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A B S T R A C T

Reconstruction of paleo-precipitation can provide an insight into past climate and precipitation. De Ploey et al.
(1995) presents a highly simplified erosion equation to consider precipitation and erosion susceptibility. This
empirical model allows estimation of total precipitation and erosion susceptibility across a range of catchment
characteristics (including catchment area, slope, elevation, vegetation cover) and when limited catchment or
meteorological data is available. The presented study tests the De Ploey equation using dated lacustrine records
of catchment soil deposition both spatially and temporally. The objective is to examine the De Ploey equation’s
ability and efficiency in reconstructing past long-term precipitation using sedimentological parameters. The ero-
sion susceptibility factor is described as a ‘black box’ value by De Ploey et al. (1995). This research unravels the
erosion susceptibility variable, identifying it to change spatially and temporally according to precipitation, vege-
tation cover and composition (the extent of tree establishment across the catchment), total lacustrine deposition
and geochemical signatures in the archive. Calculation of the erosion sustainability variable and it’s use within
the De Ploey erosion equation illustrate a reconstruction of an indicative mean annual precipitation and erosion
susceptibility change over the recent period (∼100years).

Acronyms and Abbreviations

rAP Red Amorphous Particles
Rb Rubidium
Ti Titanium
Pb Lead
A Catchment area (m⁠2)
P Precipitation (m)
h Surface erosion depth (m)
g Acceleration due to gravity (ms⁠−2)
M Lacustrine total soil and sediment deposition (au-

tochthonous and allochthonous sediment) (per sample)
Ve soil volume eroded from the contributing catchment

(m⁠3)
Ve(rAP) volume of rAP represented eroded soil (m⁠3)
Ve(Rb) volume of Rb represented eroded soil (m⁠3)

Es contributing catchments erosion susceptibility (s⁠2/m⁠2)
Es⁠L published literature erosion susceptibility values

(s⁠2/m⁠2)
Es⁠C catchment calculated erosion susceptibility (s⁠2/m⁠2) us-

ing known erosion, precipitation and catchment area
Es⁠C (rAP) catchment calculated erosion susceptibility (s⁠2/m⁠2) for

rAP represented soil erosion
Es⁠C (Rb) catchment calculated erosion susceptibility (s⁠2/m⁠2) for

Rb represented soil erosion
Es⁠D catchment erosion susceptibility (s⁠2/m⁠2) derived from

regression analysis
Es⁠D (rAP) catchment erosion susceptibility (s⁠2/m⁠2) derived from

regression analysis for rAP represented soil erosion
Es⁠D (Rb) catchment erosion susceptibility (s⁠2/m⁠2) derived from

regression analysis for Rb represented soil erosion
S the quantity of eroded soil in the lake sediment deposi-

tion (mg/mg)
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Ac accumulation of total soil and sediment deposition in
the lake (m) for respective period

LA lake area equivalent to the lake deposition extent (m⁠2)
t the period represented by the sample (years)
R⁠2 Coefficient of determination
RMSE Root mean square error
NSE Nash-Sutcliffe efficiency
MAE Mean absolute error
⁠10Be Beryllium isotope 10
Sr Strontium
⁠137Cs Caesium isotope 137
δ⁠18O Oxygen isotope 18
a.s.l. above sea level
Sqrt Square Root
log Logarithm base 10

1. Introduction

In the global warming context, finding new proxies for the estima-
tion of paleo-temperatures and paleo-precipitation are essential to assess
the resilience of terrestrial ecosystems to abrupt changes. However, pa-
leo-precipitation reconstructions that contain long-term trends and ex-
tend prior to medieval times are difficult to find and interpret, and de-
pend not only on the time resolution of natural archives but also on the
pertinence and the sensibility of both the proxy used and the chosen
archive (Seddon et al., 2014). Past precipitation reconstructions can, for
example, be based on tree ring records (Buntgen et al., 2011), pedoge-
netic magnetic susceptibility variations (Maher and Thompson, 1995),
cave records (Hu et al. 2008), pollen assemblages (Peyron et al., 1998),
glacial dynamics (Holzhauser et al., 2005), lake-levels records (Magny
et al., 2011) or flood events deposits (Wilhelm et al., 2012). Precip-
itation reconstruction is also often completed directly from lacustrine
proxy analysis (such as ⁠10Be and δ⁠18O, goethite/hematite ratio, granu-
lometry, ⁠10Be, Sr, Pb, ⁠137Cs, Ti), with short gauged precipitation records
available for validation of empirical or numerical precipitation calcu-
lations (Cross, 2001; Hyland et al., 2015; Rozanski et al., 1997; Zhou
et al., 2014). This constrains the analysis to discussion of ‘more’ or
‘less’ humid periods rather than quantifying the amount of past pre-
cipitation (Arnaud et al., 2012; Bjune et al., 2005; Magny et al., 2011;
Peyron et al., 1998; Simonneau et al., 2013a). Because precipitation,
in conjunction with vegetation cover, is a significant driver in erosion
processes, soil erosion fluxes stored in lacustrine archives can poten-
tially provide an insightful indication of past trends and overall precipi-
tation (Simonneau, 2012). Past trends in catchment erosion susceptibil-
ity reflect both the land use and climatic changes influencing a specific
catchment and the sensitivity of that catchment to precipitation driven
erosion.

Numerous organic or inorganic parameters can be measured within
lacustrine sediments and interpreted as representative of erosion dy-
namics of the catchment (Arnaud et al., 2016). However, if these sedi-
mentological erosion proxies provide an indication of terrestrial fluxes
over time, they do not always assess the nuances of soil-to-sediment
differentiation (Arata et al., 2016; Bajard et al., 2017; Charreau et al.,
2011; Davies et al., 2015; Ritchie and McHenry, 1990).

The red Amorphous Particles content in a lacustrine archive (rAP,
(Chassiot et al., 2018; Foucher et al., 2014; Graz et al., 2010; Simonneau
et al., 2014, 2013a)) is one organic sedimentological proxy indicat-
ing soil erosion from catchment surfaces to sinks, such as lakes. rAPs
are indicators of allochthonous organic catchment soils, e.g. Histosol
or Leptosol in a high altitude context (Di-Giovanni et al., 1998; Graz
et al., 2010). Lacustrine rAP records provide a quantitative representa-
tion of allochthonous soil deposition (Chassiot et al., 2018; Guillemot
et al., 2015; Simonneau et al., 2013c, 2013a, 2013b). These

organic particles are approximately 100µm in diameter and are the
result of lingo-cellulosic fragment degradation in soil profiles
(Di-Giovanni et al., 1998; Simonneau, 2012).

Minerogenic or inorganic soil representation can be considered
through analysis of rubidium (Rb). Rb has classically been used as a
tracer of soil erosion in lacustrine archive studies and adopted as a litho-
genic soil tracer (Davies et al., 2015; Hosek et al., 2017; Jin et al., 2001;
Sabatier et al., 2014; Schmidt et al., 2006; Simonneau et al., 2013a).
Combining rAP and lithogenic soil traces can present a more complete
and detailed overview of soil erosion dynamics and soil weathering over
time (Chassiot et al., 2018; Oliva et al., 2004). The long-term organic
and minerogenic fluxes may therefore be used to estimate the amount
of precipitation relative to erosion processes.

Modelling such fluxes over long timescales continues to be a chal-
lenge as the majority of soil erosion models only function at short
timescales (event or pluriannual) and require significant data, such as
soil infiltration, roughness or hydraulic conductivity, rainfall event in-
tensity and soil composition. It is acknowledged that the erosive ef-
fect of precipitation is dependent on precipitation intensity (especially
rainfall intensity) (Lana-Renault et al., 2007; Ziadat and Taimeh, 2013)
and, within mountainous catchments, the delineation between snow and
rainfall in the precipitation record. However, this level of detail is dif-
ficult to establish when using larger timesteps (e.g. 10years) and lacus-
trine or paleo archive records. The De Ploey’s empirical model of ero-
sion and precipitation is a purposefully simplified method to consider
catchment soil erosion across extended time periods (long term) up to
and in excess of 100years (De Ploey et al., 1995). It was designed to
approach erosion analysis at a regional or local scale and to consider
sediment budgets within a chosen catchment. The De Ploey equation fo-
cuses on mean total precipitation as one, quantifiable, driving force be-
hind catchment erosion, without consideration of intensity or snow/rain
influence. The second key parameter is the catchment erosion suscep-
tibility (Es), a value selected (but not specifically calculated) by catch-
ment characteristics (location, climate and vegetation, catchment para-
meters such as slope length and gradient). This model is not well known
or frequently used for actual erosion-precipitation modelling due to its
lack of complexity regarding soil structure or soil humidity. However,
its simplicity may provide a useful method to examine past long-term
precipitation, erosion and catchment erosion susceptibility at a decadal
time step and over millennia. Es values have been published for of over
60 catchments located globally, using samples that presented time steps
of 2years for some locations (with high deposition rates) to samples
with time steps of >500years. The published range of Es values, rela-
tive to generalised catchment conditions for long term erosion suscepti-
bility analysis, generally range from 10⁠−3 – 10⁠−6 s⁠2/m⁠2, (De Ploey et al.,
1995 and Fig. 1).

To date, the calculation of Es in temporal datasets using multiple
samples has not been tested (e.g. lacustrine record). Es could be utilised
in one of two ways: firstly, as a coefficient (static value) selected for the
catchment due to the general catchment characteristics (e.g. high alti-
tude, temperate climate, general open vegetation); secondly, as a vari-
able that changes over time due to one or a combination of changing
meteorological and catchment characteristics and more particularly the
vegetation cover.

Identification of catchment soils, through use of quantitative paly-
nofacies soil proxies (Chassiot et al., 2018; Foucher et al., 2014; Graz
et al., 2010; Simonneau et al., 2013c, 2013b, 2013a), within lacustrine
records provides a temporal erosion record for the study catchments.
Using this quantified soil erosion record, this research aims to iden-
tify a method to calculate the Es value(s) and present a reconstruc-
tion of recent precipitation (∼1960-present). To undertake this assess-
ment there are two key assumptions made. First, that the soil proxies
used within the lacustrine archives are directly representative of the soil
eroded from the contributing catchment and deposited in the lake. Sec
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Fig. 1. Long-term erosion susceptibility values (ES⁠L) from published De Ploey Es equation implementation (reconstruction of catchment characteristics from De Ploey et al., 1995 Figs.
2–4, 6).

ond, that there is negligible loss of eroded material from the lake, that
the lacustrine deposition presents a strong catchment soil erosion record
(Ouahabi et al., 2016).

2. Materials and methods

2.1. Spatial and temporal lacustrine dataset

Lacustrine records provide dated archives of soil deposition within
a lake catchment (Arnaud et al., 2016). For catchments located at the
most upstream extent of a larger watershed or basin, these lakes can be
the first or primary deposition point for eroded soil. A spatial dataset

was created to evaluate the functionality and variability of the De
Ploey equation and Es variable across the French Pyrenees and in the
French Alps. This dataset is comprised of lacustrine sediment cores from
lakes located in the upstream extent of mountain watersheds of vary-
ing size, elevation, contributing catchment area, meteorological condi-
tions and vegetation cover. These lacustrine records were used to iden-
tify the quantity of eroded soil deposited into the lake: (1) over the
last few years (top-core samples, spatial dataset, Fig. 2 and Table 1);
and (2) over the last 100years (looking at the highest resolved lacus-
trine archive, temporal dataset, Table 2). The spatial dataset was com-
prised of the most recent 10mm of sediment deposition from each la-
custrine core. The top-core samples present an archive spanning from

Fig. 2. Study lakes and catchments used in the temporal and spatial analysis of erosion susceptibility. The temporal site, Arbu, is noted on blue. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Table 1
Dataset of study area lakes and the catchment characteristics.

Catchment and
lake name Location

Catchment
area (km⁠2)

Elevation
(m a.s.l.)

Lake
surface
area (km⁠2)

Indicative
catchment
slope (m/m)

Annual average
precipitation (m)

Indicative small
tree % vegetation
cover

% sparse &
natural
vegetation cover

% bare
rock
cover

Arratille 42°47′23″N
0°10′27″W

3.3 2395 0.06 0.20 1.70 4% 34% 66%

Barroude 42°43′52″N
0°8′43″E

1.6 2565 0.11 0.39 1.69 40% 42% 58%

Gentau 42°50′53″N
0°29′14:W

1.9 2023 0.09 0.11 1.78 5% 100% 0%

Majeur 42°50́53″ N
0°29́14″ W

9.1 1971 0.21 0.17 1.67 11% 54% 41%

Port Bielh 42°51́45″ N
0°10́36″ W

2.0 2440 0.16 0.24 1.47 5% 15% 85%

Sigriou 42°50́53″ N
0°29́14″ W

0.4 2168 0.01 1.09 1.58 9% 34% 66%

Paladru* 42°50 53″ N
0°29́14″ W

66.6 1168 3.6 0.01 1.01 16% 17% 0%

Picot 42°40′36″N
1°28′36″E

1.2 2412 0.06 0.24 1.44 23% 25% 75%

Medecourbe 42°50́53″ N
0°29́14″ W

1.7 2299 0.04 0.28 1.67 6% 29% 71%

Estibere 42°51′4″N
0°9′37″E

0.4 2425 0.02 0.49 1.51 3% 10% 90%

Bramant* 42°50́53″ N
0°29́14″ W

14.7 2658 0.15 0.13 1.43 7% 38% 44%

Arbu 42°48′18″ N
1°26′15″ E

1.6 1940 0.04 0.39 1.63 26% 100% 0%

Table 2
Sample age (top of sample) and time step durations, element content, deposition of eroded soil (Ve) and erosion susceptibility (Es⁠C, Eq. (1)) (calculated from the original De Ploey Es
equation (De Ploey et al., 1995)). * indicates lakes located in the Alps. Indicative deposition volume (M) is calculated following the methods published in (Simonneau, 2012).

Sample
Identification

Sample
top date

Sample duration
represented (time
step) (years) Ti:Rb

Ti (peak
area)

Indicative
deposition
volume (M) (m ⁠3)

Ve(rAP)
(relative
volume, m⁠3)

Es⁠C(rAP)
(s⁠2/m⁠2)

Ve (Rb)
(relative
volume, m⁠3)

Es⁠C(Rb)
(s⁠2/m⁠2)

Arratille 2013 18 1.80 2408 590 5 5.2E-06 128 1.2E-04
Barroude 2012 26 2.39 14,995 1122 32 4.5E-05 1015 1.4E-03
Gentau 2012 50 1.45 8407 868 11 6.5E-06 727 4.3E-04
Majeur A 2010 14 3.35 1620 2056 157 7.5E-05 200 9.5E-05
Majeur B 2011 17 17.48 51,072 2056 111 4.3E-05 898 3.5E-04
Port Bielh 2013 58 1.95 2542 1612 21 1.3E-05 341 2.0E-04
Sigriou 2012 59 2.02 46,105 132 5 1.4E-05 53 1.5E-04
Paladru A* 2009 7 1.74 1044 36,048 87 1.8E-05 1454 3.1E-04
Paladru B* 2009 12 14.11 1044 36,048 87 9.7E-06 1454 1.6E-04
Picot 2013 17 0.61 1251 611 10 3.2E-05 89 2.9E-04
Medecourbe 2013 38 1.50 2279 430 7 6.6E-06 79 7.0E-04
Estibere 2012 172 2.07 1616 165 4 3.8E-06 45 4.3E-05
Bramant* 2007 26 14.11 45,917 1529 1 2.5E-07 162 1.9E-04
Arbu 2013 7 4.11 3775 423 7 3.6E-05 67 3.6E-04

temporal
dataset

Arbu 1b 2006 8 3.51 4137 423 6 2.7E-05 63 3.0E-04

Arbu 2b 1998 10 4.25 4397 381 11 3.9E-05 55 2.2 E-04
Arbu 3b 1988 14 3.97 5350 437 8 2.2E-05 123 3.1 E-04
Arbu 4b 1974 14 2.74 5679 451 8 2.2E-05 142 4.3 E-04
Arbu 5b 1960 11 4.57 6101 381 6 2.1E-05 133 4.9 E-04

7years in sediment and soil deposition record (e.g. Lake Arbu)
to>50years (e.g. Lakes Sigriou, Port Bielh and Gentau). Lake Arbu, a
small alpine catchment in the Mid-Pyrenees with a high lacustrine de-
position rate, was adopted for the temporal analysis (analysis of the last
100years using a 1.15m high-resolution core; the recent 100yrs is rep-
resented by ∼70mm).

Lake cores were collected generally from the central most section
of the lake. Cores were recovered from beneath the lake floor using
a UWITEC coring device operated from a floating platform or similar
(Arnaud et al., 2016; Doyen et al., 2016; Simonneau et al., 2013a).

One core was used from each lake, a common and accepted ana-
lytical method in paleorecord analysis (Baddouh et al., 2016; Mügler
et al., 2010; Wischnewski et al., 2011), with two cores sampled from
Lakes Majeur and Paladru as a methodology check. This spatial dataset
encompasses catchments with a range of lake sizes (0.02–3.60km⁠2),
contributing catchment areas (0.37–66.62km⁠2), altitudes (1168–2658m
a.s.l.), and indicative catchment slopes (0.01–1.1m/m). The vegeta-
tion composition, extent and land use also vary across these catch-
ments, with areas such as Barroude, Gentau, Medecourbe and Sigriou
dominated by bare rock, Arbu, Arratille, Picot dominated by
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scrubby alpine vegetation and urban development found in the catch-
ment of Lake Paladru.

2.1.1. Study area meteorology and catchment characteristics data
Meteorology and vegetation data for all catchments was gathered

from the Météo France® precipitation gauging stations and the CORINE
land cover dataset. Météo France® provide both gauged precipitation
records from field monitoring sites across France and a gridded network
of precipitation records (SAFRAN). Wherever possible a local precipi-
tation gauge was used to quantify the precipitation occurring for each
study catchment relative to the sample period (e.g. precipitation for
Lake Arbu using the Bernadouze meteorology monitoring station for the
top sample (7year time step) (Gascoin and Fanise, 2018; Meteo France,
2019), with confirmation and gap filling using the SAFRAN dataset
(Birman et al., 2017; Quintana-Seguí et al., 2017; Vidal et al., 2010).
The total precipitation for each year represented by the sample (e.g. for
2006–2013) was identified from these datasets and summed to provide
the De Ploey variable P (P is the total precipitation (m per m⁠2) for the
corresponding period of erosion activity (De Ploey et al., 1995)). Pre-
cipitation is presented in Table 1 as an annual average representative of
the sample duration (e.g. 2006–2013 for the top Lake Arbu sample) to
allow a visual comparison and overview of relative precipitation of the
study area catchments.

Land cover was identified using the European Union CORINE pro-
gram database. CORINE is an EU open source database of environmen-
tal information. It includes a database of land cover (using 44 land clas-
sifications) at a cartographic scale of 1:100,000 (Bossard et al., 2000;
De Roo et al., 2003; Feranec et al., 2007). Using the gridded CORINE
dataset and catchment areas, the composition of each catchment was
defined (Table 1). Where possible, this land cover characterisation was
confirmed using pollen reconstruction analysis (available for the tempo-
ral dataset for Lake Arbu and spatially for Lakes Paladru, Majeur and
Sigriou (Doyen et al., 2016; Marquer et al., 2019)).

The temporal dataset was created using historically recorded precip-
itation for the Vicdessos catchment of Lake Arbu and the pollen recon-
struction of this catchment’s vegetation over the past 100years. Meteo
France precipitation datasets from local monitoring sites (Bernadouze,
Foix, Vicdessos, and St Girons) in conjunction with the SAFRAN data-
base were used to define the total precipitation for each sample. Pollen
reconstruction of past land cover and vegetation type was completed
following the techniques presented in Marquer et al. (2019), and fol-
low the Landscape Reconstruction Algorithm (Sugita, 2007) modelling
approach using the full length of lacustrine core. This provided an age
dated record of land cover and vegetation occurrence for this catch-
ment. The most recent period was also defined using the CORINE data-
base and compared to the pollen reconstruction results to ensure com-
patibility between the datasets (pollen reconstruction provided equiva-
lent but more detailed information compared to CORINE database de-
tails).

2.1.2. Lacustrine age-dating and elemental analysis
All cores were age-dated following the radiocarbon and ⁠210Pb dat-

ing techniques described in (Doyen et al., 2016; Simonneau, 2012;
Simonneau et al., 2013b). A minimum of three ⁠14C dates were obtained
for each core (bottom, mid and upper core samples) and ⁠210Pb was
analysed at ∼10mm intervals along the core. Combining the ⁠14C and
⁠210Pb results an age-date model (CLAM and/or CRS) (Blaauw, 2010;
Pawełczyk et al., 2017; Sikorski, 2019) was created for each core from
which top sample (for the spatial dataset) and total core samples (for
the temporal dataset) ages and time steps were derived (Table 2).

The element composition within each core was quantified using an
ITRAX core scanner core scanner (XRF) (or equivalent) at ∼1mm in-
tervals. XRF core scanning is a non-destructive spectrometry method of
elemental analysis (Arnaud et al., 2016; Boës et al., 2011; Melquiades

and Appoloni, 2004) that can provide high resolution element concen-
tration data for sediment samples. Due to the high sampling resolution
along a lacustrine core, detailed trend and concentration analysis for the
period of lacustrine archive can be achieved. For the study area cores,
multi-elemental XRF analysis was undertaken, specifically to define the
content of Titanium (Ti) and Rubidium (Rb) in each sample (results in
parts per million (ppm) or % weight). Values were corrected relative to
known soil content. Rb was specifically selected as a minerogenic soil
proxy and Ti as a commonly used geochemical soil reference (Boës et
al., 2011) to provide an indication of the minerogenic (Rb) and general
(Ti) soil content in the lacustrine core. It is acknowledged that the con-
version of XRF data into concentration is a crucial step and difficult to
achieve with XRF data alone and the available data used in this study
may therefore incorporate errors and uncertainties.

2.2. Organic and minerogenic soil proxies

The rAP proxy was selected to represent an organosoil. It predom-
inates the upper horizons of the catchment soil, is often larger in size
and less dense compared to Rb, which is a constituent of predomi-
nantly clay-silt sized soil minerals (Wang et al., 2008). To quantify
rAP, ∼10mm slices of the lacustrine core were prepared and manually
analysed using microscopy following published methods (Simonneau,
2012). rAP is highly sensitive to catchment vegetation composition and
cover (decreasing as vegetation occurrence decreases), may move easily
in minor precipitation events but may also be easily detained within the
catchment due to its size and angular shape. This rAP analysis resulted
in a count (quantity) of rAP per sample (% organic soil in the sediment;
g/g).

Rb was selected to represented lithogenic, mineral soils. Rb may con-
versely be less easily released (eroded) in minor precipitation events
(being retained in the root zones of vegetated areas, potentially buried
under or mixed within the organic soil horizons) but be more easily con-
veyed once entrained in the catchment runoff. There is also a poten-
tial, in major precipitation events, for the localised, easily erodible or-
ganic soil (rAP) source to be quickly depleted, resulting in major and
prolonged precipitation periods presenting a comparably greater Rb rep-
resentative soil deposition. Similarly, during major precipitation events
the Rb content may also become limited as, especially in mountainous
catchments where top soil layers such as that represented by Rb may
not be infinite.

The differences in composition and transport of these two soil prox-
ies result in the study catchments presenting differing erosion suscep-
tibility values specific to the soil types (organic (rAP) and lithogenic
(Rb)). The two complementary proxies have therefore been used as rep-
resentations of the organic and inorganic catchment soils eroded and
transported into the lacustrine records and have been considered (in the
De Ploey Es analysis) separately to provide a more detailed analysis of
soil erosion in the study catchments.

2.3. Application of the De Ploey model to lacustrine records

2.3.1. Calculation of Es from the precipitation and erosion dataset (Es⁠C)
The long term De Ploey equation is defined as (De Ploey et al.

(1995), Eq. (3)):

(1)

where Es is the contributing catchments erosion susceptibility (s⁠2/m⁠2),
Ve is the total soil volume eroded from the contributing catchment
(m⁠3), A is the contributing catchment area (m⁠2), P is the total precipi-
tation (m per m⁠2) for the corresponding period of erosion activity, h is
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the affected soil thickness (m, accepted as 0.001m for long term erosion
analysis (De Ploey et al., 1995; Simonneau, 2012)) and g is acceleration
due to gravity (∼10m·s⁠−2) (De Ploey et al., 1995; Summer and Walling,
2002).

The De Ploey equation is effective for catchments where derivation
of the erosivity measure is difficult (Renard and Freimund, 1994; Wang
et al., 2002). It focuses on catchment erosion yield calculated from
recorded total precipitation and contributing catchment area, in con-
junction with an Es coefficient. The Es coefficient is described by De
Ploey et al. (1995) as a ‘black box’ value due to the limited statisti-
cal derivation currently available. Es can simplistically be regarded as a
function of the total quantity of eroded soil relative to the total quantity
of precipitation on the catchment over a selected period of time.

The De Ploey erosion susceptibility equation (Eq. (1)) was employed
across the spatial and temporal datasets in several steps (Fig. 3). First,
the erosion susceptibility parameter was calculated using the known
precipitation record, soil deposition quantities and catchment area (P,
Ve and A in Eq. (1)). These Es values were defined as the De Ploey cal-
culated Es values, Es⁠C. Using Eq. (1) Es⁠c specific to the study catchment
and time period were derived. To calculate the volume of rAP and Rb
soil represented in the lacustrine sample the De Ploey definition of soil
volume was used, as described in (Simonneau, 2012) and presented in
Eq. (2):

(2)

where t=the period represented by the sample (years), S=the percent-
age of eroded soil relative to the total amount of sediment deposited
in the lake, Ac=the accumulation (depth) of total soil and sediment
deposition in the lake (m) for respective period (t), and LA=the lake
area equivalent to the lake deposition extent (m⁠2) (Simonneau, 2012).
ActxLA result in the total autochthonous and allochthonous deposition
volume in the lake, as published in (Simonneau, 2012) and is further
represented as M (m⁠3).

Es⁠c can be computed if the volume of eroded soil is known (rAP or
Rb proxy for the calculations of Ve; Ve(rAP) or Ve(Rb)), the precipita-
tion for the catchment over the period of analysis is known, the assump-
tion of erosion depth (h) for long term erosion calculations is accepted
as 0.001m and the catchment and lake sizes are defined.

2.3.2. Derivation and calibration of Es from lacustrine archive (Es⁠D)
The calculated Es⁠C values were correlated to catchment character-

istics within the temporal and spatial dataset. Correlation analysis was
used to highlight which catchment parameters fluctuated in a similar
pattern to the changing erosion susceptibility (and lacustrine erosion
record). This analysis was used to identify key parameters that may be
effective in calculating Es⁠C. Strongly correlated, significant parameters
were incorporated into linear regression to find a function that effec-
tively described Es⁠C and supported P estimation (Fig. 3).

Fig. 3. Schematic of Es and P calculations and analysis.
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Using regression analysis, the lacustrine archive datasets (present-
ing vegetation change, metal, mineral and total deposition over specific
time periods) were used to derive a function to reproduce Es⁠C. These
regression Es⁠C values, defined through archive data, were defined as de-
rived Es values (Es⁠D). Fig. 3 presents a schematic methodology for the
derivation of Es⁠D.

No single parameter effectively derived Es⁠C values, necessitating the
use of multiple regression analysis. A separate function was defined for
Es⁠D(rAP) and Es⁠D(Rb) due to the differences in the soil typology and
correlation results. The regression analysis was created using the catch-
ment parameters that supported the most effective (strongest coefficient
of determination and Nash-Sutcliffe efficiency (NSE)) results.

The multiple linear regression modelling of Es⁠D was completed using
R studio standard functions (Im). Variable selection was made by corre-
lation strength (variables with the strongest and most significant corre-
lation values were selected). The selection of variables used to create the
Es⁠D model were not meteorological parameters, all variables were lacus-
trine proxy or XRF sampled metal values. This ensured the Es⁠D model
was created from a dataset distinct from the precipitation record, inde-
pendent from all meteorological data, therefore allowing later valida-
tion using recorded precipitation. It was important to define a function
with the fewest parameters to support statistical validity in regression
function modelling. The number of variables used in the Es⁠D regression
models were kept to a minimum (4) to ensure the number of variables
in the equation were less than the number of data points (e.g. recorded
precipitation data points).

A spatially diverse dataset was necessary to effectively derive the
Es⁠D linear regression function. The temporal analysis was undertaken on
Lake Arbu’s lacustrine archive. The temporal and spatial datasets were
used to help examine the temporal and spatial robustness of the Es func-
tion defined through the regression analysis. To test the efficiency of the
correlation, statistical model calculation of Es⁠D was compared to the De
Ploey back-calculated Es⁠C values.

The linear regression function provides coefficient values (a weight-
ing and scaling factor for each variable) for the model and an intersect
value, if an intersect≠ to zero is requested. The selection of variables in-
corporated into the Es⁠D regression model were varied until the regres-
sion analysis provided Es⁠D values as close to Es⁠C as possible.

2.3.3. Validation of the method
The effectiveness of the regression to calculate Es⁠C has been consid-

ered using the coefficient of determination of the Es⁠D function (r⁠2), root
mean square error (RMSE), and Nash-Sutcliffe efficiency (NSE). Rela-
tive error, the difference between recorded and modelled precipitation
(m, %) was used to assess the accuracy of the Es⁠D regression function
in replicating the recorded total precipitation dataset alongside RMSE
and MAE. NSE is a method to quantitatively assess the efficiency and
accuracy of a model (Es⁠D), mean absolute error (MAE) and RMSE are
comparisons on the modelled versus observed datasets to define the er-
ror in model results. MAE considers the individual differences (for each
lacustrine sample), weighted equally. RMSE functions is a similar way
but weights the individual errors relative to their size. RMSE results can
therefore illustrate outlier or isolated extreme error result occurrence
while MAE provides an average magnitude of error.

The uncertainty in Es⁠D calculation of P using lacustrine archive data
was considered in a similar way. The dataset is comprised of physical
sample results (lacustrine records) which hold uncertainty due to an-
alytical quantification methodology (Liu and Gupta, 2007). The lacus-
trine dataset is dated using ⁠14C and ⁠210Pb and this sample analysis incor-
porates a temporal uncertainty. Consideration of both sampling (e.g. Ve
quantification) and age dating uncertainty has been considered in the
Es⁠D calculation of P.

3. Results

3.1. Es variability and potential drivers

Four Es⁠C datasets have been created, temporal and spatial Es⁠C from
the rAP soil erosion records (resulting in Es⁠C(rAP)) and temporal and
spatial Es⁠C from the Rb soil erosion records (resulting in Es⁠C(Rb)), and
these values have been compared with literature reported Es⁠L values
(Fig. 4). The Es⁠C values calculated using recorded precipitation and
lacustrine erosion records generally fall within the literature recom-
mended range (Es⁠L) (Fig. 4). The temporal Es⁠C values illustrate a range
almost as great as the spatial dataset, approximately an order of magni-
tude in range. The calculated Es⁠C values for the temporal dataset are not
static.

Es⁠D(rAP) illustrated a range between 2.5×10⁠−7 – 7.5×10⁠−5

(mean=2.4×10⁠−5) while Es⁠D(Rb) values range between 4.3×10⁠−5 to
1.4×10⁠−3 (mean=3.2×10⁠−4) (Fig. 4). There is an order of magnitude
difference in the erosion susceptibility, with rAP illustrating a lower ero-
sion potential than Rb, driven by the recorded lacustrine deposition.

3.2. Correlation analysis

Correlation analysis of catchment characteristics was completed to
define key Es⁠C parameters. Table 3 lists the catchment characteris-
tics considered, the respective correlation values with Es⁠C and correla-
tion significance. Spatial dataset Es⁠C illustrated minor correlations with
catchment area, elevation, slope, total deposition and Ti. Catchment pa-
rameters showing moderate correlation with Es⁠C included average flow
path length, soil type and vegetation coverage.

The temporal Es⁠C datasets show moderate and generally significant
correlation to vegetation composition and coverage. Ti, the geochemical
catchment characteristic included in this analysis, illustrated a moderate
and significant correlation with and temporal Es⁠C values. Rb was found
to correlate to temporal Es⁠C(rAP) suggesting a possible link or similar
trend in rAP and Rb erosion and deposition in the Arbu catchment.

The representation of vegetation cover, described in Table 3 (and
Table 1) as ‘indicative small tree % vegetation cover’, is derived from
the corrected pollen vegetation reconstruction in the temporal datasets.
This catchment characteristic correlated with Es⁠C values, suggesting that
the erosion susceptibility in the temporal dataset may follow similar
trends and illustrating the known driving influence of vegetation cover
and change on erosion (Noël et al., 2001; Rosenmeier et al., 2002).

Fig. 4. Es⁠L value range for long term erosion analysis published in literature (dark grey
bar). Es⁠C values were calculated using the De Ploey equation (Eq. (1)), recorded precip-
itation and lacustrine erosion records (light grey and blue bars). Dark points within the
Es⁠C ranges illustrate the individual temporal and spatial calculated Es⁠C values specific to
catchment and sample period. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Table 3
Es⁠C correlation to geochemical and physical catchment characteristics.

Catchment characteristics Spatial dataset Temporal dataset

Es⁠C(Rb) Es⁠C(rAP) Es⁠C(Rb) Es⁠C(rAP)

Catchment area (km ⁠2) −0.17⁠# −0.12
Lake surface area (km ⁠2) −0.12 −0.13
Elevation (m asl) 0.17 −0.09
Slope (m/m) 0.16 0.13⁠#

Average flow path length (m) −0.21⁠# 0.21⁠#

Soil type −0.47* −0.11
% bare rock 0.03⁠# −0.11
% sparse vegetation 0.24⁠# 0.40⁠#

% small tree vegetation ⁠° 0.71* 0.51 ⁠#* 0.67⁠#,⁠°,* −0.67⁠°,*
Total deposition (M) −0.12 −0.13 0.68* −0.38*
Ti 0.16⁠# −0.01 −0.81* −0.59 ⁠#,*
Rb NA −0.1 NA 0.42⁠#

Ti/Rb NA 0.07⁠# NA −0.68 ⁠#,*

* = p-value<0.1.
° Vegetation that has been corrected by pollen analysis includes the Temporal dataset

and Lakes Paladru, Majeur and Sigriou. Rb and the Ti:Rb ratio have not been included in
the assessment of Es⁠D(Rb) and are therefore presented with NA in the table.

# Indicates the Log10 transformation of the data.

3.3. Es regression analysis

The Es⁠D(rAP) regression function is derived from the lacustrine ero-
sion record (Ve(rAP)), the total sediment deposition volume (M, m⁠3) for
respective period, the corrected pollen reconstruction model of vegeta-
tion pattern (represented as a % of tree cover), and the Ti:Rb ratio (in-
dicator of general erosion and precipitation). It is noted that the Rb:Ti
ratio illustrated a stronger correlation to Es⁠C(rAP) however when con-
sidered within the multiple regression analysis the inverse ratio (Ti:Rb)
presents a model with a more effective coefficient of determination and
smaller p-values. The Ti:Rb parameter was therefore included in the re-
gression function.

(3)

The Es⁠D(Rb) regression is derived from the lacustrine erosion record
(Ve(Rb)), the deposition volume (m⁠3), pollen reconstruction of vegeta-
tion patterns (represented as a % of tree cover), and the Ti trend (indi-
cator of general erosion and precipitation).

(4)

The regression coefficients for Eqs. (3) and (4) are presented in
Table 4. The coefficients for the temporal, spatial and total (cumulative)
datasets of rAP and Rb have been calculated.

The functions presented in Eqs. (3) and (4) have been calculated for
the spatial and temporal datasets separately. A ‘total dataset’ analysis

was completed but while the coefficients defined using the total dataset
are relatively effective in modelling Es⁠C, it was noted that separating the
temporal and spatial dataset presented greater accuracy in Es⁠D calcula-
tions. For the purposes of this analysis, the spatial and temporal datasets
were treated separately to try and define the most effective model pos-
sible for the reconstruction of total precipitation for the spatial and tem-
poral datasets. The Es⁠C values relative to the regression Es⁠D values are
presented in Fig. 5.

The Es⁠D(rAP) values from the regression derivation have a coefficient
of determination (r⁠2) of 0.93 (RMSE of 4.8×10⁠−6) and NSE of 0.93 (Fig.
5a). The Es⁠D(Rb) values from the regression derivation have a coeffi-
cient of determination (r⁠2) of 0.92 (RMSE of 8.3×10⁠−5) and NSE of
0.91 (Fig. 5b). The Es⁠D regression equations (Eqs. (3) and (4)) illustrate
a strong coefficient of determination (r⁠2 >0.8) and NSE (0.7<NSE>1)
suggesting model efficiency in synthesising Es⁠C values from lacustrine
data.

3.4. Estimation of total P using lacustrine record

The total precipitation calculated using Es⁠D(rAP) and Es⁠D(Rb) were
compared to recorded precipitation based on a split sample method. Fig.
6 illustrates the modelled P relative to recorded values, and the general
trend in P when historic lacustrine data is considered back past recorded
P. Both rAP and Rb results illustrate notable uncertainties and errors,
however there is some capacity for these Es⁠D equations to estimate P
and provide information on the trends in recent and past P. As a first
step towards using a highly simplified, limited data availability model
to consider mean annual P, this method could be useful.

The RMSE for the recorded vs modelled P using the rAP dataset and
Es⁠D(rAP) equation was 0.29 (total dataset), with the spatial dataset pre-
senting a RSME of 0.32 and temporal dataset RSME of 0.22. The mean
absolute error (MSE) for the total dataset was 0.24, 0.22 for the tem-
poral dataset and 0.25 for the spatial dataset. The RMSE and MAE for
P estimated using the rAP dataset were <35% of the recorded average
annual precipitation. The RSME is higher than MAE for the total dataset
and spatial subset, suggesting some extreme results or outliers in the
spatial modelled dataset.

The RMSE for the recorded vs modelled P using the Rb dataset and
Es⁠D(Rb) equation was 0.34 (total dataset), with the spatial dataset pre-
senting a RSME of 0.40 and temporal dataset RSME of 0.14. The MSE
for the total dataset was 0.25, 0.10 for the temporal dataset and 0.32 for
the spatial dataset. As with the rAP dataset, the RMSE and MAE (total
dataset) are <35% of the recorded average annual precipitation, sug-
gesting no significant difference between the rAP and Rb modelled P re-
sults when the total dataset is considered. The RSME is slightly higher
than MAE for all Rb estimated P results, suggesting outliers and extreme
results across the dataset results. Both modelled P results illustrate a
smaller RMSE and MAE for the temporal datasets compared to the spa-
tial datasets, suggesting that using this method is slightly more effective
for temporal analysis than when used for the spatial dataset.

The uncertainty in precipitation estimation has been calculated with
consideration of the uncertainty in quantifying rAP and Rb (and

Table 4
Regression analysis coefficients. The regression R⁠2 are relative to the dataset used in the model, not the total dataset.

Regression dataset Intercept Ve Total deposition (M) % tree cover Ti:Rb Ti R Squared Adjusted R Squared

a B c d e

rAP spatial dataset 0 4.1E-07 −9.8E-10 1.2E-04 −6.3E-07 NA 0.99 0.87
temporal dataset 0 2.2E-06 −1.5E-08 2.9E-05 2.9E-06 NA 0.96 0.40

Rb spatial dataset 0 5.0E-07 −2.1E-08 1.9E-03 NA −8.1E-06⁠# 0.84 0.70
temporal dataset 0 8.1E-07 2.1E-07 1.4E-03 NA −3.8E-08 0.99 0.49

# Indicates the Log transformed datasets.
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Fig. 5. Graphical representation of EsD values calculated using Eqs. (3) and (4) respectively. The spatial dataset Es⁠D values are illustrated in black outlined points; temporal Es⁠D values are
presented as orange points. The error bars represent the uncertainty range around Es⁠D calculations when Ve and P values are modified to represent the Ve quantification and sample date
uncertainties. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Calculation of P from regression Es⁠D(rAP) (6a) and Es⁠D(Rb) (6b) defined values. The black error bars show the uncertainty in P values due to Ve quantification uncertainty. The grey
error bars illustrate the uncertainty in P due to the sample date uncertainty. Spatial P results are presented as black points, Lake Arbu catchments temporal dataset results are presented as
orange points. Fig. 6(c) shows the temporal estimated P using historic data extending past the recorded records for Lake Arbu. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

therefore Ve) in the lacustrine archive and the uncertainty in dating
the samples. Uncertainty analysis has been completed considering these
uncertainty elements individually and cumulatively. The individual (Ve
and sample dating) uncertainties are presented in Fig. 5, with the spatial
and temporal breakdown of uncertainties is summarised in Table 5.

It is noted that while Es⁠D was effectively calculated using Eqs. (3)
and (4), the calculation of P is highly sensitive to small inaccuracies in
Es values, resulting in sizable relative errors in precipitation estimations.
A 1% change in Es⁠D values (without any further uncertainty considera-
tions) results in a relative error in P of −43% to 59% (Rb) and −16% to
34% (rAP). A 1% error or uncertainty in Es values illustrates a similar
precipitation calculation error to the Es⁠D model relative error or uncer-
tainty in Ve quantity.

4. Discussion

4.1. Variable erosion susceptibility (Es)

Literature Es values (Es⁠L) for long term erosion analysis fall between
1×10⁠−3 – 1×10⁠−6 s⁠2/m⁠2. Es⁠L values have previously been consid-
ered and used as a constant, with little available information on the
derivation of the long-term erosion sustainability values. For the first
time, lacustrine records of erosion (rAP and Rb indicators of erosion
in mountain catchments) have been coupled with catchment specific
precipitation records to calculate Es⁠D values. The simple Es⁠c calcula-
tion illustrates a range of Es⁠c values falling within the range of pub-
lished (Es⁠L) values, but that the definition of Es is difficult unless pre-
cipitation and erosion are quantified for the study catchment and re-
spective time period. This makes section of an Es value for use in the
De Ploey erosion equation or as a description of a catchment’s erosion
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Table 5
Summary of uncertainty influence on error.

Relative Error rAP or Rb sampling uncertainty Age depth uncertainty sampling+age depth uncertainty

(recorded P – modelled
P)*

(modelled – uncertainty
calculated)*

(modelled – uncertainty
calculated)*

(modelled – uncertainty
calculated)*

dataset max min max min Max min max min

rAP Temporal value 0.30 −0.33 0.35 −0.32 0.73 −0.34 0.48 −1.36
%
change

19% −20% 23% −19% 44% −21% 30% −87%

Spatial value 0.48 −0.42 0.43 −0.49 0.68 −0.58 1.81 −6.07
%
change

−27% 26% 24% −32% 42% −32% 28% −331%

Rb Temporal value 0.19 −0.27 0.23 −0.43 0.81 −1.96 0.81 −0.81
%
change

16% −12% 14% −26% 49% −117% 49% −114%

Spatial value 0.78 −0.37 0.76 −0.52 1.55 −2.62 1.56 −5.27
%
change

47% −29% 45% −32% 72% −144% 72% −305%

* Precipitation values are in metres.

susceptibility challenging, with current selection guidance focused on
catchment vegetation and soil typology.

The Es⁠c value is found to range (for the study catchments) from
1×10⁠−3 – 1×10⁠−6 s⁠2/m⁠2 spatially but also temporally. This illustrates
that Es⁠c is not a coefficient but that to achieve effective erosion, ero-
sion susceptibility and precipitation representation using the De Ploey
erosion equation over a time period (with multiple sub-samples) the Es
value is a variable (as illustrated in Figs. 4 and 5). This is logical, as
erosion is driven by vegetation and precipitation, both naturally and
anthropically influenced and changing over time. Therefore, given that
vegetation and precipitation fluctuate over time, it is important that ero-
sion susceptibility act as a variable which responds to precipitation and
vegetation trends, a spatio-temporal variable.

Es⁠c is noted to correlate most strongly to meteorological conditions.
However, if: (1) Es is to be calculated for catchments or time periods
where meteorological records are scarce; or (2) the De Ploey equation is
to be used to assess historic erosion and precipitation patterns, then Es
must be described as a function of non-meteorological parameters. The
correlation and simple linear regressions present a description of erosion
susceptibility (Es⁠D) specific to the time period and individual catchment
characteristics. This function (Eqs. (3) and (4)) provides a new method
to estimate Es for a catchment beyond the use of generalised vegeta-
tion and soil descriptions (Es⁠L). This descriptive Es⁠D function supports
estimation of the temporal and spatial variability in Es based on catch-
ment specific lacustrine erosion and geochemical indicators. The func-
tions are a step towards greater description and understanding of the
driving forces and catchment (temporal and spatial) representation of
erosion susceptibility.

The difference in lacustrine quantities of rAP and Rb may be due
to the relatively thin soil profile in the study (mountain) catchments,
organic carbon content in Pyrenees mountain catchments of ∼10%
(Garcia-Pausas et al., 2007) and correspondingly relatively small quan-
tity of organic soil available for erosion. As a result, there is a smaller
quantity of organic soil (rAP) available in the catchment and therefore
a correspondingly smaller quantity of rAP in the lacustrine archive. The
difference in Es⁠C values suggests that the erosion susceptibility value
may be specific to soil typology and catchment soil availability.

4.2. Lacustrine erosion indicators

The two erosion indicators (rAP and Rb) considered in this study
represent different soil types (organo-mineral and mineral soils). Both
Es⁠D functions show effective model capability (0.7<NSE>1) how

ever the effectiveness in precipitation representation using these mod-
elled Es values varies (Fig. 5, Table 5). This is due to the driving in-
fluence of the Es parameter in the De Ploey erosion equation, and the
resultant sensitivity in calculated precipitation to small changes in Es.
It is also due to the coarse reconstruction of precipitation driven ero-
sion possible using the De Ploey method given the lack of differentiation
between rainfall and snow in the dataset and the significantly different
erosion impact snow and rainfall have on a catchment or soil.

There is limited diference in the representation of erosion suscep-
tibility and precipitation from the two datasets, rAP and Rb. There is
slightly greater error and uncertainty in the Rb dataset results compared
to rAP. This may be due to the different physical transport properties of
these two erosion indicators. rAP are particles that may be broken but
do not dissolve or transform. Rb is a property of the underlying (granite)
bedrock and soil. Rb absorbance is strongest to fine (silt-clay size) par-
ticles (De Vos et al., 2006; Salminen et al., 2015). The Es⁠D(Rb) function
may need an additional parameter (variable) that describes the chang-
ing catchment pH, individual precipitation events and soil composition
properties (as indicators of the Rb transport mechanisms relative to the
time period) to support more effective future Es⁠D(Rb) modelling.

There is uncertainty in both erosion quantification (sampling) and
the age dating model. The rAP and Rb erosion datasets react similarly to
these uncertainties. Both datasets illustrate a greater sensitivity to age
depth model uncertainty than rAP or Rb sampling uncertainty (Table
5). Both rAP and Rb temporal results show lower sensitivity to sampling
and age depth uncertainty than the spatial datasets. This suggests that
the Es⁠D may be more effective for site specific longitudinal (archive)
analysis that spatial analysis.

4.3. Snow/rain influence on erosion and De Ploey estimation of past
precipitation

A significant proportion of precipitation in mountainous catchments
occurs as snow rather than rainfall. Snowmelt may or may not mimic
erosion events occurring due to rainfall or be represented clearly in an-
nual precipitation records. Within the lacustrine deposition it is diffi-
cult to differentiate erosion due to snow versus rain. Correspondingly,
the generalised precipitation available and used in this De Ploey analy-
sis provides no distinction between snow and rainfall precipitation but
instead presents an overall precipitation value. As such, the influence
of snowfall on these catchments is not taken into account in either pre-
cipitation estimation or erosion calculations. This is expected to be a
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key influence in the error in De Ploey Es estimation of precipitation us-
ing lacustrine records, resulting in inexact estimation of past precipita-
tion as illustrated in Fig. 6.

Furthermore, the influence of rainfall intensity is not taken into ac-
count in this De Ploey analysis (total or annual precipitation are the
only parameters prescribed, De Ploey et al., 1995). Rainfall intensity is
a significant driver of erosion, in conjunction with top soil composition.
While the complexities of top soil composition and details of rainfall
event intensity are key to erosion, the De Ploey Es model is designed for
a gross estimation of precipitation and erosion without provision of in-
tensity or catchment soil complexity. This is therefore a further source
or error and uncertainty in the De Ploey estimation of past precipitation.

5. Conclusions

Lacustrine erosion records have been used within the De Ploey ero-
sion equation to consider the erosion susceptibility and precipitation of
12 French mountain catchments. Using recorded precipitation and ero-
sion, the Es⁠C value for each time step and catchment has been calcu-
lated, illustrating Es⁠C values for these catchments to fall within the pub-
lished literature. Es⁠C (and Es⁠D) values are only representative of the sam-
pled time period analysed and incorporate consideration of the contin-
uously changing climate (precipitation) and vegetation (type and ex-
tent) in the specific study area under review. As climate and vegeta-
tion change over time, so Es⁠C values can be expected to change. Results
demonstrate that there is complexity in estimating Es⁠C and that Es⁠C is a
variable when considered in a spatial and temporal context.

Through analysis of the lacustrine archive, a description of the Es⁠C
variable has been created allowing Es⁠D to be calculated using lacustrine
archive data. This supports erosion susceptibility and precipitation esti-
mation for catchments and time periods where either erosion suscepti-
bility or precipitation records are unavailable. While Es⁠D is effectively
calculated, the simulation of P is indicative but inexact, and this analy-
sis illustrates the need for further development of the Es model to ac-
curately reconstruct P using lacustrine records. This research therefore
presents a step towards an effective simplistic approach in precipitation
reconstruction using lacustrine records and provides a method to define
Es values using non-meteorological parameters commonly available for
catchments.
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