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Abstract: The UltraViolet and infrared Sensors at high Quantum efficiency onboard a small SATellite
(UVSQ-SAT) mission aims to demonstrate pioneering technologies for broadband measurement of
the Earth’s radiation budget (ERB) and solar spectral irradiance (SSI) in the Herzberg continuum
(200–242 nm) using high quantum efficiency ultraviolet and infrared sensors. This research and
innovation mission has been initiated by the University of Versailles Saint-Quentin-en-Yvelines
(UVSQ) with the support of the International Satellite Program in Research and Education (INSPIRE).
The motivation of the UVSQ-SAT mission is to experiment miniaturized remote sensing sensors that
could be used in the multi-point observation of Essential Climate Variables (ECV) by a small satellite
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constellation. UVSQ-SAT represents the first step in this ambitious satellite constellation project
which is currently under development under the responsibility of the Laboratory Atmospheres,
Environments, Space Observations (LATMOS), with the UVSQ-SAT CubeSat launch planned for
2020/2021. The UVSQ-SAT scientific payload consists of twelve miniaturized thermopile-based
radiation sensors for monitoring incoming solar radiation and outgoing terrestrial radiation,
four photodiodes that benefit from the intrinsic advantages of Ga2O3 alloy-based sensors made
by pulsed laser deposition for measuring solar UV spectral irradiance, and a new three-axis
accelerometer/gyroscope/compass for satellite attitude estimation. We present here the scientific
objectives of the UVSQ-SAT mission along the concepts and properties of the CubeSat platform and
its payload. We also present the results of a numerical simulation study on the spatial reconstruction
of the Earth’s radiation budget, on a geographical grid of 1◦ × 1◦ degree latitude-longitude, that
could be achieved with UVSQ-SAT for different observation periods.

Keywords: earth’s radiation budget; solar–terrestrial relations; UV solar spectral irradiance;
thermopiles; carbon nanotubes; photodiodes; Ga2O3; nanosatellite remote sensing

1. Introduction

UltraViolet and infrared Sensors at high Quantum efficiency onboard a small SATellite
(UVSQ-SAT) is a Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS) nanosatellite
mission with scientific and technological goals [1] mainly for observing essential climate variables,
namely shortwave and longwave radiative fluxes at the top of the atmosphere and UV solar spectral
irradiance. However, the UVSQ-SAT pathfinder mission will not provide a continuity of the essential
climate variables’ data records since it is a demonstrator. Another objective of the UVSQ-SAT mission
is to provide hands-on experience to UVSQ and Paris-Saclay University students in the requirements’
definition, reliability and quality assurance, cost and risk management, design, construction, spacecraft
integration and testing, mission operations, and control of complete satellite systems that will serve as
the basis for a variety of future space missions for Earth observation and astronomy and astrophysics.

The UVSQ-SAT nanosatellite is a cube of about 11 cm with a mass of up to 1.6 kg and a power
consumption of up to 2 W. The launch of the CubeSat is currently targeted in the time frame of
2020/2021. The choice of the orbit is directly related to scientific goals while taking into account
the optimization for launch opportunities as piggybacking and the rules governing the space debris
mitigation. The selected orbit is a Sun-Synchronous (SSO) Low Earth Orbit (LEO) with a maximum
altitude of 600 km and a Local Time at Ascending Node (LTAN) of 10:30 hours, which will lead to
an atmospheric reentry of the satellite within 25 years. The operational mission lifetime will be at
least of one year in orbit, including the commissioning phase, to achieve the expected UVSQ-SAT’s
scientific objectives.

The first scientific objective of the UVSQ-SAT in orbit demonstration CubeSat is to measure
the incoming solar radiation (total solar irradiance) and the outgoing terrestrial radiation (top of
atmosphere outgoing longwave radiation and shortwave radiation) using twelve miniaturized Earth
radiative sensors (thermopiles based on the advantages of carbon nanotubes and Qioptiq optical
solar reflectors). Thus, it might be possible to constrain better the Earth’s radiative balance and, more
importantly, the Earth’s Energy Imbalance (EEI) [2], which is defined as the difference between the
incoming solar radiation and the outgoing terrestrial radiation (longwave and shortwave radiation).
The EEI’s direct determination is very challenging because EEI is two orders of magnitude smaller
than the radiation fluxes in and out of the Earth’s system.

The second scientific objective is to monitor the solar spectral irradiance in the Herzberg
continuum (200–242 nm) using four photodiodes, which benefit from the intrinsic advantages of Ga2O3

alloy based sensors grown by pulsed laser deposition [3]. A better understanding of natural factors in
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climate variability is the essential motivation of the UV solar spectral irradiance measurements. The
UV solar variability over time has significant implications for atmospheric chemistry and its modeling.

The main goal of this paper is to present the UVSQ-SAT mission and the justifications for its
existence. Section 2 describes in detail the scientific rationale of the UVSQ-SAT mission. Section 3
provides a description of the UVSQ-SAT nanosatellite and its operational requirements. Section 4
presents a preliminary analysis of the expected results using numerical simulations. The results concern
a spatial reconstruction of Earth’s radiation budget that might be carried out with UVSQ-SAT data for
a given time period of observation. This analysis will also highlight the interest to implement a satellite
constellation in order to improve the determination of EEI, which is a crucial quantity for testing
climate models and for predicting the future course of global warming. Today, the implementation
of an “EEI” constellation based on small satellites is possible. Indeed, the commercial use of small
satellites has started thanks to recent advances in miniaturization and integration. Many fields
have started benefiting from small satellites: scientific research, technology demonstrations, Earth
observations, biological experiments/pharmaceuticals, telecommunications, military applications,
etc. Small satellites and the “NewSpace” at Horizon 2020 offer unique opportunities in terms of
constellation deployment providing larger simultaneous spatio-temporal coverage of the Earth, which
is fundamental for Earth energy imbalance measurements (impacts of aerosols and clouds that are
highly variable spatially and temporally).

2. Scientific Rationale of the UVSQ-SAT Mission

2.1. Earth’s Energy Imbalance

Currently, Earth’s surface temperatures have been rising by about 0.2 K per decade since 1981 [4]
(considering deseasonalized monthly surface temperature anomalies from HadCRUTv4.5). Thus,
climate change and global warming pose a severe threat to humanity. Climate processes are controlled
by energy exchanges within and among the different components of the Earth system. Monitoring the
Earth’s influx and outflux of both longwave and shortwave radiation from all sources is essential to
advance our understanding of climate variability and change and for developing more accurate and
reliable climate models and forecasting. Human activities have led to rising levels of heat trapping
Greenhouse Gases (GHG) in the atmosphere with less terrestrial radiation being able to escape. This
unequivocal anthropogenic radiative forcing of the climate system creates an imbalance in the Earth’s
energy budget, which causes surface and lower atmospheric warming in order to reestablish a balance
in the energy budget [5]. For this reason, EEI represents a measure of the excess of energy that is being
stored in the climate system as a response to anthropogenic forcing. As such, it has been identified as a
fundamental diagnostic for analyzing climate variability and anticipating future climate changes.

Direct measurements of variations in the energy entering and leaving the Earth system are
of primary importance for determining the rate of climate change at regional and global scales [6].
Actually, the most accurate measurement strategy to determine EEI is to monitor the temporal evolution
of the ocean heat content since more than 90% of the excess energy that is gained by the Earth in
response to the positive EEI accumulates in the ocean in the form of heat [7]. This can be combined
with satellite radiation measurements to derive the high frequency variability in EEI. Indeed, the
absolute value of EEI can be best estimated from changes in ocean heat content on long timescales,
whereas the high spatiotemporal variations in EEI can be provided by satellite observations of net
radiation flux variability at the Top Of Atmosphere (TOA). The information on EEI at high spatial and
temporal resolution is crucial for advancing our understanding of climate change because the Earth’s
radiative balance is partly driven by the radiative impacts of aerosols and clouds, which are highly
variable spatially and temporally and are still relatively poorly quantified (IPCC, 2014).

Satellites’ remote sensing provides a practical and efficient method for mapping Earth’s Radiative
Balance (ERB) components spatially and temporally at different scales. A large satellite constellation
would allow a high frequency and sampling in measurements and consequently a more accurate
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determination of the Earth’s global energy imbalance along with the diurnal and multi-directional
sampling needed to capture spatiotemporal scales relevant to aerosol and clouds (e.g., every three
hours and ideally a few km resolution). Advances in small satellite technology now enable the
cost effective global solution of monitoring Earth’s environment with a minimum constellation of
15 small satellites [1]. Cloud data sharing is a cost effective solution for collecting the constellation
data and providing high quality science data in near real time. UVSQ-SAT is one of the first in
orbit demonstration CubeSats that is intended to demonstrate the ability to build a low cost satellite
with good precision measurements (relative EEI uncertainty at 1σ of ±5 Wm−2 during the mission).
Recently, the Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) 3U CubeSat [8]
demonstrated technologies for high accuracy measurement of Earth’s radiation budget.

The new UVSQ-SAT concept is designed to explore whether it is possible to achieve the EEI
required accuracies using broadband small Earth Radiative Sensors (ERS) onboard multiple satellites
(constellation). The main goal of the future satellite constellation is to obtain constant flow of direct
measurements from space by using miniaturized instruments (volume, mass, power, telemetry) with
narrow and broadband sensors to derive EEI at small spatiotemporal scales with an uncertainty at 1σ

of ±1 Wm−2 for a 1–10 km resolution. For longer timescales, EEI direct measurements are also very
challenging with a required measurement uncertainty at 1σ of ±0.1 Wm−2 during a decade.

Today, the best estimates of the EEI long term timescales are currently derived from temporal
changes in ocean heat content. The global average EEI estimated for the past decades ranges
from around +0.4 to +1.0 Wm−2 [7,9–12], largely consistent with the radiative forcing caused
by anthropogenic greenhouse gases. Hansen et al. [9] inferred a planetary energy imbalance of
+0.58 ± 0.15 Wm−2 (Earth is absorbing more energy from the Sun than it is radiating to space as heat)
during the 6 y period 2005–2010 using ocean heat content. Recently, Johnson et al. [13] estimated EEI
at +0.71 ± 0.10 Wm−2 for the period May 2005–May 2015 from ocean heat content changes measured
by Argo’s automated floats. Satellites’ measurements from the former generation of Earth Radiation
Budget Experiment (ERBE) sensors, along with the current generation of Clouds and the Earth’s
Radiant Energy System (CERES) sensors are the basis of an ERB multi-decadal record at the top of
atmosphere. Currently, CERES sensors provide the most reliable and stable TOA flux measurements
of the ERB components.

However, uncertainties in CERES absolute calibration and in the algorithms used to determine
ERB from satellite measurements are too large to enable Earth’s energy imbalance to be quantified
accurately [14]. The CERES data products are more useful for providing the spatial and temporal
variability of EEI. Actually, there is a risk of a gap in the ERB data since all current CERES
missions are close to the end of their lifetime after 2026 when only tropical missions such as the
Franco-Indian Megha-Tropiques or short duration missions such as ESA-JAXA’s EarthCARE (Earth
Clouds, Aerosols and Radiation Explorer) carry ERB instruments. Indeed, a project intended to
complete and replace the CERES instruments by the Radiation Budget Instrument (RBI) mission in
2021, in 2026, and in 2031 was canceled by NASA. Since then, the possibility of a constellation of small
satellites in orbit before 2026 is being explored. It represents a major challenge and could meet most of
the RBI measurement required for continuity of the climate data records.

To conclude, a measure of the energy imbalance at the top of the atmosphere is crucial,
but extremely difficult. It is a key step in the chain linking climate warming to the increase in
greenhouse gases. This would be an additional element in the scientific basis for climate change
mitigation, notably the magnitude of reduction in GHG emissions required to limit global warming
(e.g., 2 ◦C).

Ideally, accurate long term direct measurements of EEI would confirm the extent of climate
warming. Short term measurements of EEI at high spatiotemporal resolution would allow constraining
better poorly known radiative forcings associated with aerosols, aerosol–cloud interactions, surface
albedo, UV solar irradiance, etc.
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The accurate measurements of solar and terrestrial radiative fluxes at TOA over a wide range of
surfaces and conditions (e.g., clear-sky, with/without specific clouds or aerosols) would enable a better
evaluation of the overall radiative effects of clouds and aerosols and their representations in climate
models. Indeed, aerosol and cloud feedbacks arguably remain the dominant source of uncertainties
in climate modeling and of its more societally relevant aspects (e.g., changes in precipitation, etc.),
as explained in [15,16].

The incoming and outgoing shortwave flux measurements required to calculate EEI also can be
used to derive the albedo.

Spatially and temporally resolved albedo measurements allow us to observe the impact of changes
in land use, aerosols, and clouds, in terms of the reflection of incident solar radiation back to space,
essential for Earth’s radiation budget and therefore for the climate.

The spatial and temporal resolution of the radiative measurements determines the scales of the
targeted processes. Ideally, the resolution should be high enough to investigate fine scale processes
associated with aerosols and clouds, possibly the most important source of divergence between climate
models. A 1–10 km resolution would be appropriate for studying local aerosol plumes and clouds.
In terms of temporal resolution, being able to follow, even in a crude way, diurnal variations would
be a major step forward, in particular for diurnal cycles of clouds or the formation of secondary
aerosols (e.g., sulfur, nitrates, which are formed by photochemistry). It is worth pointing out that
the albedo issue is at the heart of geo-engineering (or rather, climatic intervention) by solar radiation
management, notably using the injection of aerosols or precursors in the atmosphere. High resolution
radiative measurements would help to characterize to what extent aerosols affect directly the albedo
and indirectly the cloud properties on small scales, today a sort of analogues for geo-engineering.
More generally, these measurements would help to carry out process studies on the relationship
between initial perturbations and atmospheric response at local scales in terms of shortwave and
longwave radiation.

2.2. Solar Spectral Irradiance in the Herzberg Continuum

The role of solar variability in climate variability remains a topic of considerable scientific and
societal importance.

Solar radiation is the energy source and is important for the climate. The incoming solar flux
or/and its spectral distribution at the top of the atmosphere (due to changes in solar activity or in the
Earth’s orbital parameters) fluctuate over a wide range of temporal scales, from the 27 day rotational
cycle to thousands of years. It also includes 11 y solar cycles and cycles of the order of hundreds of
years, called “grand solar minima” and “grand solar maxima”.

The solar spectrum [17] and its variability represent key inputs not only for solar physics, but also
for climate physics.

Climate models require time varying solar spectra as forcing with the available information often
based on solar reconstructions and solar models. There are multiples lines of evidence [18,19] showing
that solar variability has been a key forcing in the history of the Earth’s climate. Correlations between
solar proxies and atmospheric/climate indicators have been established in present day datasets and
in sedimentary and ice core archives. However, most of the apparent correlations and associated
solar signals tend to be very variable and intermittent. Some are also very difficult to reproduce in
climate models.

Establishing a quantitative forcing–response relationship for the Sun–Earth link is problematic
without a clear understanding of the key mechanisms engaged in the action of solar variability on the
atmosphere and climate, notably at regional scales. There is no general consensus on those mechanisms.

The overall response of the atmosphere and surface climate to solar variability involves a wide
range of coupled chemical, dynamical, and radiative processes and the interactions between different
atmospheric layers and between the atmosphere and the ocean.
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It is worth stressing that the issue of the solar impacts is not just critical for the paleoclimate.
It is also highly relevant for the present day climate evolution, which is driven by the GHG rising
concentrations. Climate change is a major and growing threat to natural, managed, and human
systems. There is already growing evidence for its adverse impacts on the natural environment and
human societies (e.g., ecosystems, biological diversity, water resources, and the economy) [20]. There
are several sources of uncertainties in climate simulations, in particular in the projections that are used
by decision makers to design differentiated mitigation and adaptation strategies [21]. Some of the
uncertainties originate from the difficulty to separate the anthropogenic contribution from the natural
variability. Quantifying accurately the anthropic contribution and projecting future changes requires
understanding and quantifying the natural climate variability including the solar driven variations. It
has even been suggested that a new grand solar minimum might occur in the 21st Century [22] and
even last until the end of the 22nd Century [23].

The uncertainties are not limited to the mechanisms [18]. They also pertain to the solar variability
itself, especially the spectral variations [24]. Indeed, solar forcing is not simply limited to a change
in total energy flux. Spectral variations are also important. The relative variations in incoming Solar
Spectral Irradiance (SSI) increase very rapidly with decreasing wavelength in the UV range and below.
For instance, over an 11 y cycle, the Total Solar Irradiance (TSI) fluctuates by about 0.1% (∼1.4 Wm−2),
whereas, in contrast, the radiative flux in the 200 nm region, a key spectral window for stratospheric
ozone photochemistry, varies by several %. This has important implications for the way variations in
incoming solar energy are redistributed among the different atmospheric layers. The choice of solar
UV irradiance variability used to force the models is critical for the solar perturbations of the middle
atmosphere [24–26].

The exceptionally weak Solar Cycle 24 and the future Solar Cycle 25 (expected to begin in late
2019) are interesting periods in this context as they might possibly imply the beginning of a general
negative solar forcing which would be expected to be vastly outweighed by the global anthropogenic
positive forcing [27].

It is also time to clarify better the mechanisms involved in the solar forcing and atmospheric
response. The idea is to investigate carefully processes affecting several atmospheric layers. Historically,
the impact of solar variability on surface climate has often been seen as resulting only from the direct
radiative effects on the Earth’s surface and the lower atmosphere. In this framework, the drivers
are variations in incoming TSI in wavelength ranges where the middle atmosphere is more or less
transparent, i.e., wavelengths longer than 320 nm, corresponding mostly soft UV (UVA), visible,
and near-infrared (IR) ranges.

They directly cause changes in the heating rate of the Earth’s surface and the lower atmosphere,
modifying surface temperatures and climate. At first order, the change in global temperature is
essentially due to this direct effect. However, there is also an indirect effect, the so-called “top-down”
mechanism (in opposition to the direct effect referred as the “bottom-up” mechanism). In that case,
the drivers are variations in the incoming UV flux (below 320 nm) and energetic particles whose
energies are almost entirely absorbed by the middle atmosphere. They cause photochemical and
dynamic perturbations of the middle atmosphere, which then propagate to the troposphere via
stratospheric–tropospheric couplings and result in modifications of surface climate, notably on regional
patterns [28–30]. Both mechanisms (top-down, bottom-up) operate at the same time in reality and
influence the middle atmosphere and surface climate. An additional complication in studying the
top-down mechanism is the fact that UV variations impact the middle atmosphere not only directly
via changes in radiative heating, but also indirectly via photochemically driven changes in ozone, the
key chemical species and UV absorber in the stratosphere. As a result, the stratospheric temperature
response to UV changes is amplified by about a factor of two in a chemistry–climate model (with
ozone calculated interactively) compared to the response in the climate model with specified constant
ozone [31].
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Clearly, the ozone response to solar variability needs to be accounted for in models by
treating ozone like temperature, as a variable of the system instead of an input of the model.
Only chemistry-climate models can simulate this interaction. Thus, it is necessary to have continuous
measurements of the UV solar spectral irradiance with a good accuracy, and particularly in the
Herzberg continuum (expected SSI uncertainty at 1σ of ±0.1% per decade) for its influence on
stratospheric ozone chemistry. Several missions (Compact Spectral Irradiance Monitor (CSIM) [32],
UVSQ-SAT) aim to test the efficacy of a CubeSat making accurate SSI measurements of a much bigger
and more expensive satellite.

Indeed, the new UVSQ-SAT concept is designed to see if it is possible to achieve the SSI required
accuracies using DEep uV INnovative detector technologies for Space observations (DEVINS) for
monitoring UV irradiance variability in the Herzberg continuum. The first step of this strategy is to
demonstrate the ability to build the DEVINS sensor, which is a compact/robust/radiation resistant
solid-state photodetector that does not require cooling. DEVINS needs to be able to have a functional
lifetime higher than classical space based UV sensors [33], which have a limited scientific operating
lifetime in weeks rather than months or years due to contaminant trapping by their cooled surfaces [34].
During the UVSQ-SAT lifetime mission, the DEVINS sensor will have to measure the UV irradiance
variability in the Herzberg continuum with an uncertainty at 1σ better than ±0.5% and to increase in
the future the reliability in the long term data record.

To conclude, there is a need for a better understanding of how the Sun affects the climate,
particularly for the UV radiation affecting ozone (the Herzberg continuum) since it links the
stratospheric ozone with regional effects. The Herzberg continuum corresponds to a spectral region
(200–242 nm) where atmospheric absorption is relatively low and, hence, solar UV radiation penetrates
deeply in the atmosphere, down to the lower stratosphere, where it converts molecular oxygen (O2) by
photolysis to produce ozone (O3). Absolute solar spectral irradiance and variability in the Herzberg
continuum are necessary to better understand the stratospheric ozone response to solar UV irradiance
changes [35]. This is important because the Sun has long term and short term variations, and we need
to know how these interact with anthropogenic effects. It is also important to understand natural
factors in climate variability to give a basis for a future where it might be predicted. The accurate
measurements of the solar spectrum at the top of the atmosphere and its variability are fundamental
inputs for Earth’s climate (climate modeling) and terrestrial atmospheric photochemistry. This is also
important for long term variations of solar cycle minima, which are of fundamental importance for
solar physics modeling (dynamo, energy transfer, magnetic and 11 y cycles, etc.). Thus, it is necessary
to monitor continuously the Herzberg continuum region over years [36]. One of the objectives of
the UVSQ-SAT mission is to validate a new technology for future continuous UV observations using
small satellites.

2.3. Scientific Requirements

As explained in detail in Section 2.1, measuring the absolute value of the Earth’s energy imbalance
and its variability over time appears to be a very difficult challenge. The relevant scientific goal is to be
able to detect any long term trend with a target accuracy of 1/10 of the expected signal of 0.5–1.0 Wm−2

in the global mean during a decade [10–12]. This issue could be solved through better absolute
calibration of the sensors since several satellites will be needed to carry out these measurements with
satellites’ temporal overlap to realize inter-calibrations. Table 1 presents the scientific objectives to be
achieved by future space based instrumentations onboard small satellites with onboard calibration
systems for EEI observations. These EEI scientific objectives are extremely relevant and have not been
achieved so far. At the present stage, the UVSQ-SAT CubeSat is a demonstrator, expecting future
developments and improvement that would then really allow making use of CubeSat technology for
these scientific purposes. EEI expected performances of the UVSQ-SAT CubeSat are given in Table 1.
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Table 1. Scientific requirements for Earth’s energy imbalance and solar spectral irradiance in the
Herzberg continuum (high scientific relevance and UltraViolet and infrared Sensors at high Quantum
efficiency onboard a small SATellite (UVSQ-SAT) expected performances). EEI, Earth’s Energy
Imbalance; SSI, Solar Spectral Irradiance.

Requirements Scientific Relevance

Essential Climate Variable (ECV) Absolute uncertainty Stability per decade

EEI measurements ±1 Wm−2 at 1σ ±0.1 Wm−2 at 1σ

SSI at 215 nm ±1.7 10−4 Wm−2nm−1 ±3.4 10−5 Wm−2nm−1

( ±0.5% at 1σ) ( ±0.1% at 1σ)

Requirements UVSQ-SAT Performances

Essential Climate Variable (ECV) Absolute uncertainty Stability per year

EEI measurements ±15 Wm−2 at 1σ ±5 Wm−2 at 1σ

SSI at 215 nm ±8.5 10−4 Wm−2nm−1 ±1.7 10−4 Wm−2nm−1

( ±2.5% at 1σ) ( ±0.5% at 1σ)

The absolute value of UV SSI and its variability during more than one decade are also challenging
(Section 2.2). Accurate observations are fundamental to consolidate the reconstruction models of
the solar spectral irradiance. Spectral And Total Irradiance REconstruction for the Satellite Era
(SATIRE-S) [37] highlights a weak long term trend (Figure 1) of UV solar spectral irradiance over the
past 40 years for solar minima (inter-cycles), which can be real or not.
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Reconstructed spectral solar irradiance at 215 nm

Figure 1. UV solar spectral irradiance at 215 nm over the past 40 years from the SATIRE-S model.

The relevant scientific goal is to be able to detect any long term trend with a target stability per
decade of ±3.4 10−5 Wm−2nm−1 (Table 1) at 215 nm (∼1/10 of the expected trend (Figure 1) of the
inter-cycles during a decade).

These solar observations with satellites temporal overlap to realize inter-calibrations are important
since an analysis of radionuclides [23] concluded that the Sun will enter a state of significantly lower
activity within the next 50 to 100 years. These accurate observations are also important for long
term reconstructions over centuries where only proxies of solar activity are available as input for the
reconstruction models. Indeed, the physical assumptions that go into the models lead to considerable
discrepancies [38]. At the present stage, the UVSQ-SAT CubeSat is a demonstrator that must show
that these accurate SSI continuous measurements are possible with small satellites using new compact
and robust disruptive technologies. UV solar spectral irradiance in the Herzberg continuum expected
performances of the UVSQ-SAT CubeSat are given in Table 1.
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3. Materials and Methods

UVSQ-SAT is a LATMOS mission based on the deployment of one CubeSat and with the goal
to monitor essential climate variables. The UVSQ-SAT mission contains a space segment and a
ground segment that uses at least one UHF/VHF antenna located at Observatoire de Versailles
Saint-Quentin-en-Yvelines (France). The ground segment includes all the activities from CubeSat
monitoring/control to data product generation and distribution.

3.1. The Space Segment: The UVSQ-SAT CubeSat Platform

UVSQ-SAT is a nanosatellite development project underway based on the CubeSat
standard [39,40]. UVSQ-SAT is a one Unit (1U) CubeSat designed to provide a
11.10 cm×11.10 cm×11.35 cm useful volume (stowed configuration). LATMOS is a prime
contractor of the 1U CubeSat with the support of a manufacturer (Innovative Solutions In Space
(ISIS)) to build a dedicated satellite platform. Although the CubeSat is small, it contains all the critical
subsystems and functions present in larger satellites. A configuration of the UVSQ-SAT nano-satellite
is shown in Figure 2, and an overview of the UVSQ-SAT CubeSat properties is given in Table 2.
Appendix A provides more details about the satellite platform architecture.

Figure 2. UVSQ-SAT computer aided design representation with an arrangement of all Printed Circuit
Boards (PCBs). The UVSQ-SAT payload instruments are shown (Earth Radiative Sensors (ERS) and
DEep uV INnovative detector technologies for Space observations (DEVINS)), except the three axis
accelerometer/gyroscope/compass, which is located above the payload electronic board.

Table 2. UVSQ-SAT CubeSat properties.

Properties Value Comments

Orbit SSO Maximum altitude of 600 km, LTAN of 10:30
Design lifetime 1 year for LEO 3 years desired
Launch date Q4 2020/Q1 2021 Launch vehicle: Soyuz

Size 1U 11.10 cm (X)×11.10 cm (Y)×11.35 cm (Z)
Mass 1.6 kg Maximum with margins
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Table 2. Cont.

Properties Value Comments

Solar cells 12 3G30A solar cells provided by Azurspace
Batteries 22.5 Wh at 8 V 2 Panasonic batteries (NCR18650B) with heaters
Power generated 2.2 W Orbit average power per 1U area in LEO
Power consumption 1.6 W Maximum orbit average with margins

ADCS 3 axis magnetometer Measurements of the local Earth magnetic field
(Appendix A) 3 axis magnetorquer 0.2 Am2 magnetic dipole

6 SLCD-61N8 photodiodes Coarse estimation of the Sun’s direction (θ)

CDHS and OBC 400 MHz, 32-bit ARM9 Processor
(Appendix A) 32 MB SDRAM Synchronous Dynamic Random Access Memory

2×2 GB SD cards Non-volatile Data Storage (SD card redundancy)
1 MB NOR flash memory Code storage
I2C, SPI, UARTs UART is only used for debugging iOBC

Data downlink 1.2/9.6 kbps UHF BPSK (437.020 MHz) communication
Data uplink 9.6 kbps VHF FSK (145.830 MHz) communication
Ground contact station Less than 1 hour per day LATMOS station
Redundancy stations NCU (TW), ACRI-ST (FR) Other stations: amateur radio partners
Downlink UVSQ-SAT data 1.8 Mbyte per day Maximum during a day
Uplink UVSQ-SAT data 0.3 Mbyte per day Maximum during a day
Transponder Link with amateur radio Live retransmission of FM signals

Payload 12 ERS EEI measurements
4 DEVINS UV SSI measurements
1 Teach’ Wear (TW) sensor Accelerometer, gyroscope, and compass

Launch adapter ISIPOD or Quadpack CubeSat deployer with a satellite mass up to 2 kg

3.2. The Space Segment: The UVSQ-SAT CubeSat Payload

3.2.1. The ERS Sensors

To measure with accuracy the incoming solar radiation (TSI) and the Earth Outgoing Radiation
(EOR = top of atmosphere Outgoing Longwave Radiation (OLR) + Shortwave Radiation (OSR)), we
will use new Earth Radiative Sensors (ERS).

ERS are sensors based on miniaturized thermopiles (active area of 5 mm× 5 mm, responsivity of
∼ 0.2µ V per Wm−2) designed to measure the heat flux from a 180◦ field of view angle. The passive
(cold) junctions of the thermopile are fully protected from radiation and in thermal contact with the
UVSQ-SAT structure, which serves as a heat-sink. Figure 3 shows the measurement principle of these
sensors. UVSQ-SAT uses an ERS sensor with carbon nanotubes and an ERS sensor with an optical
solar reflector on each side of the CubeSat (Figure 2).

The ERS sensors with carbon nanotubes will absorb all incoming solar radiation and outgoing
terrestrial radiation. They have a flat spectrum from UV up to 100µm, and have a near-perfect
cosine response. The carbon nanotubes used (Vantablack from Surrey NanoSystems) are one of the
darkest substances known, absorbing up to 99.964% at 700 nm if the light is perpendicular to the
material. These carbon nanotubes show excellent Bidirectional Reflectance Distribution Function
(BRDF) performances for different incident angles and different scatter angles (total integrated scatter
of 0.94% with an angle of incidence of 70◦). The ERS sensors with an optical solar reflector will absorb
mainly top of atmosphere outgoing longwave radiation. They have a high reflectance from UV up
to 3µm. They were selected since the variation of solar absorptance due to environmental exposure
(thermal cycling, UV radiation, protons, etc.) is extremely weak.

The performances of the coatings (carbon nanotubes and optical solar reflectors) were measured
using a spectrophotometer (Agilent Cary 5000 UV-NIS-NIR) to obtain the solar absorption (between
200 and 2500 nm), an IR reflectometer (model DB100) to obtain the IR normal emittance (around 10µm),
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and a goniophotometer (REFLET 180S) to obtain the BRDFs (five angles of incidence (0◦, 30◦, 36◦, 60◦,
72◦) in the 400–800 nm wavelength range in steps of 10 nm).

Figure 3. Earth Radiative Sensors (ERS) measurement principle. On each side of UVSQ-SAT, there are
these two sensors. TSI, Total Solar Irradiance; OLR, Outgoing Longwave Radiation; OSR, Outgoing
Shortwave Radiation.

The large field of view of both sensors on each side of UVSQ-SAT allows measuring all fluxes (TSI,
OLR, OSR, black-body flux of the sensor (σT4), residual fluxes (Moon, planets, etc.)). Considering that
we know the value of the solar flux (TSI measurement obtained from space based solar radiometers),
the sensors’ temperatures (UVSQ-SAT housekeeping data), the residual fluxes (ephemerides of various
bodies of the solar system obtained from Institut de mécanique céleste et de calcul des éphémérides
(IMCCE)), then we can determine OLR and OSR from a two equation System (S) based on the following
thermo-dynamical equations using 12 nodes (N = 12 thermopiles).

Ci
∂Ti
∂t

= Ai cos(θi)
d2

d2
Sat−S

∫
λ

SI(λ)αi(λ)dλ + AiFi−Earth

∫
λ

εi(λ)EI(λ)dλ

+ Ai
d2

d2
Sat−S

Fi−a

∫
λ

aSI(λ)αi(λ)dλ +
N

∑
j=1

GLi−j(Tj − Ti) + σ
N

∑
j=1

GRi−j(T4
j − T4

i ) + Qri (1)

where i is an ERS thermopile element, Ci is the capacitance of thermopile i (J/K), Ti is the temperature
of thermopile i (K), t is the time (s), Ai is the surface area of thermopile i (m2), θi is the angle between
the solar direction and the normal of the thermopile, d is the Earth-Sun distance (km), dSat−S is the
spacecraft-Sun distance (km), SI(λ) is the spectral solar irradiance in Wm−2µm−1, λ is the wavelength
in µm, αi(λ) is the solar absorption of thermopile i, Fi−Earth is the Earth view factor, εi(λ) is the normal
emittance of thermopile i, EI(λ) is the spectral Earth irradiance in Wm−2µm−1, Fi−a is the albedo view
factor, a is the Earth’s albedo, GL is the conductive couplings of thermopile i (W/K), GR is the radiative
couplings of thermopile i (W/K) σ is the Stefan–Boltzmann constant (5.6704 ×10−8 Wm−2K−4), and
Qri is the absorbed residual power (Moon, planets, etc.). This yields solving a set of N differential
non-linear equations to obtain OLR

(∫
λ EI(λ)dλ

)
and OSR

(∫
λ a SI(λ)dλ

)
data without having

knowledge of the satellite’s attitude.
Then, for ERS data processing, the first step will consist of developing deep learning methods to

estimate the attitude of the UVSQ-SAT CubeSat using all housekeeping data (platform and payload
inertial measurement units, three axis payload compass, coarse platform photodiodes for solar
orientation, power on each solar panel, etc.). Indeed, UVSQ-SAT does not have an active Attitude
Determination and Control System (ADCS), which allows precise pointing of the CubeSat. This is one
of the reasons why the UVSQ-SAT CubeSat is equipped with broadband ERS sensors (with a large field
of view) on each side. For a second time, we will determine top of atmosphere OLR and OSR as a time
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function from the rough preliminary equations System (S) given below, originating from Equation (1).
The total solar irradiance will be considered as known and obtained from space based radiometers.

C1a =
6

∑
i=1

(
εK2,i σ(T4

K2,i − T4
s ) +

UK2,i

SK2,i

)
(2)

C1b = TSI
d2

(1u.a.)2
1(

1− 1
c

∂z
∂t

)2 (3)

C1c =

(
R2

E
(z + RE)2 +

4
π

(
arctan

(
1√

h2 − 1

)
−
√

h2 − 1
h2

))
(4)

Fva = cos1.5(0.9 Θs) C1c (5)

OLRK2 '
C1a − (a0 Fva + 1) < αK2,i > C1b −Qri/Ai

< εK2,i > C1c
(6)

C2a =
6

∑
i=1

(
εK1,i σ(T4

K1,i − T4
s ) +

UK1,i

SK1,i

)
(7)

aK1 '
C2a −OLRK2 < εK1,i > C1c

< αK1,i > C1b Fva
− 1

Fva
(8)

where εK1,i is the carbon nanotubes’ emissivity, εK2,i is the optical solar reflector emissivity, TK1,i is the
temperature of the K1, i thermopile, TK2,i is the temperature of the K2, i thermopile, Ts is the deep space
temperature, UK1,i is the voltage of the K1, i thermopile, UK2,i is the voltage of the K2, i thermopile,
SK1,i is the responsivity of the K1, i thermopile, SK2,i is the responsivity of the K2, i thermopile, RE is
the Earth’s radius, z is the satellite altitude, a0 is the initial albedo value (0.3), aK1 is the albedo value
obtained after iteration (aK1 − a0) < 10−5, αK1,i is the carbon nanotube absorptivity, αK2,i is the optical
solar reflector absorptivity, TSI is the total solar irradiance, d is the satellite-Sun distance, 1a.u. is one
astronomical unit, c is the speed of light in a vacuum, and Θs is the satellite-Earth-Sun angle.

Using this set of equations (S), the UVSQ-SAT scientific target can be obtained without active
ADCS (nadir satellite pointing). Thus, we will be able to provide a reconstruction of a global
map of top of atmosphere outgoing longwave radiation and another map for outgoing shortwave
radiation (binned into a 1◦ × 1◦ latitude-longitude geographic grid and averaged over several days
of observations).

The UVSQ-SAT EEI expected performances (Table 1) depend on the error budget of the ERS
sensors. Absolute uncertainties of each parameter of the system (S) are given in Table 3. The targeted
characteristics of ERS thermopiles and temperature sensors are provided in Table 4.

Table 3. Error budget of the ERS sensor.

Uncertainty Sources Absolute Uncertainty Determination Method

Emissivity (εK1,i, εK2,i) ±0.25% Ground based calibration, BRDF
Absorptivity (αK1,i, αK2,i) ±0.25% Ground based calibration, BRDF
Temperatures (TK1,i, TK2,i) ±0.01 Kelvin Ground based calibration, in-flight validation

Voltage (UK1,i, UK2,i) ±50 nV Ground based calibration, in-flight validation
Responsivity (SK1,i, SK2,i) ±0.25% Ground based calibration, in-flight validation

Satellite altitude (z) ±0.1% Orbital assessment
TSI ±0.5 Wm−2 Space based radiometers observations
d ±0.05% IMCCE determinations

Qri ±0.1% Calculations, IMCCE determinations

Θs ±1% Deep learning approach
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Table 4. ERS technical requirements. For all sensors, it is necessary to monitor the Temperature (T)
with a high accuracy to take into account the temperature radiation lost (Stefan–Boltzmann law).

Parameter Requirements

ERS signal range −500 Wm−2 to +1500 Wm−2

(−100µV per Wm−2 to +300µV per Wm−2)
ERS resolution 18 bits (∼1.5 nV)
ERS noise detection ±0.25 Wm−2 ( ±50 nV)
ERS time response < 50 ms

Temperature range −60 ◦C to +90 ◦C
Resolution 18 bits (5.7 10−4 ◦C)
Temperature noise < ±0.1 ◦C

Acquisition time Better than 10 s

From the ERS sensor error budget (Table 3) and from the knowledge of the TSI absolute uncertainty
(±0.5 Wm−2 at 1σ), the expected performances in the absolute determination of OLR and OSR
were each ± 10 Wm−2 at 1σ (quadratic summation of uncertainties). Table 5 presents the expected
performances from the UVSQ-SAT ERS measurements. The stability per year of the sensors will be
demonstrated in orbit and can be compared with other space based measurements.

Table 5. ERS scientific requirements. Total solar irradiance is considered as accurately known.

Parameter Absolute Uncertainty Stability per Year

OLR ±10 Wm−2 at 1σ ±1 Wm−2 at 1σ
OSR ±10 Wm−2 at 1σ ±5 Wm−2 at 1σ
TSI ±0.5 Wm−2 at 1σ < ±0.1 Wm−2 at 1σ

EEI = TSI/4 − (OLR + OSR) < ±15 Wm−2 at 1σ ∼ ±5 Wm−2 at 1σ

3.2.2. The DEVINS Sensors

To measure with accuracy (see Table 1) the solar spectral irradiance in the Herzberg continuum
(200 to 242 nm), we will use disruptive new UVC detectors in Ga2O3. Photodetectors based on
monoclinic (β) Ga2O3 have been demonstrated [3]. With a bandgap of ∼4.9 eV β-Ga2O3, the films
were naturally solar blind without any need for alloying with a third element [41]. Further, it was
shown that their spectral response peak could be tuned between about 230 and 255 nm [3] with a
bandpass of 40 nm or so at FWHM. These sensors were radiation hard, and do not need cooling,
which avoids the associated contaminant trapping/lifetime issues of incumbent devices. Moreover,
the gain of these devices is more than two orders of magnitude higher than that of commercial SiC
based equivalents. This indicates a potential for operation at lower voltages/powers (only 5 V in the
case of UVSQ-SAT). They have a strong responsivity (4A/W), excellent dynamics, and remarkable
resistance to radiation. These previous works form a solid basis to implement sensors with adapted
characteristics and DEVINS b-Ga2O3 based prototypes with a 215–220 nm peak and 40 nm bandpass
to cover the Herzberg continuum are currently being developed. These will be small photodiodes
using the kind of standardized metal semiconductor package used for transistors and some integrated
circuits (base diameter of 8.9 mm, cap diameter of 8.1 mm, cap height of 6.3 mm). They will be
designed to measure the UV solar spectral irradiance from a 180 field of view angle with an active area
of 1 mm × 1 mm . They will not require a cooling system to be sensitive to the Herzberg continuum.
This aspect should prevent them from degradation due to contamination [33]. They are designed
to measure the UV solar spectral irradiance from a 180◦ field of view angle with an active area of
1 mm×1 mm and a responsivity of ∼ 4 A/W. Figure 4 shows the DEVINS photodiodes’ manufacturing
process. The DEVINS technology will be validated in the framework of the UVSQ-SAT mission (check
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in orbit that the detector degradation is weak despite the exposure to radiation (both ionization and
displacement-damage effects)). UVSQ-SAT will use a total of four DEVINS photodiodes.

For DEVINS data processing, we will use the six coarse platform photodiodes located on each
solar panel for determining the Sun’s direction. From the knowledge of the Sun’s direction (θ), we will
determine the DEVINS solar spectral irradiance (SSI(λ)) from the following instrumental equations
based on our experience and history in solar instrumentation developments and observations [42–44].

SSI(λ) =
Id

S(λ, V, T) Στ(λ) cos(θ)

(
f ′ − d

f ′

)2 (1u.a.)2

d2

(
1− 1

c
∂z
∂t

)2
(9)

and
1
f ′

= (n− 1)
(

1
R1
− 1

R2

)
(10)

where Id is the DEVINS photodiode current measured, S(λ, V, T) is the DEVINS photodiode
responsivity, which depends on voltage (V) and temperature (T), Σ is the DEVINS photodiode active
area, τ(λ) is the DEVINS photodiode transmission of the sapphire window, d is the distance between
the DEVINS aperture and the active area, n is the refractive index of the window, and R1 and R2 are
the curvature radii of the sapphire window lens. A dark current and a flat-field corrections will be
necessary for a full correction of the DEVINS data.

Figure 4. DEVINS manufacturing process. This action, led by LATMOS, is funded by the French
Agence Nationale de La Recherche (ANR).

The DEVINS absolute calibration can be performed using the primary standard of spectral
irradiance (Physikalisch-Technische Bundesanstalt (Germany) and/or the Laboratory for Atmospheric
and Space Physics (LASP) facilities (USA)). The UVSQ-SAT UV SSI expected performances (Table 1)
depend mainly on the absolute calibration of the photodiode responsivity (S(λ, V, T)) and on the
DEVINS noise detection. The targeted technical performances of the DEVINS sensors are provided in
Table 6, which are compliant with the expected performances in the absolute determination of UV SSI
that are of ±2.5% at 1 σ in the 200–242 nm spectral region (compatible with uncertainties obtained with
SOLAR-ISS spectrum [17]). The stability per year of the DEVINS sensors will be demonstrated in orbit
as its low aging in UV.



Remote Sens. 2020, 12, 92 15 of 24

Table 6. DEVINS photodiodes’ technical requirements.

Parameter Requirements

DEVINS signal range 0 to 2.1 Wm−2 (200–242 nm band)
Target value: ∼1.4 Wm−2

Central wavelength 220 ± 5 nm
Full width at half maximum 20 ± 2 nm
Rejection 10−4 in the 250–3000 nm band
DEVINS resolution 18 bits (∼0.03 nA)
DEVINS noise detection < 30 nA
DEVINS time response < 20 ms

Acquisition integration time Better than 10 s

3.2.3. The TW Sensor

The Teach’ Wear (TW) sensor (50 mm× 25 mm× 8 mm) consists of an inertial measurement
unit (a three axis accelerometer and a three axis gyroscope) and a three axis compass (simple type
of magnetometer). TW is a new three axis accelerometer/gyroscope/compass, which will be used
for determining the attitude of the UVSQ-SAT CubeSat. The main expected TW sensor technical
requirements are provided in Table 7.

Table 7. TW sensor technical requirements.

Parameter Requirements

TW signal range Accelerometer: ±2 g
Gyroscope: ±250 deg
Compass: ±4912µT

TW resolution 16 bits
TW noise detection Accelerometer: 230µg/

√
Hz

Gyroscope: 0.015 deg/s/
√

Hz
DEVINS time response <20 ms

Acquisition integration time 10 s

In the framework of the UVSQ-SAT mission, a qualification/validation of the Teach’ Wear
technology to TRL 9 (“flight proven”) will be done through successful mission operations and
validation of the expected performances of the TW sensor in space. The TW sensor will be used
in the future as medical devices to prevent health problems for astronauts in space. Indeed, astronauts
are subjected to serious health problems due to the nature of their jobs, which involve extreme
atmospheric conditions and environments, particularly during prolonged space missions.

3.3. The Ground Segment: The UHF/VHF Station

The UVSQ/LATMOS ground station (Figure 5) was implemented using the hardware components
recommended by the INSPIRE program [45].

The antenna rig consisted of two circularly polarized Yagi antennas and two rotators, which made
it possible to change the elevation and azimuth angles. The antennas were frequency centered on the
VHF band (for uplink from ground to space) and UHF band (for downlink from space to ground). The
antenna rig is located on the roof of the Observatoire de Versailles Saint-Quentin-en-Yvelines (OVSQ)
building, which offers a clear full sky for satellite visibility.

The TS2000 radio was used to transmit RF signals, and a RTL software-defined radio (SDR) was
used to receive RF signals. The hardware (i.e., rotators and radio) was controlled through SatPC32
and SDR-Sharp software. Based on the Two Line Elements (TLE), the SatPC32 program allows
automatic tracking of the satellite and compensation of the Doppler shift in the radio signal. On the
RF transmit line, modulation and AX.25 encapsulation were performed by hardware (i.e., TS2000),
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whereas de-modulation and AX.25 de-encapsulation were done by software on the RF receiver line
(i.e., RTL-SDR). A custom application was employed to write and read the Consultative Committee for
Space Data Systems packet utilization standard (CCSDS PUS) protocol, as well as provide a Graphical
User Interface (GUI) to the ground station operator.

Since the UVSQ-SAT CubeSat will use satellite amateur radio frequency bands (i.e., VHF 145.830
MHz and UHF 437.020 MHz), an international frequency coordination is under preparation for being
submitted to the International Amateur Radio Union. This will ensure that frequencies are not used
by other satellites during the UVSQ-SAT mission, and it will act as an engagement with the amateur
radio community. The preparation of the frequency coordination was done with the help of the local
Radio-Club (F6KRK) and the AMSAT-Francophone (amateur radio satellite national organization).
Thanks to this cooperation, UVSQ-SAT will be able to transmit periodical beacon data, which will be
recorded over the world by amateur radio stations.

Figure 5. UVSQ/LATMOS UHF/VHF station (one of the stations of the INSPIRE network). LATMOS
hosts students from UVSQ and Paris Saclay universities to provide hands-on experience (satellite
manufacturing, antenna realization, etc.).

3.4. UVSQ-SAT Mission Concept of Operations

There are four separate and distinct UVSQ-SAT mission Concepts of the Operation
(ConOps) phases:

• Operations before launch and for launch.
• Launch early operations and satellite platform in-orbit verification: deployment of UVSQ-SAT

from the CubeSat deployer, automatic activation of the satellite by separation switches, automatic
initialization of the onboard software a few seconds after the satellite separation, deployment of
deployable structures (antenna), automatic satellite ADCS activation to perform autonomous
detumbling of the spacecraft, verification of the link between the ground and satellite, restitution
of the satellite orbit thanks to the first visibilities, check that all platform satellite services are
running, payload switch-on, and check that all payload instruments are functional.

• Instrument in-orbit verification and operations: preliminary configuration, operational
configuration of the satellite, Calibration/Validation (CalVal) of the payload instruments and
comparisons with payload ground based calibration (ERS (responsivity, solar absorption (200 to
2500 nm), normal emittance (around 10µm), bidirectional reflectance distribution function for
different angle of incidence, etc.), DEVINS (responsivity, slit function of the sensor, calibrations
against national SI standards, etc.), etc.), and validation of the performances. In “routine”, the
CubeSat will observe the Earth and the Sun full time. Each month, a calibration will be done to
characterize the angular responsivity of the sensors (ERS and DEVINS).

• End of life of the UVSQ-SAT CubeSat.
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4. Results

This Section presents EEI UVSQ-SAT’s expected results and spatial reconstruction of Earth’s net
radiation. The instrumental requirements for EEI scientific relevance output (absolute uncertainty
of ±1 Wm−2 at 1σ, stability per decade of ±0.1 Wm−2 at 1σ, small spatiotemporal scales with an
uncertainty at 1σ of ±1 Wm−2 for a 1–10 km resolution) and UVSQ-SAT instrument performances
do not match. At the present stage, the UVSQ-SAT CubeSat is a demonstrator, expecting future
developments and improvement that would then really allow making use of CubeSat technology
for scientific purposes. What are lacking at the present state to obtain accurate relevant EEI absolute
value are the extreme cleanliness CubeSat control (careful material selection (e.g., high radiation
tolerance, ultra-high vacuum material quality with lowest outgassing values), minimization of organic
material (bake-out), and stringent cleanliness procedures of all hardware), intensive CubeSat pre-flight
calibration (achieved with detectors and transfer radiation source standards, both traceable to a
primary standard source found in synchrotron radiation facilities, while the sensors themselves can
be calibrated at the synchrotron facility or locally, at the instrument test facility, by transporting a
transfer source standard to that facility), active ADCS, additional narrowband sensors, atomic clock
for synchronization, and in-flight calibration to monitor sensors’ aging in space. It is important for
continuous monitoring of the ERB (as for CERES, EarthCARE, Megha-Tropiques, and Scanner for
Radiation Budget (ScaRaB)) and temporal overlap to realize inter-calibrations. It lacks also a high
frequency and sampling in measurements and consequently a more accurate determination of the
Earth’s global energy imbalance along with the diurnal and multi-directional sampling needed to
capture spatiotemporal scales. A constellation consisting of small CubeSat’s could provide temporal
and spatial coverage that are lacking currently to provide accurate EEI measurements and represent
important developments that are needed. The UVSQ-SAT mission will contribute to these future
developments both in terms of technology advancement (miniaturized sensors used for high scientific
relevance) and innovative data processing (reconstruction of a global map of OLR and OSR using
multiple sensors’ data).

A preliminary analysis of the expected results with a spatial reconstruction of Earth’s net radiation
that will be obtained with UVSQ-SAT for a given time period of observation was done (Figure 6).

The method used to carry out this study is briefly described below:

1. Use of CERES data (1◦×1◦ latitude-longitude geographic grid, monthly mean) to have an initial
map of Earth’s net radiation for analysis. Then, we considered that this map corresponded to
Earth’s net radiation “real” map at time t (Figure 6, left upper panel). This map illustrates the
fundamental imbalance between net radiation surpluses at the Equator and net radiation deficits
at high latitudes.

2. We calculated the UVSQ-SAT CubeSat ground-track (SSO LEO orbit) for a given period (Figure 6,
right upper panel).

3. We considered that the maximum angle of view of the UVSQ-SAT sensors can effectively
detect the net radiation in a ground area of 1◦×1◦ along the ground-track and for a given
acquisition integration time. Then, we obtained Earth’s net radiation associated with the sensors’
observations. Finally, we performed an interpolation (Delaunay triangulation) on the scattered
dataset that resided in 2D space to obtain Earth’s net radiation based on UVSQ-SAT observations
for a given time period (Figure 6, left middle and bottom panels).

4. We plotted the differences (Figure 6, right middle and bottom panels) between the “real” map
(Figure 6, left upper panel) and the map obtained with the satellite observations for a given
period (Figure 6, left middle and bottom panels).

For a one-day observation period, the UVSQ-SAT expected performances were degraded (Figure 6,
right middle panel). Earth’s net radiation errors with only data processing could be greater than
±30 Wm−2 over large geographical areas. Indeed, with an LEO orbit (600 km, 98◦), the satellite made
just over 14 orbits in a day, and every point on the Earth was covered at least twice. It was clear that it
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was insufficient with only one satellite in orbit to cover the entire surface of the Earth (spatial coverage).
It took at least 15 days to have a good spatial coverage and to offer a satisfactory Earth net radiation
map (Earth’s net radiation errors could be greater than ±10 Wm−2 over very small geographical areas),
as shown in Figure 6 (right bottom panel).

Figure 6. Spatial reconstruction of Earth’s net radiation binned into a 1◦ × 1◦ latitude-longitude
geographic grid that will be obtained with UVSQ-SAT. The source of data for the left upper panel was
from CERES observations.

In this case, the result was an average of 15 days. Consequently, we lost the information related
to short temporal variations (albedo, clouds, etc.). Indeed, the outgoing shortwave radiation part
of the Earth’s net radiation is more challenging to measure since it has greater spatial and temporal
variability, and it is distributed less evenly around the Earth. For example, sharp edges in albedo (e.g.,
clouds) are intricate and evolve quickly [8].

5. Final Discussion

The analysis done in Section 4 highlighted the interest to implement a satellite constellation
to measure the true Earth’s energy imbalance, since only satellite observations of net radiation flux
variability at TOA can provide information at shorter timescales.

Figure 7 shows the daily Earth net radiation as a function of longitude for different terrestrial
latitudes (real observations (o) and simulated (s) using a constellation of 15 satellites during a day of
observations). With a constellation of 15 satellites (inclinations of 30◦, 45◦, 60◦, 75◦, and 98.5◦ and LTAN
of 02:30, 10:30, and 18:30), one could have excellent EEI measurements during a day of observation.
A constellation of 50 satellites would allow accurate measurements of the Earth’s energy imbalance
(errors less than ±1 Wm−2) with the diurnal and multi-directional sampling, which are a prerequisite
to capture spatio-temporal variations (e.g., every three hours and ideally a few km resolution).



Remote Sens. 2020, 12, 92 19 of 24

Long term measurements are required using satellite constellations with recovery periods
(inter-calibrations) for multi-decadal observations to track Earth’s energy imbalance over time for
predicting the future course of global warming and verifying that the measures taken for the climate
are effective. Accurate annual net radiation figures from pole to pole are required and represent
key scientific indicators. There is a net energy surplus at the Equator and a net energy deficit at
the poles (see Figure 6, top left panel), so energy will flow from the Equator to poles. This energy
is transferred poleward as latent and sensible heat (warm ocean water and warm, moist air move
poleward, while cooler water and cooler, drier air move toward the Equator). The Equator-versus-pole
energy imbalance is the fundamental driver of atmospheric and oceanic circulation. From UVSQ-SAT
and its future constellation (Figure 8), we propose to monitor this parameter. In the case of a satellite
constellation, the instrumental calibration (pre-flight calibration with the same primary standard
source, in-flight calibration to monitor aging with the same process) aspects will have to be studied
in detail to guarantee accuracy and precision for each satellite. Indeed, the determination of top of
atmosphere global net radiation budget using broadband non-scanner instruments remains complex
due to outstanding calibration challenges [46].
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Figure 7. Daily Earth net radiation as a function of longitude for different terrestrial latitudes.
(o) represents the real observations (CERES data). (s) represents the results obtained with a simulation
of observations from a virtual constellation of 15 satellites (five different inclinations and three
different LTAN).

Figure 8. From a very simple unitary CubeSat to an increasingly complex nanosatellite on which a
small satellite constellation will be based.
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6. Conclusions

UVSQ-SAT is a scientific and technology demonstration satellite in the domain of Earth
observation and solar physics, scheduled to be launched in 2020/2021. The main scientific goals
are to measure the top of atmosphere outgoing longwave radiation and shortwave radiation and the
solar spectral irradiance in the Herzberg continuum (200–242 nm) with good accuracy. UVSQ-SAT uses
disruptive technologies for remote sensing and will improve the miniaturization and compactness of
small sensors onboard small satellites. The UVSQ-SAT tools are used in our education program to train
students in space technology, Earth observations, and astronomy and astrophysics. UVSQ-SAT
represents a CubeSat of the INSPIRE series of satellite missions. The INSPIRE program is a
multinational consortium of universities collaborating to develop a constellation of small satellites for
cutting edge space and Earth science research, a supporting global ground station network, as well as
research and educational programs covering spacecraft design, space systems engineering, operations,
and data analysis.

Currently, the UVSQ-SAT mission is not intended to provide a continuity of the essential climate
variables’ data records. However, the use of small compact space qualified sensors like those
used in UVSQ-SAT can facilitate future innovative space programs onboard small satellites and
the implementation of a future small satellite constellation dedicated to the measurements of the
essential climate variables with full data traceability. The advantages of such a future constellation
have been described in this manuscript and allow considering exceptional revisit time and spatial
resolution, in particular for the Earth’s energy imbalance monitoring. Indeed, a constellation of
50 satellites is needed to estimate global daily mean top of atmosphere outgoing longwave radiation
and shortwave radiation. Moreover, this satellite constellation is the best way to observe diurnal cycles.
These observations are more easily realized by flying the Earth radiation budget instruments on less
expensive CubeSats than with classic satellites. Several UVSQ-SAT CubeSats represent a possible tool
to meet the EEI global daily mean and the diurnal cycle.
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Appendix A

UVSQ-SAT consists of several subsystems such as the mechanical structure, the power subsystem,
the thermal control subsystem, the attitude determination and control system (ADCS), the command
and data handling subsystem (CDHS), the communication subsystem and the payload subsystem
(ERS, DEVINS, and the 3-axis accelerometer/gyroscope/compass (TW sensor)).

The UVSQ-SAT CubeSat structure is compliant with the CubeSat standard and is compatible with
the ISIPOD or Quadpack CubeSat deployer. Two separation switches are part of the satellite structure.
These ensure that the UVSQ-SAT CubeSat is inactive during launch and pre-launch activities. All
UVSQ-SAT materials and coating selection, must be compliant with specific requirements such as
total mass loss (TML) less than 1% and collected volatile condensable material (CVCM) less than 0.1%,
according to guidelines for spacecraft cleanliness control (ESA-PSS-51 from European Space Agency).

The Electric Power Supply (iEPS) is designed to support the power conversion, storage and
distribution to the UVSQ-SAT CubeSat subsystems. The iEPS provides 3 max power point tracking
(MPPT) for power conversion up to 25 W. This system would improve the amount of power supplied
to the batteries of the CubeSat. The MPPTs make sure the attached solar panel cells are operated at
a voltage that yields maximum power, which increases efficiency with respect to other EPS that use
fixed point voltage for the solar panels. iEPS includes 2-batteries pack (22.5 Wh), which regulates the
voltage to several outputs (3.3 V, 5 V, and unregulated battery line (6–8 V)) through multiple switchable
and permanent power lines. Fully charged battery corresponds to 0% depth of discharge (DOD).
Ideally, 30% DOD or less is recommended full time. UVSQ-SAT has 6 ISIS solar panels made up of 12
Azurspace solar cells at high efficiency (30% for beginning of life (BOL)), which allow a solar power
conversion of up to 2.2 W per 1 U area in low Earth orbit.

The UVSQ-SAT ADCS contains a set of 6 photodiodes located on the solar panels (coarse
estimation of the Sun’s direction) and a magnetorquer board (iMTQ) with 3 magnetic actuators
in 3-axis for providing actuation of 0.2 Am2 (for limit the tumbling, which typically will occur as soon
as the CubeSat will be deployed). UVSQ-SAT does not have a system that allows a satellite pointing in
a specific direction.

The CDHS subsystem with the onboard computer (OBC) will process, distribute, command,
store and format data (master of the I2C bus with the different platform subsystems and the payload,
high storage capacity embedded with the two SD-cards, joint test action group (JTAG) interface for
debugging, etc.). It consists of a motherboard (iOBC) and a daughterboard (DB). The iOBC electronic
motherboard interfaces with the UVSQ-SAT daughter board (DB), which is a custom design for the
UVSQ-SAT project. The daughterboard is used on the UVSQ-SAT platform for interfacing with the
external sensors of the platform (6 temperature sensors and 6 coarse photodiodes) and for interfacing
with the payload electronic board (8 general purpose input/output (GPIO) pins, serial peripheral
interface (SPI) data line). There is also an interface system that allows among other things to connect
the electronic boards between them using the 104-pin CubeSat kit bus (CSKB) connectors.

Because of satellite tumbling and low power range, radio-communications are a challenge.
UVSQ-SAT uses a VHF/UHF transceiver (TRXVU), which is a full-duplex VHF/UHF radio system.
It offers an uplink capability of 9.6 kbps (FSK modulation) and a downlink rate of up to 9.6 kbps
(BPSK modulation). The electronic board uses radio link layer protocol AX.25. The deployable antenna
system contains two tape spring antennas of up to ∼60 cm in length in the case of VHF and two tape
spring antennas up to∼20 cm in length in the case of UHF. This antenna system is located at the bottom
side of the UVSQ-SAT satellite along the Z direction (Figure 2). This subsystem uses a power supply
for deployment in orbit and will be automatic. Each antenna element can be deployed separately
through a dual redundant deployment system. The antenna is designed to cover the amateur satellite
band with a UHF selection of 437.020 MHz and VHF of 145.830 MHz being validated by International
Amateur Radio Union (IARU).
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