 2010; Foley et al.,
2011; Abbott et al., 2018a). Consequently, 80% of freshwater and
coastal ecosystems now experience eutrophication induced by
anthropogenic inputs of N and P (Howarth et al., 2000; GallowayQ8

et al., 2003; Poisvert et al., 2017; Le Moal et al., 2019). Though
recognized as a planetary priority (Foley et al., 2011; SteffenQ23

et al., 2015; Le Moal et al., 2019), efforts to reduce eutrophication
have had mixed results, partly because of two challenges that
emerge at watershed scales (i.e., 1–10,000 km2). First, is the
difficulty to quantify the overall residence time of nutrients in
complex watersheds, which ranges from minutes to millennia
as nutrients may be recycled or stored in plant biomass, soil,
and groundwater (Jarvie et al., 2013; Sebilo et al., 2013; Marçais
et al., 2018; Carey et al., 2019; Kolbe et al., 2019). Second, the
capacity of ecosystems to remove or permanently retain nutrients
via vertical processes such as denitrification or diagenesis is
highly variable, and the socioecological drivers (e.g., watershed
characteristics and agricultural practices) of nutrient removal are
poorly understood (Pinay et al., 2015; Abbott et al., 2016; Dupas
et al., 2018; Goyette et al., 2018; Jarvie et al., 2019).

There are three general fates for nutrients moving through
the soils, riparian zones, surface waters, and aquifers of a
watershed: (1) Retention (i.e., a long or short-term delay) by
biological and physical processes, including nutrient uptake,
sorption, or hydrological residence time (Covino et al., 2010;
Sebilo et al., 2013; Van Meter et al., 2016; Dupas et al., 2017;
Ehrhardt et al., 2019), (2) Vertical removal to the atmosphere
or lithosphere, including denitrification, aeolian transport, or
mineral precipitation with various metals (Groffman et al., 2006;
Seitzinger et al., 2006; Pinay et al., 2018; Randall et al., 2019),
and (3) Longitudinal export from the watershed via surface or
subsurface flow (Burt and Pinay, 2005; Seitzinger et al., 2010;
Abbott et al., 2018a). The reactivity and mobility of organic
and inorganic nutrients depend on and influence biogeochemical
conditions (Abbott et al., 2016; Bernhardt et al., 2017), meaning
that the fate of carbon, N, and P can vary substantially through
time (e.g., storm events or seasons) and in space (e.g., different
watersheds or biomes) (Dupas et al., 2016; Moatar et al., 2017;
Musolff et al., 2017; Minaudo et al., 2019). Consequently,
watersheds with similar nutrient inputs often have completely
different nutrient export regimes, particularly for headwater
watersheds that make up most of the terrestrial-aquatic interface
(Bishop et al., 2008; Abbott et al., 2018b; Helton et al., 2018;
Wollheim et al., 2018). This variability in nutrient attenuation
capacity is likely associated with differences in surface and
subsurface characteristics, including differences in water storage
capacity and residence times, abundance and activity of biotic
nutrient sinks (e.g., plant or microbial assimilation, dissimilatory
microbial metabolism) and abiotic factors (e.g., high sorption
capacity in soils, mineral precipitation, presence of chemical
reducers in bedrock) (Hansen et al., 2002; Aquilina et al., 2012,
2018; Thomas and Abbott, 2018; Kolbe et al., 2019). All these

factors are influenced by changes in hydrological connectivity,
uneven distribution of reactants and organisms due to the co-
evolution of surface and subsurface characteristics, and the
stochastic nature of human and natural disturbance (Hansen
et al., 2000; Thomas et al., 2015; Covino, 2017; Moatar et al.,
2017).

Despite advances in understanding nutrient dynamics, it
remains difficult to quantify nutrient retention and removal
on timescales matching hydrological and nutrient residence
times (Vitousek, 2004; Pinay et al., 2015; Feng et al., 2018;
Ehrhardt et al., 2019). Additionally, many nutrient attenuation
studies focus on single-nutrient dynamics, despite the fact
that eutrophication is caused by interactions among multiple
nutrients and factors (Carpenter et al., 1998; Elser et al.,
2007; Paerl et al., 2016; Hobbie et al., 2017; Le Moal et al.,
2019). Consequently, there is no straightforward way to predict
a watershed’s sensitivity to high nutrient inputs, seriously
limiting our ability to prevent eutrophication or improve
water quality where it has already been degraded. Quantifying
nutrient attenuation at the watershed scale involves lengthy
data acquisition and costly infrastructure (Burt, 1994; Howden
et al., 2010; Burt et al., 2011), which are not always available
in developing nations where agriculture and urbanization are
intensifying fastest (Seitzinger et al., 2010; FAO ed., 2017; Dupas
et al., 2019b).

In this context of variability, two conceptual approaches
for predicting nutrient attenuation are the hot spots/control
points concept, which predicts where and when biogeochemical
reactions aremore likely to occur (McClain et al., 2003; Bernhardt
et al., 2017) and the Damköhler number, which uses the ratio
of residence time to reaction time to predict how much of a
solute can be transformed or retained (Ocampo et al., 2006;
Zarnetske et al., 2011; Oldham et al., 2013). Pinay et al. (2015)
and Abbott et al. (2016) proposed to combine these concepts
in the HotDam framework by combining multiple proxies
of biogeochemical transformation, hydrological flowpaths, and
hydrological residence time. Combining or crossing multiple
proxies such as solute and isotopic concentrations, hydrograph
properties, and organic matter can illustrate terrestrial and
aquatic conditions across nutrient flowpaths (Pinay et al.,
2015; Abbott et al., 2016; Shogren et al., 2019), potentially
paving the way for a more systematic understanding of what
controls nutrient attenuation in watersheds. Here, we apply
the HotDam framework to identify controls on attenuation
of N and P in 49 small to medium watersheds in Brittany,
France using a crossed-proxy approach. Our overarching goals
were to understand the drivers of nutrient attenuation in
agricultural watersheds and test how well nutrient attenuation
could be predicted with easily measurable proxies. These proxies
included nutrient stoichiometry, organicmatter biodegradability,
dissolved gases, rare earth elements (REEs), nitrate isotopes,
and hydrograph parameters (Figure 1). We hypothesized that
nutrient attenuation would be controlled by the hydrological
properties of the watersheds (e.g., water residence time and
dominant flowpaths), surface and subsurface characteristics
(e.g., land use, topography, geology), and biogeochemical
conditions (e.g., stoichiometry and spatiotemporal distribution

Frontiers in Environmental Science | www.frontiersin.org 2 December 2019 | Volume 7 | Article 200

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

Frei et al. Leaky Legacies

FIGURE 1 | Conceptual diagram of the crossed-proxy approach we used to investigate controls on watershed-scale nutrient attenuation. We hypothesized thatQ4

Q5 watershed-scale nutrient attenuation was a function of water flowpath (red), residence time (purple), and biogeochemical reactivity (pink).

of electron donors and acceptors; see Table 1). We tested
these hypotheses by calculating mass balances of N and P for
each watershed using 10 years of local, regional, or national
agency data, and then sampling the watersheds three times
across flow conditions and seasons to analyze the broad suite
of proxies.

MATERIALS AND METHODS

Site Description and Experimental Design
The Brittany region of northwestern France has a rich repository
of environmental data generated by academic and governmental
research. For example, 27 of the 49 watersheds in this study
had a nearby surface water monitoring station, which provided
the concentration and discharge data necessary to calculate
annual nutrient fluxes and long-term trends (Fovet et al., 2015;
Thomas et al., 2019) and estimates of nutrient input were
available for all watersheds (Poisvert et al., 2017). More generally,
these intensively-managed, agricultural landscapes experience
high but decreasing nutrient inputs, providing insight into how
watershed-level nutrient fluxes respond to changes in nutrient
loading (Galloway et al., 2008; Sutton et al., 2013; Poisvert et al.,
2017). The region is a part of the Armorican massif which is
composed of metamorphic and igneous rock, primarily granite,
schist, and micaschist (Aquilina et al., 2012; Goderniaux et al.,
2013; Kolbe et al., 2016). The climate is temperate oceanic,
with a mean annual temperature of 11.2◦C and mean annual
rainfall ranging from 1,400mm in the west to 600mm in the

east, relatively well-distributed throughout the year (Gascuel-
Odoux et al., 2010; Thomas et al., 2015, 2019). The area has an
average stream density of about 1 km km−2, relatively shallow
groundwater, and hydromorphic riparian soils that cover about
20% of the land surface (Mourier et al., 2008; Dupas et al., 2013;
Marçais et al., 2018). Land use is dominated by row crops, indoor
pig and poultry husbandry, and pastureland for cows (a mean
of 80% agricultural cover across the study watersheds; Table S1),
making Brittany one of the highest density regions in France
and Europe for animal breeding (Gascuel-Odoux et al., 2010;
Poisvert et al., 2017; Kim et al., 2019). N and P concentrations in
many Brittany watersheds are decreasing, attributable primarily
to reduction of point sources such as wastewater and feedlot
effluent (Moatar et al., 2017; Abbott et al., 2018b; Dupas et al.,
2018).

We analyzed stream water chemistry in 49 agricultural
watersheds ranging from 2.38 to 2,080 km2 (Figure 2). Most of
the watersheds were small to medium sized (mean area = 232
km2, median area = 18.2 km2), which was a consequence of
Brittany’s geography as a peninsula and our design to capture
variability in headwater watersheds that make up the majority
of the land-water interface ((Burt and Pinay, 2005; Bishop et al.,
2008; Heathwaite, 2010)). Sampling points were typically near
the coast, but above the zone of tidal influence (Figure 2).
To capture variable flow conditions and seasonal differences,
we collected samples during 3 field campaigns in November
2015 (lowest flow), March 2016 (highest flow), and June 2018
(moderate flow; Figure S1). During each field campaign, we
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TABLE 1 | List of proxies in our analysis and predictions of how they might affect nutrient attenuation.Q5

Proxy N attenuation P attenuation Flowpath Residence time Biogeochemical

transformation

Explanation

DSi +++ +++ x x Indicator of watershed residence time (Marçais

et al., 2018)

δ15N and δ18O +++ −−− x x More enriched NO−

3 isotopes indicate

denitrification and requisite conditions (i.e.,

NO−

3 , anoxia, electron donor, denitrifying

bacteria; Lehmann et al., 2003)

REE and Ce anomaly +++ −−− x x Ce anomaly is an indirect tracer of redox

conditions and exposure to DOM (Gruau et al.,

2004); a larger Ce anomaly correlates with

anoxic conditions

Radon +++ +++ x High 222Rn indicates deeper flowpaths (Bertin

and Bourg, 1994)

SUVA254 −−− +++ x x SUVA254 is an estimate for aromaticity of

organic molecules (Weishaar et al., 2003);

higher SUVA254 may correlate with lower

bioavailability

SR +++ −−− x x SR is inversely related to molecular weight of

CDOM (Helms et al., 2008); higher SR

correlates with lower molecular weight and may

indicate more bioavailable compounds (Ewing

et al., 2015)

BDOC +++ −−− x x BDOC measures biodegradability of DOM

(McDowell et al., 2006); higher BDOC could

stimulate denitrification but also nutrient

mineralization

DOC:NO−

3 +++ −−− x x Stoichiometric ratios of C and N can indicate

whether C or N attenuation is more likely

(Sterner and Elser, 2002), and also indicate

hydrologic flowpath because deep flowpaths

have lower C:N ratios

pH +++ −−− x As pH increases, organic colloids become

more electronegative and release adsorbed

phosphate particles (Gu et al., 2019), and C

and N are more available (Glass and Silverstein,

1998)

Turbidity −−− −−− x x Highly turbid systems have large amounts of

suspended solids that can export nutrients

downstream and limit in-network attenuation

Conductivity −−− −−− x x High conductivity can indicate groundwater

inputs or agricultural and urban runoff

Proxies were chosen because they are indicative of hydrologic flowpath, residence time, and/or biogeochemical transformations.

Predicted relationships between proxies and nutrient attenuation assumes increasing concentrations (e.g., higher concentrations of DSi are hypothesized to increase attenuation of N

and P).

sampled all 49 sites within 1 week to capture watershed
signals in comparable hydrological conditions. Seventeen of
the watersheds were independent drainage basins and 32
were nested within the Couesnon and Rance watersheds (23
and 9 nested subwatersheds, respectively), allowing us to
assess nutrient attenuation controls across a greater range of
watershed sizes (Figure 2) and take advantage of previous
research on those sites (Abbott et al., 2018a; Thomas et al.,
2019). Though the sub-watersheds of the Couesnon and Rance
watersheds are geographically close, they span the Brittany-
wide range of observed land use and watershed characteristics
(Table S1).

Conceptual Approach
Nutrient retention and removal (hereafter “attenuation”) involve
multiple hydrological and biogeochemical processes that are
difficult to characterize because many of them are not directly
observable due to long timescales or inaccessibility (e.g.,
groundwater processes) (Aquilina et al., 2018; Kolbe et al.,
2019), 3-dimensional variation in soil characteristics (Sebilo
et al., 2013; Musolff et al., 2015), and nutrient legacies (Van
Meter and Basu, 2017; Ehrhardt et al., 2019). Consequently,
to identify the ecological drivers of nutrient attenuation at
watershed scales, we selected tracers or proxies that could
be associated with hydrological flowpath, residence time, and
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FIGURE 2 | (a) Location of the 49 watersheds sampled during the 3 field campaigns (November 2015, March 2016, and June 2018) in Brittany, France. The

Couesnon watershed is enlarged to show the 23 nested watersheds in greater detail. (b) Distribution of nutrient concentrations for dissolved organic carbon (DOC),

nitrate (NO−

3 ), and Molybdate-Reactive Phosphorus (MRP). Density plots above the Cartesian planes show seasonal shifts in nutrient concentrations along the x-axis.

biogeochemical reactions (Pinay et al., 2015; Abbott et al.,
2016). Informed by the ecological control points concept, which
assesses reaction rates in a spatiotemporal context (McClain
et al., 2003; Bernhardt et al., 2017); and the Damköhler approach
which assesses overall attenuation capacity (Ocampo et al., 2006;
Oldham et al., 2013), we attempted to quantify biogeochemical
and hydrological controls of N and P attenuation at watershed
scales with a crossed-proxy approach (Abbott et al., 2016). We
were particularly interested in why relationships between land
use and stream nutrient concentrations and fluxes often break
down at small scales (Burt and Pinay, 2005; Heathwaite, 2010),
and how well watershed characteristics and easily measured
proxies could predict nutrient attenuation and shine light on
the relative importance of surface and subsurface attenuation

processes (Ben Maamar et al., 2015; Dupas et al., 2019a; Kolbe
et al., 2019) and hydrological time lags in soils, sediments, and
aquifers (Thomas et al., 2012; Sebilo et al., 2013; Van Meter
et al., 2016). To address these questions, we used a diverse
set of physicochemical parameters described in detail in the
Supplementary Information (SI: Proxy Toolbox) and briefly
outlined below (Figure 1).

Proxies of Hydrological Residence Time
and Flowpath
We used (REEs, dissolved silica (DSi), and Radon-222 as proxies
of where water went as it passed through the watershed, what
conditions it experienced, and how long it stayed there (SI:
Proxy Toolbox). The dissolved REE signature of water is initially
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set by the bedrock, but redox conditions can cause selective
changes (Dia et al., 2000; Gruau et al., 2004). Specifically,
cerium (Ce) readily oxidizes to Ce+4 and precipitates in the
presence of oxygen (Moffett, 1990; De Carlo et al., 1997; Braun
et al., 1998), creating a negative Ce anomaly in water that has
experienced consistently oxidizing conditions (Gruau et al., 2004;
Pinay et al., 2015). Because redox conditions and organic matter
availability strongly influence N and P attenuation processes
(e.g., denitrification; P adsorption by Fe-oxyhydroxides) (Stumm
and Sulzberger, 1992; Pinay et al., 2015; Gu et al., 2019), we
tested the relationship between the Ce anomaly of stream waters
with nutrient attenuation at watershed scales. To assess water
residence time, we used DSi concentration, which has been
found to strongly correlate with subsurface residence time in
many hydrogeological contexts (Ayraud et al., 2008; Marçais
et al., 2018). Our DSi estimates of residence time, calculated
using the empirical relationship derived in Marçais et al. (2018),
agreed with estimates derived from chlorofluorocarbons (CFCs)
and other dissolved gases from other studies in this region
(Molénat et al., 2013; BenMaamar et al., 2015; Kolbe et al., 2016).
Radon-222 (222Rn) is another tool to constrain groundwater-
surface water interactions (Bertin and Bourg, 1994; Cable et al.,
1996; Stieglitz et al., 2010). A product of natural radioactive
decay in igneous bedrock, 222Rn has a half-life of 3.82 days,
making it an ideal tracer of deep flowpaths (Oyarzún et al.,
2014). Because deep and long flowpaths increase the likelihood of
encountering redox conditions suitable for N removal pathways
such as denitrification, we measured 222Rn concentration in all
stream water samples.

Proxies of Biogeochemical Transformation
To assess the degree of biogeochemical attenuation of nutrients
and the relative importance of nutrient loading vs. nutrient
removal, we quantified stable isotopes of NO−

3 (δ15N and
δ18O), optical characteristics and biodegradability of dissolved
organic matter (DOM), and nutrient stoichiometry (SI: Proxy
Toolbox). Stable isotopes can indicate nutrient source and
degree of biogeochemical processing (Mariotti et al., 1981;
Lehmann et al., 2003; Malone et al., 2018). NO−

3 isotopes are
particularly useful because NO−

3 is a dominant form of nitrogen
in nutrient saturated ecosystems (Aber et al., 1998), organic
and industrial fertilizers have distinct initial δ15N and δ18O
(Bedard-Haughn et al., 2003; Lohse et al., 2013; Denk et al.,
2017), and denitrification (both heterotrophic and autotrophic)
strongly fractionates NO−

3 isotopes, enriching the residual δ15N
and δ18O (Ayraud et al., 2006; Hosono et al., 2014; Malone et al.,
2018). Therefore, we predicted that watersheds with isotopically-
enriched NO−

3 would have higher N attenuation (Lehmann et al.,
2003) or alternatively that they would have primarily organic
fertilizer (Bedard-Haughn et al., 2003).

We used multiple characteristics of DOM to assess the
degree of biogeochemical processing, nutrient source, and multi-
elemental interactions. DOM has been described as a master
variable that influences multiple nutrient cycles (e.g., it is a major
source of inorganic N and P in nutrient-poor ecosystems) and
general physicochemical conditions (McDowell, 2003; Zarnetske
et al., 2018). DOM consists of dissolved organic carbon (DOC),

N, P and other nutrients in molecular forms ranging from
complex organic molecules to simple compounds. The molecular
composition of the DOM influences its biodegradability and
photoreactivity, affecting its persistence in the ecosystem and
influence on nutrient cycles (Wymore et al., 2018; Harjung
et al., 2019). In addition to biodegradability incubations (details
below), we calculated two optical proxies of DOM composition:
specific ultra-violet absorbance at 254 nm (SUVA254) and the
spectral ratio (SR) of slopes within the 275–290 and 350–400 nm
range (Weishaar et al., 2003; Helms et al., 2008; Vonk et al.,
2015). DOM concentration and characteristics can also indicate
hydrological flowpaths because DOM is less abundant and more
microbially altered in groundwater (Shen et al., 2015; Mu et al.,
2017; Coble et al., 2019).

Nutrient stoichiometry, which is based on conservation of
mass and constant proportions in many organisms, allows
prediction of retention or release of different compounds based
on availability and relative demand (Sterner and Elser, 2002;
Allen and Gillooly, 2009; Helton et al., 2015). We used nutrient
ratios as metrics of flowpath and biogeochemical transformation.
For example, a negative relationship between DOC and NO−

3
has been widely observed in freshwater and estuarine ecosystems
(Sterner and Elser, 2002; Taylor and Townsend, 2010; Stubbins,
2016). This relationship has been primarily attributed to
stoichiometric controls, where abundant DOC promotes NO−

3
removal via denitrification since DOC is the most common
electron donor and in high-DOC watersheds oxygen could be
depleted more rapidly due to mineralization of DOC, resulting
in more anoxic zones where denitrification can occur (Arango
et al., 2007; Fork and Heffernan, 2013; Helton et al., 2015).
Alternatively, the negative relationship between DOC and NO−

3
could simply be caused by a negative correlation between sources,
where watersheds that favor deeper hydrological flowpaths
have a carbon-poor and nitrogen-rich signal (Abbott et al.,
2018b). Therefore, we predicted higher nutrient attenuation in
catchments with greater DOC:NO−

3 ratios.

Hydrograph Metrics
The characteristics of river flow can indicate fundamental
hydrological properties at watershed scales (Fang and Shen, 2017;
Moatar et al., 2017). Higher peak flows during storm events
can indicate greater near-surface runoff, while less responsive
hydrographs and higher base flows between events can indicate
longer residence time and greater proportion of subsurface flow
(Feijoó et al., 2018; Kirchner, 2019). In this context, we calculated
several, non-redundant hydrological metrics (seeTable S2) based
on daily stream flow: (i) themean, (ii) coefficient of variation, (iii)
skewness, (iv) kurtosis, (v) the autoregressive lag-one correlation
coefficient (AR1), (vi) the amplitude, (vii) the phase of the
seasonal signal (Archfield et al., 2014), and (viii) the W2. The
W2 is an index of hydrologic reactivity that is the percentage
of annual discharge that occurs during the highest 2% of flows
(Walsh and Lawler, 1981; Moatar et al., 2013, 2017).

Field and Laboratory Analysis
To quantify the proxies described above, we collected water
samples and measurements from 49 watersheds throughout
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Brittany, France (Figure 2). We selected the 49 sites based on
accessibility, availability of historical data (nutrient input and
export chronicles and land-use data), and to cover a range of
watershed sizes. Field campaigns were in early November of 2015,
late March of 2016, and late June of 2018.

At each site, we collected one 5-L sample of stream water
for immediate sensor readings and eight smaller samples for
laboratory analyses. From the first sample, we used a handheld
multiparameter probe (YSI, incorporated; Yellow Springs, USA)
to measure dissolved oxygen, redox, pH, temperature, and
turbidity. We determined SUVA254 and SR from the same sample
with a field-deployable spectrophotometer (s::can; Vienna,
Austria). For the lab analyses, we immediately filtered subsamples
using a 50mL syringe and two 250mL filter towers. We used
a 0.2µm cellulose acetate syringe filter to prepare samples for
the analysis of cations, REEs, and NO−

3 isotopes. For the first
filter tower, we used a 0.45µm cellulose acetate filter to prepare
samples for Molybdate-Reactive Phosphorus (MRP), anions, and
DOC analysis. For the second tower, we used a 0.7µm glass
fiber filter, which removes most particulates but allows many
bacteria to pass (Vonk et al., 2015), to prepare samples for the
biodegradable DOC (BDOC) bioassay experiment. All filters,
towers, and syringes were pre-rinsed with de-ionized water and
flushed with sample prior to collecting final samples. We also
collected an unfiltered, bubble-free 200mL sample for 222Rn
analysis. These samples were analyzed for 222Rn within 12 h
of sampling using a radon detector (Durridge RAD7 analyzer,
Billerica, USA), with most samples analyzed immediately in the
field. Delayed samples were adjusted for time lags to correct 222Rn
decay. The 222Rn values for the spring sampling were lost due to
operator error.

MRP concentrations were determined colorimetrically via
reaction with ammonium molybdate (Murphy and Riley, 1962),Q12

with a precision of ±4 µg l−1 (Gu et al., 2018). Nitrate
isotope samples were frozen immediately and shipped to
the UC Davis Stable Isotope Facility for analysis of δ15N
and δ18O of NO−

3 by bacterial denitrification assay (McIlvin
and Casciotti, 2011). Isotope ratios of δ15N and δ18O were
measured using a ThermoFinnigan GasBench + PreCon trace
gas concentration system connected to a ThermoScientific Delta
V Plus isotope-ratio mass spectrometer (Bremen, Germany) with
a precision of± 0.4‰ and 0.5‰ for δ15N and δ18O, respectively.
Cations and REE samples were analyzed by inductively coupled
plasma mass spectrometry (ICP-MS; Agilent 7700×, Santa
Clara, USA). Calibration curves and accuracy controls were
performed following best practices (Yeghicheyan et al., 2013),
using river water reference material for trace elements with a
wide compositional range (SLRS-5, National Research Council
of Canada). De-ionized water purified with a Milli-Q (Millipore,
Darmstadt, Germany) system was used for blanks. Total relative
uncertainties were±5%.

We conduced BDOC bioassay experiments using four
replicates of 100mL aliquots of filtered stream water for each
site and incubated in a dark incubation chamber for 28 days
at 20◦C (Vonk et al., 2015). We sampled each replicate at the
beginning (t0) and end of the incubation (t28). The t0 samples

were acidified with 6M HCl to a pH of 2 and stored in the
refrigerator at 4◦C until the t28 sampling. After the t28 samples
were acidified, the t28 and t0 samples were analyzed together
for DOC (Shimadzu TOC-5050A, Kyoto, Japan, precision ±5%)
within 1 week. We calculated the percent BDOC for each sample
using the following equation:

%BDOC =
DOCt0 − DOCt28

DOCt0
∗ 100% (1)

where DOCt0 and DOCt28 are the concentrations of DOC at t0
and t28. We reported the mean of the 4 replicates as the overall
BDOC value per sampling for each site.

Watershed Characteristics and Nutrient
Trends
To test how climate and landscape characteristics affect nutrient
attenuation, we delineated all watersheds using ArcMap (ESRI)
and extracted landscape characteristics including vegetation
cover, land use, bedrock type, river network density, and flow
regulation. Mean annual temperature and precipitation were
downloaded from the WorldClim database (Fick and Hijmans,
2017) using the “raster” package in R (Version 3.5.2; R Core
Team, 2018). To obtain long-term nutrient and hydrological
discharge data, we selected monitoring stations using the “Near”
tool in ArcMap. We obtained long-term data for 27 of the
49 watersheds and calculated annual runoff, nutrient flux, and
attenuation for those 27 watersheds using 10 years of flow and
water chemistry data (NO−

3 and TP) from July 2008–July 2018.
We calculated the eight flow metrics described above from the
flow time series using the EflowStats R package.

We calculatedmean annual specific discharge by averaging the
flow per year and dividing by watershed area. We calculated N
and P fluxes exported from the watershed using the discharge-
weighted concentration method (Moatar et al., 2013; Raymond
et al., 2013):

Flux = k ∗ Q ∗

∑
i Ci ∗ Qi
∑

i Qi
(2)

where Ci and Qi represent concentration and runoff at the time
of sampling, Q is mean annual runoff, and k is a conversion
factor to obtain fluxes in kg N or P ha−1 yr−1. We calculated
apparent attenuation of NO−

3 and TP using the following mass-
balance equation:

Attenuation = 1−
Flux

Surplus
(3)

where Flux is calculated as described above (Equation 2) and
Surplus is the watershed-specific nutrient surplus based on
fertilizer inputs and crop yields (Poisvert et al., 2017; Dupas et al.,
2018).

Because not all watersheds had nearby water quality and
discharge stations, we calculated another metric of nutrient
attenuation: the residuals from a regression of NO−

3 or TP
concentration against percent agricultural cover. While this
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metric is much coarser than the mass-balance estimates of
attenuation (Equation 3), it provided an independent metric of
attenuation that was quantifiable even for watersheds without
discharge and long-term data. Additionally, it allowed calculation
of seasonal dynamics in the relationship between land use and
nutrient concentration, whereas the mass-balance-based nutrient
attenuationmetric provided a single value derived from the entire
decadal time series. We reasoned that because most nutrient
inputs in this region come from agricultural activity, watersheds
with nutrient concentrations above the trend line would be less
attenuative and points below the line would be more attenuative,
comparatively to the average data set (Figure 3). We used NO−

3
concentration for these calculations because it accounted for 92%
of measured total N, and TP to account for all measured P
(Figure S2).

One weakness of both the mass-balance and residual metrics
of nutrient attenuation is that apparent attenuation can occur
if significant time lags exits between nutrient inputs and
export (Basu et al., 2011; Ehrhardt et al., 2019). Over the past
two decades, agricultural practices have improved and many
nutrient point sources have been eliminated in western France
(Poisvert et al., 2017; Abbott et al., 2018b; Dupas et al., 2018),
and we reasoned that the slope of the decline in nutrient
concentration would be negatively correlated with hydrological
nutrient legacy (i.e., watersheds with more groundwater and soil
nutrient storage would have slower rates of nutrient decrease
after inputs ceased or were reduced). For the 27 watersheds
with long-term data, we calculated Theil-Sen slope estimates
using the Siegel method, which provides an estimate of change
through time that is highly robust to extreme values due to
real variability (e.g., during high or low flows) or analytical
errors (Abbott et al., 2018b). We correlated these slope estimates
with the nutrient attenuation metrics to assess how much
of the apparent attenuation could be due to hydrological

nutrient legacy rather than more permanent removal and
retention processes.

Quantifying Spatial Stability and Identifying
Drivers of Nutrient Attenuation
We determined the persistence of spatial patterns through time
for proxies and water chemistry across watersheds using the
spatial stability concept (Abbott et al., 2018a; Dupas et al.,
2019b). The Spearman rank correlation between each pair of
sampling dates for each parameter indicates how much of the
spatial structure is preserved through time. Spatial stability of
water chemistry can result from high spatial variability and
synchronous temporal variability (Abbott et al., 2018a; Dupas
et al., 2019b).

To disentangle the controls on nutrient attenuation, we
regressed each proxy against nutrient attenuation (mass balance
and residuals) and fluxes. We used pairwise correlation and
multiple linear regression (MLR) to identify which proxies
were the most closely associated with nutrient attenuation.
Because many of the proxy data were not linearly related
with attenuation and fluxes, we used Spearman correlations
to quantify the strength of relationships. For the MLR models
we grouped predictors into two categories: biogeochemical
proxies and hydrological and watershed characteristics (hereafter
referred to as the proxy and hydro models, respectively). To
test our hypotheses about controls on nutrient attenuation,
we categorized each predictor based on whether it was most
associated with hydrological and watershed characteristics or
biogeochemical reactions (Figure 1, Table 1). We standardized
all predictors (mean = 0 and standard deviation = 1) to
allow comparison of parameter coefficients as a measure of
relative contribution to model prediction of the response
variable (nutrient mass balance estimates), and we checked
for multicollinearity among predictors using the variance

FIGURE 3 | Visualization of how we calculated residuals in the relationship between agricultural land use and nutrient concentrations for each catchment. Because

agriculture is the predominant nutrient source in the Brittany region, we used departure from the relationship between agriculture and nutrient concentration as a

metric of nutrient attenuation capacity. Points above the regression line represent less attenuation capacity because there is more nutrient in the system than would be

expected with this rough estimate of nutrient inputs.
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inflation factor (Abbott and Jones, 2015). We ran the models
for each category (i.e., proxy and hydro models) and selected
the most parsimonious model for each by stepwise regression.
Though model selection techniques continue to be controversial
in ecology (reviewed in Malone et al., 2018), our primary
goal was to assess relative influence of the major predictors.
As such, we simply discuss the overall trends (e.g., what
parameters appeared repeatedly in multiple models) of
individual and multiple regression results (Tables 2, 3) and
we abstain from interpreting the inclusion or exclusion of less
influential predictors.

RESULTS

Nutrient Context and Spatial Stability of
Water Chemistry
The three samplings captured distinct hydrological conditions,
with low but variable discharge among sites in the fall sampling
(November of 2015), highest discharge in the spring (March
of 2016), and low and consistent discharge among sites in
the summer (June of 2018; Figure S1). Nutrient concentrations
and stoichiometry varied substantially across the watersheds
and through time (e.g., 0–15mg L−1 of N-NO−

3 and 0–
0.6mg L−1 of MRP). We observed a negative relationship
between DOC and NO−

3 and a positive relationship between
DOC and MRP, which varied somewhat seasonally (Figure 2b,
Figure S1). Inorganic forms of N and P dominated total
concentrations for these nutrients across watersheds, with NO−

3
making up 93% of total N and MRP making up 74% of
TP (Figure S2).

For the 27 watersheds with decadal nutrient concentration
data on a monthly time step, the long-term trends were
fundamentally different for C, N, and P (Figure 4). Theil-Sen
slope estimates for DOC concentration indicated slight increases
through time for 75% of the watersheds, decreases for NO−

3

concentration for all but three watersheds, and no change for
PO3−

4 and TP concentrations (Figure 4).
Spatial stability (persistence of spatial rankings through

time) varied substantially among proxies and solutes (Figure 5).
Conductivity, δ15N, TP, DSi, and many major ions showed
high spatial stability (i.e., more than half the spatial pattern
among the three sampling dates was preserved; ρ > 0.7). All the
DOM properties, 222Rn, O2, temperature, and NO−

2 showed very
low stability (i.e., ρ < 0.4) indicating substantial seasonal and
potentially interannual variability, with the rest of the parameters
showing moderate stability (Figure 5).

Differences in Attenuation and Fluxes in
Agricultural Watersheds
Median nutrient attenuation as calculated by mass balance
was 58.1% for N and 98.6% for P across the watersheds.
N and P mass balance results were weakly correlated (R2

= 0.18, p < 0.001), indicating that watersheds with high
attenuation for N tended to also have high attenuation for P
(Figure 6). Results for N mass balance showed substantially
higher variability than P mass balance, ranging from −2 to
88.4% for N but only 96.1 to 99.5% for P. As another estimate
of nutrient attenuation, we calculated the residuals of the
regression of percent agricultural cover and measured NO−

3
and TP concentrations (Figure 3). N-NO−

3 was significantly
correlated with agricultural cover (R2 = 0.21, p < 0.001) and
residuals from that relationship ranged from −7.23 to 6.93mg
L−1 with a median of −0.37mg L−1. TP was not significantly
correlated with agricultural cover (R2 = 0.001, p = 0.70) and
residuals from that non-significant relationship ranged from
−0.54 to 0.047mg L−1 with a median of 0.016mg L−1. N
residuals showed a weak, positive correlation with N mass
balance estimates (R2 = 0.15, p < 0.001; Figure 6), but we
observed no relationship between P residuals and P mass balance
(Figure 6).

N fluxes varied by an order of magnitude (6.1–64 kg N ha−1

yr−1) and were negatively correlated with mass balance estimates

TABLE 2 | Multiple linear regression models for N attenuation using proxies and watershed characteristics (WC).Q22Q22

Category # of Variables Equation R2 F AIC

Proxies 1 0.52(δ15N)– 0.34 0.37 29(1,51) −20.02

Proxies 2 0.59 δ15N) + 0.36(ΣREE) – 0.35 0.45 20(2,50) −25.83

Proxies 3 0.59(δ15N) + 0.37(ΣREE) – 0.29(222Rn)– 0.40 0.55 20(3,49) −34.27

Proxies 4 0.50 (δ15N) + 0.38(ΣREE) – 0.32(222Rn) + 0.31(Ce/Ce*)– 0.28 0.65 22(4,48) −45.87

Proxies 5 0.43 (δ15N) + 0.40(ΣREE) + 0.33(Ce/Ce*)– 0.26(222Rn) + 0.22(δ18O)– 0.25 0.71 23(5,47) −53.81

Proxies 6 0.42(δ15N) + 0.32(ΣREE) – 0.27(222Rn) + 0.24(Ce/Ce*) + 0.22(δ18O) + 0.21(Turbidity) – 0.28 0.75 22(6,46) −58.51

WC 1 −0.09 – 1.01(Qmm) 0.91 464(1,47) −121.01

WC 2 −0.08 – 0.99(Qmm) – 0.05(Length) 0.91 236(2,46) −120.8

WC 3 −0.08 – 0.99(Qmm) – 0.10(Length) + 0.08(%Artificial) 0.92 164(3,45) −121.46

WC 4 −0.15 – 1.02(Qmm) – 0.22(Length) + 0.11(%Artificial) + 0.14(MeanFlow) 0.93 149(4,44) −129.11

WC 5 −0.17 – 1.02(Qmm) – 0.25(Length) + 0.13(%Artificial) + 0.14(MeanFlow) – 0.10(%Wetland) 0.93 127(5,43) −131.13

WC 6 –0.15 –0.98(Qmm) –0.24(Length) + 0.15(%Artificial) + 0.13(MeanFlow) –0.10(%Wetland) –0.06(Amplitude) 0.94 113(6,42) −133.2

We considered models with 1–6 predictors and bolded the most parsimonious model in each category based on AIC.
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TABLE 3 | Multiple linear regression models for P attenuation using proxies and watershed characteristics (WC).Q22

Category # of Variables Equation R2 F AIC

Proxies 1 0.26(δ15N) – 0.18 0.09 5(1,51) −1.53

Proxies 2 0.31(δ15N) + 0.26(ΣREE) – 0.19 0.14 3(2,50) −2.14

Proxies 3 0.31(δ15N) + 0.26(ΣREE) – 0.23(222Rn) 0.20 4(3,49) −4.23

Proxies 4 0.40(ΣREE) + 0.29(δ15N) – 0.24(222Rn) + 0.22(SR) – 0.12 0.23 3(4,48) −4.31

Proxies 5 0.44(ΣREE) + 0.33(δ15N) + 0.30(SR) – 0.22(222Rn) – 0.20(Ce/Ce*) – 0.16 0.27 3(5,47) −5.01

WC 1 −0.13 + 0.82(%Schist) 0.56 61(1,47) −25.42

WC 2 −0.22 + 0.57(%Schist) − 0.43(ChannelDensity) 0.62 38(2,46) −30.26

WC 3 −0.21 + 0.62(%Schist) – 0.43(ChannelDensity) + 0.11(FlowRegulation) 0.63 25(3,45) −28.85

WC 4 −0.21 + 0.70(%Schist) – 0.43(ChannelDensity) + 0.12(FlowRegulation) + 0.12(AR1) 0.64 19(4,44) −28.29

WC 5 −0.21 + 0.65(%Schist) – 0.42(ChannelDensity) + 0.14(FlowRegulation) + 0.13(AR1) – 0.11(Qmm) 0.64 15(5,43) −26.67

We considered models with 1–6 predictors and bolded the most parsimonious model in each category based on AIC. All predictors were standardized (mean= 0 and standard deviation

= 1) to allow comparison of parameter coefficients as a measure of relative contribution to model prediction of the response variable (greater absolute value means more influential). Full

models contained all variables within a category (e.g., measured proxies or watershed characteristics calculated or extracted from GIS) and the most parsimonious model (emphasized

in bold) was chosen using the Akaike information criterion (AIC).

FIGURE 4 | The distribution of Theil-Sen nutrient slopes for C, N, and P for the 27 watersheds with long-term nutrient data. Horizontal gray lines indicate zero slope

(no temporal trend).

(R2 = 0.73, p < 0.001), with fluxes increasing as mass balance
estimates decreased (Figure 6). P fluxes varied by a factor of 4
(0.17–0.69 kg P ha−1 yr−1) and were negatively correlated with P
mass balance (R2 = 0.36, p< 0.001), but there was no relationship
with P residuals.

Individual Predictors of Nutrient
Attenuation
Based on the pairwise Spearman correlations with hydrological
parameters, annual runoff was strongly negatively correlated
with the N and P mass balance estimates (ρ = −0.89 and −0.41,
respectively), and the hydrological reactivity index (W2) was

strongly positively correlated with N and P mass balance (ρ
= 0.60 and 0.32, respectively). For biogeochemical proxies, N
mass balance estimates was correlated with δ15N and δ18O,
222Rn, Ce/Ce∗, and DOC:NO−

3 stoichiometry (ρ > |0.40|) and
had a weaker relationship with SUVA254 (ρ = −0.27; Figure 7).
N residuals showed similar results for δ15N and δ18O (ρ >

0.40) but had a much weaker relationship with 222Rn, a much
stronger relationship with DOC:NO−

3 (ρ = −0.20 and 0.71,
respectively), and no significant relationship with Ce/Ce∗ or
SUVA254. N fluxes showed similar but opposite relationships as
attenuation, and a weak relationship with DSi was also observed
(ρ = 0.23). P mass balance estimates was positively correlated
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FIGURE 5 | Spatial stability of biogeochemical tracers and chemical concentrations across all 49 watersheds. Parameters are grouped thematically by color. Solutes

with a Spearman’s ρ above the horizontal line maintain more than half the spatial pattern for that parameter in pairwise comparisons among the three sampling dates.

with δ15N and δ18O (ρ = 0.41 and 0.29, respectively; Figure 8)
and negatively correlated with 222Rn (ρ = −0.35). P residuals
were strongly negatively correlated with δ15N and 222Rn (ρ =

−0.52 and −0.44, respectively) and had weaker relationships
with δ18O, Ce/Ce∗, and SR (ρ < |0.25|). The P fluxes had similar
but opposite relationships with the same proxies as attenuation,
in addition to a negative relationship with DOC:NO−

3
(ρ =−0.40).

To test how nutrient legacy could be related to apparent
nutrient attenuation, we correlated the decadal Theil-Sen
concentration slopes (Figure 4, Figure S3) with estimates of
nutrient attenuation. N mass balance estimates and residuals
were positively correlated with decadal trends for NO−

3 ,
indicating that the watersheds experiencing the slowest decreases
in NO−

3 through time tended to have higher apparent attenuation
(R2 = 0.17 and 0.10, respectively, p < 0.05; Figure S3). N flux
was negatively correlated with decadal NO−

3 trends, indicating
that watersheds with faster decreases in NO−

3 had higher N fluxes
(R2 = 0.25, p< 0.05). PO3–

4 slopes were positively correlated with
P mass balance estimates (R2 = 0.15, p < 0.05), indicating that
the watersheds with the slowest decreases or greatest increases
in PO3–

4 had higher apparent P attenuation, but PO3–
4 slopes

were not significantly correlated with P residuals. TP fluxes were
negatively correlated with NO−

3 trends (R2 = 0.27, p < 0.05).

Multiple Linear Regression Models of
Nutrient Attenuation
For the hydro MLR models (only hydrological and watershed
characteristics parameters), the models with only one predictor
explained 91% of the variance explained by annual runoff for N
mass balance estimates and 62% of the variance explained by the
abundance of schist bedrock for P mass balance (see Tables 2,
3). The most parsimonious (based on AIC) hydro model for
N mass balance estimates also included other hydrological
and land use variables (e.g., mean annual flow and amplitude,
and % artificial land cover, wetlands, and stream length),
which slightly enhanced the model performance (adjusted R2

= 0.94, 1AIC = 12.19). For P mass balance estimates, the
initial hydro model (i.e., only relative abundance of schist)
was improved by adding river density (adjusted R2 = 0.62,
1AIC = 4.84). The final hydro model results are shown
in Figure 9.

The proxy MLR models that used biogeochemical proxies
to predict attenuation did not explain as much variance as the
hydro models, but they indicated other processes besides runoff
and bedrock type that are important drivers of attenuation.
For example, the single most important proxy for N was
δ15N, which accounted for 37% of the variation in N mass
balance estimates. However, the most parsimonious model
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FIGURE 6 | Relationships among our metrics of nutrient attenuation. Here, “Mass Balance” refers to the mass balance estimates of attenuation, “Flux” refers to the

fluxes of those nutrients from the watersheds based on concentration and discharge data, and “Residuals” refers to the remaining variation in nutrient concentration

after accounting for differences in agricultural land cover (Figure 3). Trend lines for significant correlations (p < 0.05) are shown and R2-values are reported.

included 5 other proxies (ΣREE, 222Rn, Ce/Ce∗, δ18O, and
turbidity), together accounting for 75% of the variation in
N mass balance estimates. For P mass balance estimates, the
single most important proxy was also δ15N, accounting for
9% of the variation. However, the most parsimonious model
included 4 other proxies (ΣREE, SR, 222Rn, and Ce/Ce∗),
together explaining 27% of the variation in P mass balance
estimates. Furthermore, the shared proxies between N and P
attenuation models (e.g., δ15N, ΣREE, 222Rn, and Ce/Ce∗)
had surprisingly similar relationships in both direction and
magnitude, apart from Ce/Ce∗ which had a positive relationship
with N mass balance estimates and a negative relationship
with P mass balance estimates. Proxy model results are shown
in Figure 9.

DISCUSSION

We hypothesized that hydrological properties, surface and
subsurface characteristics, and biogeochemical conditions
would interact to determine nutrient attenuation at watershed
scales. Based on our analysis of 49 watersheds, 27 of which
had long-term nutrient and discharge estimates, hydrological
properties set the initial attenuation capacity, with secondary
effects from biogeochemical conditions and land-use parameters.
These results corroborate findings from other regions where
runoff strongly controls nutrient attenuation and flux (Covino
et al., 2010; Zarnetske et al., 2018; Ehrhardt et al., 2019).
However, we point out that runoff is a high-level parameter
that interacts with other hydrological metrics, watershed
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FIGURE 7 | Regression analysis of N attenuation metrics and biogeochemical proxies. Trend lines are shown when p < 0.05 for Spearman rank correlations between

the parameters (relationships are not necessarily linear). This non-parametric test is robust to non-linearity in the relationships, which are only depicted linearly to

indicate direction of the relationship.

FIGURE 8 | Regression analysis of P attenuation metrics and proxies. Trend lines are included for significant Spearman correlations (p < 0.05) to test for potential

relationships.

characteristics, and biogeochemical reactions at multiple
spatiotemporal scales. Below, we discuss how runoff influences
and is influenced by many ecological dynamics including

long-term nutrient legacies, redox conditions, and land use,
and how this could inform our local and global efforts to
solve eutrophication.
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FIGURE 9 | N and P attenuation (based on mass balance estimates reported as percentages) predicted by hydrological and watershed characteristics, and

biogeochemical proxies. The “hydro” model included hydrological and watershed characteristics and the “proxy” model included biogeochemical proxy data from the

three field campaigns (see Table 2).

Tradeoffs Between Nutrient Attenuation
and Nutrient Recovery
At larger spatiotemporal scales, untangling proximate and
ultimate drivers of nutrient flux and attenuation is exceedingly
difficult because socioecological systems co-evolve based on
shared and dynamic conditions (Thomas et al., 2015; Bogaart
et al., 2016; Malone et al., 2018). Consequently, at medium to
large scales, many risk factors for nutrient flux are co-linear,
including climate, land use, soil type, ecosystem stature, and
flow regime (Knoben et al., 2018; Lin et al., 2019; Smits et al.,
2019). This has been observed within the boundaries of our
study region, where agriculture tends to be more intense in areas
underlain with micaschist, which is better suited for mechanical
agriculture, but also more prone to nutrient export because of its
soil and topographic properties (Thomas et al., 2015).

Of all the hydrochemical parameters we measured, annual
runoff had the strongest single relationship with our long-term
nutrient attenuation metrics (mass-balance, residuals, and
nutrient flux). While this correlation is not surprising for
flux, it reinforces a growing understanding that the routing
and amount of lateral water flow fundamentally regulates
hydrological connectivity and nutrient transport (Dupas et al.,
2018; Zarnetske et al., 2018). Perhaps more interestingly, runoff
was correlated with long-term trends in nutrient concentration
(i.e., rate of nutrient recovery) in our dataset. This means that
the high-runoff watersheds that have low nutrient attenuation
tend to recover faster when nutrient inputs are decreased.
This suggests that hydrological attenuation (Ehrhardt et al.,

2019) is an important contributor to nutrient attenuation in
these watersheds. It also makes sense in the context of soil
and groundwater nutrient legacies—i.e., a system with more
flow can be flushed faster—depending on the ratio between
storage and flow (Basu et al., 2011; Van Meter and Basu, 2017;
Abbott et al., 2018b). However, this inverse relationship between
attenuation and recovery in agricultural watersheds raises the
question of whether there is an inevitable tradeoff between
nutrient resistance (i.e., nutrient removal capacity) and nutrient
resilience (i.e., fast recovery rates; Goyette et al., 2018; Dupas
et al., 2019a). Thinking comparatively between the two main
nutrients in our study, the higher P attenuation values, which
we know are associated with accumulation in soil and sediment
rather than permanent removal (Hansen et al., 2002; Sharpley
et al., 2013), and the much lower ratio of stock to flux (i.e.,
watershed P >> annual export of P) suggests that P follows
this prediction of high resistance and extremely low resilience
(Goyette et al., 2018; Haas et al., 2019).

Subsurface Processes as Key Regulators
of Surface Concentrations and Fluxes
Though one valid interpretation of our findings is that
hydrological dynamics, especially flow and river network
density, dominate nutrient attenuation capacity, several lines of
evidence suggest that a more complex range of factors regulates
nutrient behavior in these watersheds. Water residence time, a
fundamental ecohydrological property (Zarnetske et al., 2011;
Kolbe et al., 2016; Thomas et al., 2016) was not associated with
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our attenuation metrics nor with recovery rates based on the
long-term trends. This is likely because only a portion of the total
residence time has the requisite conditions for biogeochemical
processes to retain or remove nutrients. This concept, termed
exposure time (Murphy et al., 1997; Oldham et al., 2013;
Pinay et al., 2015), is central to the HotDam framework,
because storage or transport in nonreactive zones only affects
hydrological attenuation (i.e., time lags; Ehrhardt et al., 2019),
not biogeochemical attenuation or removal (Abbott et al., 2016).
For example, groundwater denitrification increases with depth
in ∼80% of watersheds where it has been quantified because of
more abundant electron donors in deeper, unweathered bedrock
(Kolbe et al., 2019). This dynamic also relates to the previously
discussed relationship with runoff, because weathering rates are
higher when there is greater water flow through the watershed
(Marçais et al., 2018). Greater weathering could depress the
vertical horizon where electron donors can sustain denitrification
(Kolbe et al., 2019), meaning that higher runoff watersheds not
only have shorter residence times, but that their biogeochemical
reaction capacity may be lower.

Another indicator that annual runoff is not the sole
control of nutrient dynamics is that several biogeochemical
proxies associated with deep flowpaths and groundwater were
strongly related to both N and P attenuation metrics. Nitrate
isotopes, 222Rn, REEs, and DOC:NO−

3 were influential proxies
of attenuation and fluxes, pointing to the importance of
deep flowpaths and anoxia as drivers of nutrient removal
(i.e., denitrification) and attenuation via biological and abiotic
processes (Gu et al., 2018, 2019; Kolbe et al., 2019). While P is
typically not transported through deep groundwater flowpaths
because of physicochemical properties (Hansen et al., 2002), P
varies systematically with discharge in many catchments with
total P often increasing and MRP often decreasing as flow
increases (Moatar et al., 2017). Additionally, excess NO−

3 in
groundwater can trigger sulfate release and iron oxidation in
the presence of pyrite, potentially mobilizing P via links with
iron and sulfur in some environments (Smolders et al., 2010;
Tang et al., 2016; van Dijk et al., 2019). In watersheds that are
discharging their nutrient legacies (i.e., current nutrient loading
< historical nutrient loading), NO−

3 concentrations are often
higher in groundwater than in near-surface water (Abbott et al.,
2018b; Dupas et al., 2018), which could create an indirect link
between deep water flow and P attenuation dynamics (Dupas
et al., 2015).

A surprising interaction between hydrology and
biogeochemistry was the positive relationship between the
W2 index (percentage of cumulative discharge that occurs
during the highest 2% of daily discharge values) and nutrient
attenuation. Contrary to major predictions of ecosystem ecology
that nutrient attenuation decreases with hydrological pulses
or floods (Fisher et al., 1998; Raymond et al., 2016; Wollheim
et al., 2017), the watersheds in this region with higher W2
were relatively more attenuative of nutrients. However, it is
important to note that Brittany has temperate hydrology with
few floods (Thomas et al., 2019), meaning that the watersheds
with relatively higher W2 are still not particularly flashy or
hydrologically reactive compared with other regions (Moatar
et al., 2013). In this instance, the positive correlation between

nutrient attenuation and the W2 index could be associated with
the weathering mechanism described previously (i.e., watersheds
with a larger proportion of surface flow vs. groundwater flow
could have less weathered and more reactive aquifers; Kolbe
et al., 2019) or it could be associated with sediment legacies in
and near the river network. In this region and many others,
large stocks of nutrient-laden sediments have accumulated in
streams, riparian zones, and small reservoirs (Song and Burgin,
2017; Feijoó et al., 2018). These sediments can be important or
even primary sources of nutrients, particularly during low flow
periods (Dupas et al., 2015; Gu et al., 2018). Watersheds with
more powerful or more frequent floods could have flushed out
these sediments, effectively increasing net nutrient attenuation
by reducing internal loading.

Together, these multi-proxy findings suggest that subsurface
characteristics, including hydrological flowpaths and the location
of biogeochemical activity, are fundamental to regulating
nutrient attenuation and export at watershed scales.

Comparison With Nutrient Attenuation in
Different Biomes and Land Use Regimes
The high level of variability in N attenuation that we observed
has also been observed in different climatic and anthropogenic
contexts. Watersheds in the Northeastern United States have
NO−

3 mass balance estimates that range from 9 to 74% (Campbell
et al., 2004). While point-source P loading is relatively well-
constrained (Kronvang et al., 2007; Grizzetti et al., 2012),
watershed-scale estimates of P mass balance remain less common
(Withers and Jarvie, 2008; Sharpley et al., 2013; Goyette et al.,
2018). In natural ecosystems, P attenuation is often very high,
though this varies strongly with ecosystem age and disturbance
regime as well as stoichiometric conditions (Vitousek and
Reiners, 1975; Verry and Timmons, 1982; Vitousek, 2004; Elser
et al., 2007). In contrast, urban watersheds are often extremely
leaky to P, with P mass balance estimates ranging from −7 to
74% with a mean of 22% (Hobbie et al., 2017). These urban P
losses are attributable to the prevalence of impervious surfaces
that decrease residence time, increase flashiness of water flow,
and increase fluctuations between oxic and anoxic conditions
(Hale et al., 2015, 2016; Blaszczak et al., 2019).

Preventing Rather Than Curing Nutrient
Incontinence
The Anthropocene is characterized by concurrent and connected
socioecological crises caused by human interference with many
of the Earth’s biological and abiotic cycles (Vitousek et al., 1997;
Steffen et al., 2015; Abbott et al., 2019). Many proposed solutions
to these crises seek to manage ecosystem response rather than
modify human activity, essentially treating human demand as
immutable (Jaggard et al., 2010; Garnier et al., 2014; Abbott et al.,
2019). This tendency to cure rather than prevent is particularly
prevalent in the fight against eutrophication, where researchers,
policymakers, and land managers are going to great lengths
to attenuate or remove anthropogenic nutrients in virtually
every component of the watershed (Sharpley et al., 2008; Pu
et al., 2014; Bol et al., 2018; Wollheim et al., 2018). Given how
critical food production is to human wellbeing (Foley et al.,
2011; Sutton et al., 2013; Rasul, 2016), these efforts are certainly
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justified and some nutrient mitigation practices such as cover
crops, no-till cultivation, hedgerows, and riparian concentration
can improve nutrient attenuation and enhance other ecosystem
benefits (Hansen et al., 2000; Roley et al., 2016; Pinay et al.,
2018; Thomas and Abbott, 2018). However, we believe that
managing ecosystems to enhance nutrient removal will never
solve eutrophication alone. Instead, a growing body of research
suggests that managing human nutrient demand—i.e., reducing
nutrient inputs into the Earth’s watersheds—while also protecting
nutrient attenuation capacity across the land to water gradient
is the only comprehensive solution to eutrophication (Garnier
et al., 2014; Bol et al., 2018; Leaf, 2018; Dupas et al., 2019a; Le
Moal et al., 2019).

One reason for our position that nutrient prevention should
be prioritized over attenuation is simply the immense fertilization
capacity of our global society (Gruber and Galloway, 2008;
Seitzinger et al., 2010). The capacity of ecosystems to assimilate
or remove N and P can easily be overwhelmed by human
nutrient inputs, and recovery from nutrient saturation can take
decades to millennia (Dupas et al., 2018; Goyette et al., 2018;
Haas et al., 2019; Randall et al., 2019). This raises the question
of how can nutrient inputs be decreased while also achieving
the sustainable development goal of eliminating malnutrition?
One solution would be to only use N and P fertilizers to feed
humans (Sutton et al., 2013). While population is projected
to increase through 2050, most of the projected increases in
global nutrient use stems from shifts in diet and per-capita
consumption rather than population growth perse (Seitzinger
et al., 2010; Liu et al., 2012; Sutton et al., 2013; Godfray et al.,
2018). More than half of the global human nutrient and water
footprints are due to livestock (Pelletier and Tyedmers, 2010;
Herrero et al., 2013; Mekonnen and Hoekstra, 2015; Abbott
et al., 2019), even though animal products represent a small
portion of global nutrition and actually have a net negative
effect on human health in many developed countries (Lassaletta
et al., 2014; Godfray et al., 2018; Willett et al., 2019). This
means that decreasing meat and dairy consumption could
substantially reduce nutrient inputs while improving human
health (Sutton et al., 2013; de Vrese et al., 2018; Godfray
et al., 2018; Willett et al., 2019). Additionally, the creation of
biofuels is incredibly nutrient intensive, though only marginally
advantageous energetically and economically (Dominguez-Faus
et al., 2009; Yang et al., 2011). Reducing livestock husbandry
and biofuel cultivation—i.e., limiting fertilizer use to crops
destined for direct human consumption—could decrease the
global nutrient footprint by more than half, while also

alleviating pressure on wildlife habitat and other Earth systems
(Steffen et al., 2015; Springmann et al., 2018; Abbott et al., 2019).

While large-scale changes in diet and energy production
have social and technical challenges of their own (Godfray

et al., 2018; Willett et al., 2019), they could substantially reduce
eutrophication together with expanded control of nutrient
point sources (e.g., wastewater treatment plants), which has
been extremely effective at reducing nutrient export (Musolff
et al., 2015; Abbott et al., 2018b; Le Moal et al., 2019).
Assessing nutrient attenuation capacity at watershed scales with
hydrochemical proxies could also contribute to these efforts by
informing redistribution of essential human activities to more
resistant or resilient parts of the landscape (Thomas et al., 2015;
Abbott et al., 2018a; Dupas et al., 2019b; Refsgaard et al., 2019).
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