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Abstract6

This paper presents a novel unified single-field formulation for Volume-Of-Fluid simulation of interfacial mass7

transfer with local volume changes. By comparison with the previous models referred as Continuous Species8

Transfer in the literature, our improved model uses a single-field formulation of the local mass transfer across9

the interface, enabling us to take into account local volume changes induced by non-dilute species transfer. The10

numerical model, implemented in our in-house OpenFOAM-based simulator, is validated by comparison with an-11

alytical solutions in 1D and 2D, and a semi-analytical solution in 3D. The implemented approach is first applied to12

investigate competing mass transfer in an infinite cylinder. We then simulate the shrinking of a single-component13

rising bubble at low Schmidt number. The numerical model is shown to be well adapted to investigate local14

Sherwood numbers and existing correlation for mass transfer at fluid interfaces.15

Keywords: Interface, Mass transfer, Multicomponent fluid, Local volume change, Volume-Of-Fluid,16

OpenFOAM17

1. Introduction18

Interface species transfers are present in a wide range of applications such as acid gas treatment, bubble column19

reactors and geological storage of CO2 in aquifers. These processes include viscous and capillary effects, chemical20

reactions and the coupling between mass transfer and fluid dynamics. For such complex systems, analytical21

solution are only restricted to very simple geometries and flow conditions (Danckwerts, 1970; Hadamard, 1911;22

Coutelieris et al., 2006). In addition, experimental studies are often time-consuming, hard to control, and quantities23

of interest may be difficult to measure during the course of the experiment. Numerical simulation is therefore a24

powerful tool to investigate these processes and achieve optimal design and process control.25

Numerical simulation of interfacial mass transfer can be done using Direct Numerical Simulation (DNS) of the26

Navier-Stokes Equation (NSE), for which mass and momentum conservation are directly solved without model27

simplification. DNS of two-phase flow can be performed using the Volume-Of-Fluid (VOF) method, for which28

the interface between the two fluids is captured using an indicator function, which is a phase volume fraction (Hirt29

and Nichols, 1981). Although other methods such as level-set (Sussman et al., 1994; Chai et al., 2017; Gibou30

et al., 2018; Luo et al., 2019) can provide a more accurate description of the sharp interface, the VOF method is31

attractive due to its flexibility, robustness in terms of mass conservation, and adaptability to more complex physic.32

VOF methods can be geometric or algebraic, depending on how the computation of the interface curvature33

and the advection of the indicator function are performed. Geometric methods explicitly reconstruct the interface,34

and the advection of the indicator function is performed based on a geometric representation of the faces flux35

(Gerlach et al., 2006; Weymouth and Yue, 2010; Owkes and Desjardins, 2014). Geometric methods do not create36

numerical diffusion and can achieve better precision with accurate interface reconstruction (Popinet, 2009), but37

their application to unstructured mesh is highly demanding and scarcely used (Maric et al., 2013). Alternatively,38

algebraic methods perform the advection of the indicator function by numerically solving a transport equation39
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(Hirt and Nichols, 1981). Algebraic methods can be easily applied to unstructured grids as no explicit interface40

reconstruction is needed. The main challenge is to preserve a sharp interface while maintaining the boundedness41

of the phase volume fraction. High resolution differencing schemes and models with compression of the interface42

are generally introduced to reduce this problem (Zalesak, 1979; Ubbink and Issa, 1999).43

To simulate species transfer in two-phase systems within the VOF method, two conceptually different ap-44

proaches have been developed, namely the two-field and single-field approaches. The main criterion to decide45

which approach to use is to ensure consistency of the advection operator for phase fraction and species con-46

centration, otherwise artificial mass transfer arises (Deising et al., 2016). In the two-field approach, the species47

concentration in each phase is solved separately, using two concentration fields - one per phase - which are set to48

zero when continued in the other phase (Bothe and Fleckenstein, 2013). Consistent advection of phase fraction49

and species concentration can only be achieved if the interface is geometrically advected. Therefore, the two-field50

approach is consistent in principles with any geometric VOF method. In the single-field approach, a mixture quan-51

tity, obtain by volume averaging of species concentration, is transported by solving an algebraic equation (Haroun52

et al., 2010; Deising et al., 2016). Therefore, the single-field approach is consistent in principles with interface53

advection for any algebraic VOF method, and has been applied with high resolution differencing schemes (Haroun54

et al., 2010; Deising et al., 2016, 2018) and models with compression of the interface (Yang et al., 2017; Graveleau55

et al., 2017; Maes and Soulaine, 2018). Hence, if a geometric VOF method is employed, the two-field approach56

should be used. On the other side, if an algebraic VOF method is employed, then the single-field approach should57

be used.58

Both two-field and single-field approaches exhibit method-specific advantages and disadvantages. Within the59

two-field approach, a sub-grid model based on the reconstructed interface can be used to reduce the resolution60

required around the interface (Bothe and Fleckenstein, 2013). Within the single-field approach, the inclusion61

of sub-grid scale models is complex and requires further research. Another benefit of the two-field approach is62

that the concentration gradients are readily available, which allows for calculating local mass transfer across the63

interface in a straightforward manner, and enabled Fleckenstein and Bothe (2015) to extend the model to include64

local volume changes for non-dilute mass transfer. However, since the two-field approach is only consistent with65

geometric VOF method, applying the method to complex unstructured grids is challenging. On the other side,66

applying the single-field approach on unstructured grids is straightforward, since it is consistent in principles with67

any algebraic VOF method (Marschall et al., 2012; Deising et al., 2016). This is essential for some application68

such as pore-scale simulation of CO2 storage in the subsurface (Graveleau et al., 2017) or pore-scale simulation of69

enhanced oil recovery (Maes and Geiger, 2018). Another advantage of the single-field approach is that it is fully70

consistent with the micro-continuum formulation for modelling multiscale transport in porous media (Soulaine71

et al., 2018, 2019)72

However, no model exists to include local volume changes for non-dilute mass transfer within the single-field73

approach. Contrary to the two-field approach, the information about the one-sided interface concentrations and74

one-sided concentration gradients is inherently lost and need to be recovered with numerical modelling. Soh et al.75

(2017a,b) applied the two-field approach to an algebraic VOF model by reconstructing the phase concentration76

gradient at the interface. Although this formulation ensures continuity of the chemical potential, it does not ensure77

continuity of the species mass flux (convective and diffusive) across the interface, and artificial mass transfer78

arises. Up to now, there is no consistent model to compute the local mass transfer. The objective of the present79

work is to correct this problem in order to simulate interface transfer during two-phase flow with local volume80

changes using the single-field formulation. The main contribution is the derivation of a single-field numerical81

model of the interface transfer and local Sherwood number (Section 2.4) and its application to gas dissolution in82

liquid solvent, something that could only be done with the two-field approach before.83

The paper is organised as follows. The governing equations and numerical models including the computation84

of the local mass transfer are presented in Section 2. In Section 3, the model is validated by comparison with85

2

julien maes
Highlight



analytical solutions in 1D and 2D and a semi-analytical solution in 3D. Finally, the model is applied to simulate86

competing mass transfer in an infinite cylinder and mass transfer during rising of a single-component gas bubble87

at low Schmidt number.88

2. Mathematical model89

In this section, we introduce the model used to simulate two-phase flow with local volume change. First, we90

present the governing equations in the physical continuous domain. Then, we derive the grid-based VOF equations91

used to simulate the movement of a fluid/fluid interface along with multicomponent mass transfer on a discrete92

Eulerian mesh. Finally, we discuss the numerical implementation and the post-processing procedure.93

2.1. Governing equations in the continuous physical space94

This section presents the basic continuum hydrodynamic laws that govern multiphase flow with interface trans-95

fer. The domain is decomposed into two disjoint subsets, namely the disperse (gas) phase Ωd and the continuous96

(liquid) phase Ωc, separated by the interface Σ (see Figure 1a). Each phase is assumed to be Newtonian and in-

Σ

Figure 1: Distribution of the fluid phases in (a) the continuous physical domain, (b) the discrete Eulerian grid.

97

compressible, and fluid properties are assumed to be constant in each phase (in particular independent of the phase98

composition). Therefore, mass conservation in each phase writes99

∇ · ui = 0 in Ωi, i = d, c, (1)

where ui is the velocity of phase i. Mass conservation at the fluid/fluid interface writes100

[[ρi (ui − w) · nΣ]] = 0 at Σ, (2)
3
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where ρi is the density of phase i, w is the velocity of the interface, nΣ is the normal vector to the fluid/fluid101

interface from the continuous to the disperse phase, and the double brackets describe a jump at the interface. In102

addition, the momentum conservation under the classical NSE formulation writes103

ρi

(
∂ui

∂t
+ ui · ∇ui

)
= −∇pi + ∇ · Si + ρig in Ωi, i = d, c, (3)

where g is the gravity vector, Si = µi

(
∇ui + ∇uT

i

)
is the viscous stress tensor, and pi and µi are the pressure and104

viscosity of phase i, respectively. Momentum conservation at the fluid/fluid interface writes105

[[piI − Si]] · nΣ = σκnΣ at Σ, (4)

where I is the unity tensor, σ is the interfacial tension and κ = −∇ · nΣ is the interface curvature.106

Both phases are assumed to be composed of a mixture of n components. We assume that component n is the107

solvent of the continuous phase, and that all other species present in the continuous phase are dilute. Furthermore,108

we assume that component n is not soluble in the disperse phase. Therefore, the concentration c j,i of species j in109

phase i satisfies110 ∑
1≤ j<n

c j,d = ρd,
∑

1≤ j≤n

c j,c = ρc. (5)

In the absence of homogeneous chemical reactions, conservation of mass of species j in phase i is described by111

the standard advection-diffusion equation112

∂c j,i

∂t
+ ∇ ·

(
c j,iui + J j,i

)
= 0 in Ωi, (6)

where J j,i is the mass flux of component j in phase i by diffusion. For all dilute components in the system, the113

diffusive mass flux can be modelled using Fick’s law (Taylor and Krishna, 1993). This applies to every component114

in the continuous phase but component n. The diffusive flux of n in phase c can be obtained using115

Jn,c = −
∑

1≤ j<n

J j,c. (7)

However, we do not need to solve the mass conservation of component n since closure is obtained using the mass116

conservation of each phase (Eq. 1). Finally, we assume that the diffusive flux of species in the disperse phase can117

also be modelled using Fick’s law. This is true for the two cases simulated here, namely a single-component and118

a binary disperse mixture. Therefore, for all components simulated in the system, the mass flux by diffusion can119

be modelled using120

J j,i = −D j,i∇c j,i, (8)

where D j,i is the molecular diffusion coefficient of component j in phase i. At the interface, mass conservation121

imposes continuity of mass fluxes on each side122

[[
(
c j,i (ui − w) + J j,i

)
· nΣ]] = 0 at Σ. (9)

Finally, thermodynamics equilibrium imposes equality of chemical potential at the interface. This is model here123

using Henry’s law124

c j,c = H jc j,d on Σ, (10)

where H j is the Henry’s coefficient for component j, assumed constant here for simplicity.125
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2.2. Algebraic VOF Method: from continuous to discrete domain126

The mathematical model introduced in the former section is defined on a continuous physical domain. The127

computational procedure to solve this system of equations, however, relies on the Finite Volume Method (FVM)128

(Patankar, 1980), i.e. a discretization of the domain into an ensemble of subset volumes. In FVM, the partial129

differential equations representing conservation laws (Eqs. (1), (3) and (6)) are transformed into discrete algebraic130

equations by integrating them over each discrete volume, V . This operation is carried out using the averaging131

operator,132

βi =
1
V

∫
Vi

βidV, (11)

where βi is a function defined in Ωi (i = c, d) and Vi = V ∩ Ωi. The application of the volume average operator to133

the indicator function 1i (which is equal to 1 in Ωi and 0 elsewhere) defines the volume fraction, αi, of phase i in134

the finite volume V ,135

αi =
1
V

∫
Vi

1idV. (12)

αi is used as the phase indicator function in the FVM grid. In cells that contain the disperse phase only, αd = 1. In136

cells that contain the continuous phase only, αd = 0. In cells crossed by the fluid-fluid interface Σ, 0 < αd < 1 (see137

Figure 1b). Tracking the evolution of αi is the cornerstone of the Volume-of-Fluid technique used in this paper. In138

VOF, this is achieved by solving conservation laws for the single-field (global variable) quantity, β, defined as139

β = αdβ̃d + αcβ̃c. (13)

where the phase average over phase i is defined as140

β̃i =
1
Vi

∫
Vi

βidV. (14)

The single-field β is defined all over the computational grid regardless the nature of the phase that occupies the141

cells (disperse, continuous or mixture). The VOF methods solve partial differential equations that govern the142

single-field velocity u, the single-field pressure p and the single-field concentration c j for species j. Likewise, the143

viscosity µ and density ρ are defined as single-field variables.144

The governing equations on the FVM grid are obtained by applying the volume averaging operator, Eq. (11),145

to the continuity equations, Eq. (1), to the momentum equations, Eq. (3), and to the species conservation laws,146

Eq. (6), for the continuous and the disperse phases, and then by adding the two phase-averaged equations to form147

the governing equation for the single-field variable. In the averaging process, the volume averaging operator148

is applied to the spatial differential operators (gradient and divergence). This operation is not straightforward149

because integrals and derivatives can not be interchanged in volumes that contain the fluid-fluid interface Σ. This150

is achieved using the spatial volume averaging theorems (Whitaker, 1999),151

∇βi = ∇βi +
1
V

∫
AΣ

βinΣdA,

∇ · βi = ∇ · βi +
1
V

∫
AΣ

βi · nΣdA,
(15)

where AΣ = V ∩ Σ is the surface area of the interface within the control volume V . The surface integral term in152

these equations transforms the boundary conditions at the discontinuity Σ between the two fluids phases into a153

body force. For example, the integration of the continuity equations gives rise to the volume source term,154

ṁ =
1
V

∫
AΣ

ρi (ui − w) · nΣdA, (16)
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that describes the rate of phase change within a control volume V , i.e. the amount of mass that is transferred from155

the continuous phase to the disperse phase (and reverse) across the fluid-fluid interface.156

In the VOF method, the normal vector nΣ defined on every points of the discontinuity Σ is transformed into a157

mean normal surface that is computed using the gradient of the phase indicator function (Quintard and Whitaker,158

1994),159

∇αd =
1
V

∫
AΣ

nΣdA. (17)

Therefore, the average of the normal vector nΣ is understood as160

nΣ =
∇αd

‖∇αd‖
. (18)

nΣ is a unit vector defined at the cell centres that describes the mean normal to the fluid-fluid interface in a control161

volume. In particular, it is used to compute the mean interface curvature.162

The single-field equations are obtained following the averaging procedure described above. Here, we present163

only the final conservation laws. A detailed derivation can be found in Fleckenstein and Bothe (2015). The164

continuity equation reads165

∇ · u = ṁ
(

1
ρd
−

1
ρc

)
. (19)

Further, the single-field momentum equation can be written as166

∂ρu
∂t

+ ∇ · (ρuu) = −∇p + ∇ ·
(
µ
(
∇u + ∇uT

))
+ ρg + fΣ, (20)

where167

fΣ =
1
V

∫
AΣ

σκnΣdA (21)

is the mean surface tension force described as a body force. To compute fΣ, the curvature within the control volume168

is approximated by a mean curvature estimated from the normal vector, κ = −∇ · nΣ (Brackbill et al., 1992). The169

surface tension σ and the mean curvature are then constant within a control volume, and can be removed from the170

integral. Therefore, using Eq. (17), fΣ becomes171

fΣ = σκ∇αd. (22)

This surface tension force model is known as Continuous Surface Force (CSF) (Brackbill et al., 1992). Since in172

the VOF method, the fluid interface is represented by an indicator function which changes over a thin region, the173

estimation of the curvature using the CSF method is inaccurate and can generate non-physical parasitic velocities174

(Scardovelli and Zaleski, 1999; Popinet, 2018). These spurious currents might be reduced by computing the175

curvature from a smoothed indicator function α̂d, i.e.176

κ = ∇.

(
∇α̂d

‖∇α̂d‖

)
,

α̂d =

∑
f αd f A f∑

f A f
,

(23)

where αd f is the value of αd on the face f of the control volume, obtained by linear interpolation, and A f is the177

face surface area.178

Finally, the volumetric phase equation is179

∂αd

∂t
+ ∇ · (αdu) + ∇ · (αdαcur) =

ṁ
ρd
, (24)
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where ur = ũd − ũc is the relative velocity. This advection equation is exact because its derivation does not180

imply any assumption (Fleckenstein and Bothe, 2015). Note that the last term on the left-hand side has non-181

zero value only in the cells containing the fluid/fluid interface. The relative velocity ur is a consequence of mass182

and momentum transfer between the phases. However, Fleckenstein and Bothe (2015) showed that ur may be183

neglected even in the case of very good solubility (e.g. CO2 in water) in order to simplify Eq. (24).184

High resolution differencing schemes such as Flux Corrected Transport (FCT) (Zalesak, 1979) or Normalised185

Variable Formulation (NVF) (Leonard, 1988) can be used to reduce the smearing of the interface. These methods186

combined a bounded but diffusive low-order scheme with an unbounded but more accurate higher order scheme.187

In order to maintain a sharp interface, the amount of downwinding should be maximised, leading to so-called in-188

terface capturing schemes such as the Compressive Interface Capturing Scheme for Arbitrary Meshes (CICSAM)189

(Ubbink and Issa, 1999) and the High Resolution Interface Capturing (HRIC) scheme (Muzaferija et al., 1999).190

However, the present work is based on the interFoam solver (OpenCFD, 2016), which algebraic advection im-191

plementation utilises a FCT method called Multidimensional Universal Limiter with Explicit Solution (MULES)192

(Weller, 2006). In addition, compression of the interface is performed but, rather than using an interface capturing193

scheme, an artificial compression term is introduced by replacing ur in Eq. (24) by a compressive velocity ucomp,194

normal to the interface and with an amplitude based on the maximum of the single-field velocity (Rusche, 2002)195

ur ≡ ucomp = nΣ

[
min

(
cα
|φ f |

A f
,max

f

(
|φ f |

A f

))]
, (25)

where cα is the compression constant (generally between 0 and 4) and φ f is the volumetric flux across f . In all196

our simulations, we choose cα = 1.0.197

2.3. Single-field concentration equation198

Similarly, applying volume-averaging to the mass conservation equation of each component in each phase,199

and then adding them up, yields to the single-field concentration equation. Deising et al. (2016) proposed a formal200

derivation of the model, leading to the so-called Continuous Species Transfer (CST) formulation201

∂c j

∂t
+ ∇.F j + ∇.J j = 0, (26)

where the advective flux is202

F j = αd c̃ j,dũd + αcc̃ j,cũc, (27)

and the diffusive flux is203

J j = −αdD j,d∇c̃ j,d − αcD j,c∇c̃ j,c. (28)

In the single-field approach, the fluxes F j and J j have to be described in term of single-field variables. Haroun204

et al. (2010) proposed the following formulation for the diffusion flux205

J j = −DS F
j ∇c j +Φ j, (29)

where DS F
j is the single-field diffusion coefficient and Φ j is the CST flux, defined as206

Φ j = (1 − H j)DS F
j

c j

αd + H jαc
∇αd. (30)

The debate regarding the best formulation for the single-field diffusion coefficient was initiated in the original207

work of Haroun et al. (2010) and pursued in Marschall et al. (2012) and Deising et al. (2016). Indeed, Haroun208
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et al. (2010) first proposed an arithmetic mean for the diffusion coefficient209

DS F
j ≡ Da

j = αdD j,d + αcD j,c. (31)

However, they showed in their own test cases that a harmonic mean was more accurate. Further, Deising et al.210

(2016) derived the following formulation for the diffusive flux211

J j = −Da
j∇c j − αdαc

(
D j,d − D j,c

) (
1 − H j

)
αd + H jαc

∇c j +Φ j, (32)

with212

Φ j =
c j

αd + H jαc

(D j,d − H jD j,c

)
−

H j

(
D j,d − D j,c

)
αd + H jαc

∇αd. (33)

They compared this formulation to the harmonic formulation on several test cases and obtained almost identical213

results. However, Eqs. (32)-(33) can be drastically simplified by putting everything over the common denominator214

αd + H jαc. Doing so, we can show that this formulation is equivalent to Haroun et al. (2010) formulation (Eqs.215

(29)-(30)) if the arithmetic mean diffusion is replaced by the equilibrium-based mean diffusion216

DS F
j ≡ Dm

j =
αdD j,d + H jαcD j,c

αd + H jαc
, (34)

which states that the diffusion of component j in the interface region is equal to the weighted mean of the phase217

diffusion coefficients D j,d and D j,c weighted by αd and H jαc. This formulation has many advantages over the218

arithmetic and harmonic formulations proposed by Haroun et al. (2010); Marschall et al. (2012); Deising et al.219

(2016). It is an equivalent simplified formulation of Eqs. (26)-(33) that ensures continuity of the diffusive flux220

of dilute species at the interface and that, contrary to the harmonic formulation, can be applied to the case when221

D j,i → 0 (for example when the disperse phase is pure).222

Finally, the advective flux can be written as (Maes and Soulaine, 2018)223

F j = c ju + αdαc

(
c̃ j,d − c̃ j,c

)
ur. (35)

Since the CST model (Eqs.(26)-(35)) has been derived by volume averaging, it is in principles consistent with224

the phase advection equation (Eq.1), regardless of the discretization scheme employed. However, Deising et al.225

(2016) noted that to obtain a fully consistent advection scheme and avoid artificial mass transfer at the interface,226

it is essential to apply the same discretization scheme to all advected quantities. Following this principle, the CST227

method has been applied successfully with algebraic VOF methods with FCT (Haroun et al., 2010) or CICSAM228

(Deising et al., 2018) discretization schemes.229

When using high resolution discretization schemes, the relative velocity ur may be neglected, so the advective230

flux in the CST model becomes F j = c ju. However, additional care must be taken when using the CST model231

with an artificial compressive velocity. Yang et al. (2017) neglected the relative velocity in the species transport232

equation, and they observed that, when convection dominates diffusion locally near the interface, this formulation233

generates a large numerical error. They show that in order to capture the discontinuity at the interface accurately,234

the mesh should be designed so that the diffusion dominates the advection locally. This is described by the local235

Péclet number Pelocal = Uδx
D , and they recommend to use Pelocal < 0.5. However, this restriction cannot be applied236

for the case when D j,i → 0 (for example when the disperse phase is pure). Maes and Soulaine (2018) shows that237

the numerical error is in fact due to inconsistency in the phase and component advection schemes arising from the238

compression term. It is therefore essential to use the so called Compressive CST (C-CST) (Maes and Soulaine,239
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2018) formulation, where the advective flux includes a compressive term240

F j = c ju + αdαc

(
c̃ j,d − c̃ j,c

)
ucomp. (36)

The phase concentration c̃ j,d and c̃ j,c are unknown and need to be expressed as a function of αd and c j. In the241

original C-CST model (Maes and Soulaine, 2018), the phase concentration are assumed to be at equilibrium in the242

grid blocks that contain the interface, and c̃ j,d =
c j

αd+H jαc
and c̃ j,c =

H jc j

αd+H jαc
. The phase concentration difference243

was,244 (
c̃ j,d − c̃ j,c

)
=

(
1 − H j

)
c j

αd + H jαc
. (37)

In the present paper, we propose a different model based on the computation of the gradient of concentration at245

the interface. Using the definition of the single-field concentration, we have,246

∇c j · ∇αd =∇
(
αd c̃ j,d + αcc̃ j,c

)
· ∇αd,

=
[
αd∇c̃ j,d + αc∇c̃ j,c +

(
c̃ j,d − c̃ j,c

)
∇αd

]
· ∇αd,

=αd∇c̃ j,d · ∇αd + αc∇c̃ j,c · ∇αd +
(
c̃ j,d − c̃ j,c

)
||∇αd | |

2.

(38)

Although the gradient of the phase concentration across the interface is zero only when the phases are at chemical247

equilibrium in the cell, the compression may assume that they are in order to avoid additional mass transfer across248

the interface. Therefore, we assume ∇c̃ j,d · ∇αd = ∇c̃ j,c · ∇αd = 0. and the phase concentration difference can be249

written as250 (
c̃ j,d − c̃ j,c

)
=
∇c j · ∇αd

||∇αd ||
2 . (39)

In the rest of the paper, this model is referred to as the normal C-CST model while the model using Eq. (37) is251

referred to as the original C-CST. The two C-CST models are compared for a 1D test case with infinite Péclet252

number in section 3. In particular, we observe that the local mass transfer between the phase generated by the253

compression is zero for the normal C-CST model but not for the original C-CST model. This is an essential254

property for computing interface mass transfer and local volume change.255

2.4. Interface mass transfer256

The VOF approach with local volume change requires the computation of the rate of mass transfer, ṁ, at the257

gas/liquid interface. Indeed, ṁ appears both in the continuity equation, Eq. (19), and in the phase conservation258

law, Eq. (24). By definition, the rate of mass transfer, responsible for the local phase volume change, results from259

the sum of the rate of transfer, ṁ j, of all the species that cross the interface, i.e. all the species except for the one260

labelled n that remains always in the continuous phase. Hence, the rate of mass transfer writes261

ṁ =
∑

1≤ j<n

ṁ j, (40)

where the rate of species transfer is defined in each control volume V that contains part of the interface Σ by262

integrating the flux condition Eq. (9) over the surface of the interface. We have,263

ṁ j = ṁ j,i =
1
V

∫
AΣ

(
c j,i (ui − w) − D j,i∇c j,i

)
· nΣdA. (41)

This integral involves variables defined in the continuous physical space and needs to be formulated in terms of264

grid-based variables to be used in the VOF method. In a control volume, the concentration at the interface is265

assumed to verify c j,i|Σ ≈ c̃ j,i and ∇c j,i|Σ ≈ ∇c̃ j,i (Soulaine et al., 2011). Because, c̃ j,i is a volume averaged quantity266
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over the control volume V , it has a constant value all along AΣ and can be pull out the surface integral. Finally,267

using Eq. (16) and Eq. (17), we obtain268

ṁ j,i =
1
V

∫
AΣ

(
c̃ j,i (ui − w) − D j,i∇c̃ j,i

)
· nΣdA,

= c̃ j,i
1
V

∫
AΣ

(ui − w) · nΣdA − D j,i∇c̃ j,i ·
1
V

∫
AΣ

nΣdA,

=
c̃ j,i

ρi

1
V

∫
AΣ

ρi (ui − w) · nΣdA − D j,i∇c̃ j,i ·
1
V

∫
AΣ

nΣdA,

=
c̃ j,i

ρi
ṁ − D j,i∇c̃ j,i · ∇αd.

(42)

Eq. (42) cannot be used in its present form since it depends on c̃ j,i that is not computed in the VOF method. It is269

recast into a form that depends only on the single-field variables using the sum of the species transfer rate on each270

side of the interface weighted by a fluid volume fraction. We have,271

ṁ j = αdṁ j,d + αcṁ j,c,

= αd

(
c̃ j,d

ρd
ṁ − D j,d∇c̃ j,d · ∇αd

)
+ αc

(
c̃ j,c

ρc
ṁ − D j,c∇c̃ j,c · ∇αd

)
,

=

(
αd

c̃ j,d

ρd
+ αc

c̃ j,c

ρc

)
ṁ −

(
αdD j,d∇c̃ j,d + αcD j,c∇c̃ j,c

)
· ∇αd,

= X jṁ + J j · ∇αd,

(43)

where X j =
(
αd

c̃ j,d

ρd
+ αc

c̃ j,c

ρc

)
, and where the diffusion flux was simplified using Eqs. (28) and (29). Using Eq. (40)272

along with Eq. (43) we obtain273

ṁ =
∑

1≤ j<n

X jṁ +
∑

1≤ j<n

J j · ∇αd. (44)

To close the system, the sum
∑

1≤ j<n X j is calculated using Eq. (5) along with the assumption that all the 1 ≤ j < n274

components are diluted in c so that ρc ≈ c̃n,c. The sum of X j writes,275

∑
1≤ j<n

X j = αd + αc

(
1 −

c̃n,c

ρc

)
≈ αd, (45)

Therefore, using Eq. (29), the total mass transfer in a control volume that includes interfacial area is calculated as276

ṁ = −

∑
1≤ j<n

(
Dm

j ∇c j −Φ j

)
1 − αd

· ∇αd
(46)

This closes Eq. (24) and the entire system.277

2.5. Numerical implementation278

The numerical method has been implemented in our OpenFOAM R©-based reactive transport solver (OpenCFD,279

2016). The standard VOF solver of OpenFOAM R©, so-called interFoam has been extended for this purpose into280

another solver called interTransferFoam. The full solution procedure is presented in Fig. 2. interFoam solves281

the system formed by Eq. (19), (24) and (20) on a collocated Eulerian grid. A pressure equation is obtained282

by combining the continuity (Eq. (19)) and momentum (Eq. (20)) equations. The system is then solved with a283

predictor-corrector strategy based on the Pressure Implicit Splitting Operator (PISO) algorithm (Issa et al., 1985).284

Three iterations of the PISO loop are used to stabilise the system. An explicit formulation is used to treat the285

coupling between the phase distribution equation (Eq. (24)) and the pressure equation. This imposes a limit on the286
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solve C

compute m

Start

Read elds 

Update uid
 properties

solve 

solve u

solve p

Correct u

iter>nPiso

Update t

t>tmax

End

yes

yes

no

no

.

Figure 2: Full solution procedure for interTransferFoam.

time-step size by introducing a capillary wave time scale described by the Brackbill conditions (Brackbill et al.,287

1992).288

In interTransferFoam, the concentration equation (Eq. (26)) is solved sequentially before the phase conserva-289

tion. The interfacial mass transfer (Eq. (46)) is then computed and re-injected in the continuity (Eq. (19)) and290

phase equations (Eq. (24)). The space discretization of the convection terms is performed using the second-order291

vanLeer scheme (van Leer, 1974). For the compression terms, the interpolation of αdαc is performed using the292

interfaceCompression scheme (OpenCFD, 2016). The diffusion term ∇.
(
Dm

j ∇c j

)
is discretized using the Gauss293

linear limited corrected scheme, which is second order and conservative. The discretization of the CST flux is294

performed using the Gauss linear scheme.295

For the computation of the mass transfer ṁ, we define296

ΦD =

∑
1≤ j<n Dm

j ∇c j −Φ j

1 − αd
(47)

and then we use ΦD · ∇αd = ∇ · (ΦDαd) − αd∇ ·ΦD. The discretization of ΦDαd is performed using upwinding297

in the direction of ∇αd in order to prevent negative αd. This is only first-order accurate (see Section 3), but all298

second-order discretization schemes available in OpenFOAM R© have shown strong instabilities.299

2.6. Dimensionless analysis and large-scale post-processing300

In this section, we describe the dimensionless numbers used to analyse the simulation results in terms of301

bulk-averaged properties.302

For two-phase flow, the relative importance of inertia and viscous forces is quantified using the Reynolds303

number Re, while the importance of gravity and surface tension force is characterised using the Eötvös Eo and304

Morton Mo numbers,305

Re =
ρcUL
µc

, Eo =
∆ρgL2

σ
, Mo =

gµ4
c∆ρ

ρ2
cσ

3 , (48)
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where U and L are reference velocity and length, respectively.306

Similarly, the relative importance of viscous and molecular diffusivity is quantified using the Schmidt number307

Sc, while the Péclet number Pe=Sc×Re is equal to the ratio of advective to diffusive transport308

Sc =
µc

ρcD j,c
, Pe =

UL
D j,c

. (49)

A common engineering approach for the modelling of species transfer across interfaces is to introduce a309

species transfer coefficient k j310 ∫
Ω

ṁ jdV = k jAΣ

(
H jc j,d,∞ − c j,c,∞

)
, (50)

where c j,i,∞ is the bulk average concentration of j in phase i. This leads to the definition of the Sherwood number311

Sh, which quantifies the ratio of interface mass transfer rate to the molecular diffusion rate312

Sh =
k jL
D j,c

. (51)

Establishing accurate Sherwood correlation as a function of the other dimensionless groups (Reynolds, Schmidt,313

Péclet) is one of the most investigated engineering question in bubble column reactors (Oellrich et al., 1973; Clift314

et al., 1978; Takemura and Yabe, 1998).315

3. Verification316

3.1. Two-phase transport in a 1D tube at infinite Péclet number317

The objective of this test case is to observe and quantify the artificial mass transfer that arises at the interface318

when compression is not applied consistently for the phase volume fraction and species concentration. For this,319

four numerical implementations are compared in OpenFOAM R© (OpenCFD, 2016). First, no interface compression320

is used. The advection is performed using the FCT method implemented in MULES (Weller, 2006), but the321

compression is cancelled by setting cα = 0. The species concentration equation is modelled using the standard322

CST method. This implementation is labelled VOF-FCT0-S-CST. Secondly, we used compression of the interface323

for the phase fraction (cα = 1), but not for the species concentration. This implementation is labelled VOF-FCT1-324

S-CST. Thirdly, we use compression of the interface for the phase fraction and for the species concentration, using325

the original C-CST method (Eqs. (36) and (37)). This implementation is labelled VOF-FCT1-OC-CST. Finally,326

we use compression of the interface for the phase fraction and for the species concentration, using the normal327

C-CST method (Eqs. (36) and (39)). This implementation is labelled VOF-FCT1-NC-CST.328

To compare the four implementations in terms of artificial mass transfer, we consider a 1D tube of length329

200 µm. The tube is initially filled with the disperse phase (αd = 1) from x=0 to 40 µm and the continuous phase330

(αd = 0) from x=40 to 200 µm. The concentration of a species A is set to 1 kg/m3 in the disperse phase and331

0 in the continuous phase. The Henry coefficient HA is assumed to be equal to 0.5, so that the system is not at332

equilibrium. The velocity is constant U=0.05 m/s in the domain. In addition, we assume that DA,d = DA,c = 0333

(infinite Pe). Therefore, there is no transfer between the phase and the analytical solution for both phase fraction334

and species concentration is a sharp front moving at speed U.335

The simulation are performed on a regular grid with resolution ∆x = 1 µm and with a constant time-step336

∆t = 10−7 s. Fig. 3 shows the phase fraction and concentration profiles at different time for the four different337

implementations and Fig. 4 shows the evolution of the fraction of component A in the continuous phase. For338

the case with no compression (VOF-FCT0-S-CST), the interface is slightly smeared and spans over seven cells339

(Fig. 3a). However, no artificial mass transfer is observed (Fig. 4). The advection operators for phase fraction340

and species concentration are fully consistent. For the case where compression is applied to the phase fraction but341
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Figure 3: Concentration profile during two-phase transport in a 1D tube at different time obtained using (a) VOF-FCT0-S-CST, (b) VOF-
FCT1-S-CST, (c) VOF-FCT1-OC-CST and (d) VOF-FCT1-NC-CST.
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Figure 4: Evolution of the average concentration of component A in the continuous phase during two-phase transport in a 1D tube using the
four different implementation of the VOF-CST methods. When compression is applied to the interface, the standard CST and the original
C-CST model generate an erroneous transfer between the phases, while for the normal C-CST model, the concentration of A in the continuous
phase remains zero.

not to the species concentration (VOF-FCT1-S-CST), the interface is sharper, spanning over three cells, but the342

species concentration is diffuse (Fig. 3b). The fraction of A in the continuous phase does not remain equal to zero,343

but reaches a maximum value of 0.01 at t=0.15 ms. The erroneous mass transfer between the phases is maximum344

at t=0, with value equal to 0.012 kg/m2/s. This error corresponds to a diffusion coefficient of 1.2×10−6 m2/s.345

The advection operators for phase fraction and species concentration are not consistent. Next, when the original346

C-CST method is applied to the species concentration (VOF-FCT1-OC-CST), the species concentration is slightly347

less diffuse, but the problem is not fully corrected (Fig. 3c). Again, the fraction of A in the continuous phase348

does not remain equal to zero, but reaches a maximum value of 8×10−3 at t=0.1 ms. The erroneous mass transfer349

between the phases is also maximum at t=0, with the same value of 0.012 kg/m2/s. In the original C-CST model,350

the phase concentration at the interface are obtained by assuming local equilibrium between the phases. However,351

when the phase concentrations deviate strongly from equilibrium, artificial mass transfer between the phases352
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arises. The original C-CST method is only consistent with artificial compression when phase concentrations at the353

interface are at equilibrium. In the present case, equilibrium is never reached since Pe is infinite. Finally, when354

the normal C-CST method is applied (VOF-FCT1-NC-CST), both phase fraction and species concentration are355

sharp, spanning over three cells (Fig. 3d), and no artificial mass transfer is observed. This is because the normal356

C-CST model is built so that no interface transfer is generated by the compression (Eq. (38)). This is an essential357

result when computing the interface mass transfer and the local volume change. The advection operators for phase358

fraction and species concentration are fully consistent. In the rest of the paper, we will use compression of the359

interface with the normal C-CST method.360

3.2. Dissolution of a single-component gas phase into an immiscible liquid solvent in a semi-infinite tube361

The objective of this test case is to validate the computation of the interface mass transfer and the local volume362

change by comparison with a system where an analytical solution exists. For this, we consider the case where the363

disperse phase is a single-component gas with ρd = 1 kg/m3 and the continuous phase is a binary liquid mixture364

with ρc = 1000 kg/m3. The species A of the disperse phase is a dilute component in phase c, with HA = 0.5 and365

DA,c = 10−6 m2/s. The second species is a solvent that is not soluble in d. The domain is a 1D semi-infinite tube366

(Fig. 5). The gas/liquid interface is initially positioned at a distance l0 = 0.5 mm from the left boundary. Initially,367

the concentration of dilute species in the liquid is equal to zero.

x
l

cA,d=ρd

Σ

cA,c

Figure 5: Set-up for dissolution of a single-component gas phase into an immiscible liquid solvent in a semi-infinite tube

368

Due to incompressibility, the velocity in each phase is constant, and equal to zero in the gas phase. Mass369

conservation at the interface (Eq. (2)) gives370

uc =
ρc − ρd

ρc
w at x = l. (52)

Therefore, the mass conservation of the dilute component in c writes371

∂cA.c

∂t
+
ρc − ρd

ρc
w
∂cA,c

∂x
= DA,c

∂2cA,c

∂x2 for x > l,

cA,c(x, 0) = 0 for x > l,

cA,c(l, t) = HAρd for t > 0,

dl
dt

= w =
DA,c

ρd

∂cA,c

∂x |x=l
for t > 0

(53)
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Assuming that ρd << ρc, an analytical solution for Eq. (53) writes372

cA,c(x, t) = HAρd

1 − er f

 x − l

2
√

DA,ct

 for x > l,

l(t) = l0 − 2HAρd

√
DA,ct
π

.

(54)

The simulations were performed on a domain of length 10 mm, to mimic a semi-infinite tube. In order to373

investigate convergence, we define the dimensionless grid size374

∆x∗ =
∆x
l0
, (55)

and the error for concentration and interface position375

Err (c (∆x∗)) = maxt


√∫ (

c (∆x∗, t) − c (∆x∗ → 0, t)
ρd

)2

dt

 ,
Err (l (∆x∗)) = maxt

(
|l (∆x∗, t) − l (∆x∗ → 0, t) |

l0

)
.

(56)

Fig. 6 shows the evolution of the convergence errors with grid resolution. All simulations are performed with a376

time-step of 0.2 µs, for which they have all converged in time. We observe that both measures show first-order

10
-2

10
-1

Dimensionless grid size

10
-2

10
-1

E
rr

o
r

Err(c)

Err(l)

Figure 6: Evolution of convergence of concentration and interface position during dissolution of a single-component gas phase into an immis-
cible liquid solvent in a semi-infinite tube. Both measures show first-order convergence.

377

convergence. Although the CST model itself is second-order accurate, the discretization of the phase transfer378

flux (Eq. 46) is performed using upwinding to avoid negative volume fraction. We have tested the second-order379

accurate schemes included in OpenFOAM but they all show strong instabilities.380

Fig. 7 show a comparison of analytical and numerical simulations for grid resolution ∆x∗ = 0.01. We observe381

a very good agreement between the simulation and the exact solution. Both convergence errors (Eq. (56)) are382

smaller than 0.01.383

3.3. Growth of binary gas in infinite cylinder384

The objective of this test case is to validate the computation of the local volume change when two species are385

present in the gas phase. For this, we consider an infinite cylinder of radius R = 1 mm. The initial radius of the386
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Figure 7: Comparison of analytical and numerical simulation for (a) evolution of species concentration and (b) evolution of interface position
during dissolution of a single-component gas phase into an immiscible liquid solvent in a semi-infinite tube. Both concentration and interface
position errors are smaller than 0.01.

dispersed gas phase is R0 = 0.5 mm, so that the domain is filled with gas for 0 ≤ r < Rd and with the continuous387

liquid phase for Rd < r < R (Fig. 8). The fluid properties are summarised in Table 1.388

R= 1mm
R0= 0.5 mm

Figure 8: Set-up for growth of binary gas in infinite cylinder.

Density Dynamic viscosity Interfacial tension
(kg/m3) (Pa.s) (mN/m)

Gas 1 1.8×10−5
60

Liquid 1000 1×10−3

Table 1: Fluid properties for mass transfer during growth of binary gas in infinite cylinder

We consider that the gas is a binary mixture (A+B). Initially, the gas phase is composed at 100% of B (cA,d = 0,389

cB,d = ρd). We assume that A is only weakly soluble (HA = 0.01) and B is not soluble (HB = 0) in liquid, so that390

the liquid phase is a binary mixture of A and a solvent that is not soluble in the gas phase. The diffusion coefficient391

are DA,d = DB,d = 10−4 m2/s and DA,c = DB,c = 10−6 m2/s. At the outside boundary of the system, the pressure392
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remains constant, and the concentration of A is equal to HAρd. Due to the symmetry of the problem, the velocity393

and concentration only depends on the radius r, and the motion induced in the liquid phase is also radial,394

w = w(t)−→e r, uc = uc(r, t)−→e r. (57)

Since ρd << ρc, mass conservation at the interface (Eq. (2)) gives

uc(Rd, t) = w(t). (58)

Due to the large diffusion ratio between the gas and liquid phases, the species concentration in the gas phase can395

be considered uniform at the time scale of the process. Since the total mass of B is a constant, the concentration396

of A in the gas phase satisfies397

cA,d = ρd

1 − (
R0

Rd

)2 . (59)

Mass conservation of the dilute component in the liquid phase writes398

∂cA,c

∂t
+ uc

∂cA,c

∂r
=

DA,c

r
∂

∂r

(
r
∂cA,c

∂r

)
for r > Rd,

uc (r, t) =
Rd

r
w(t) for r > Rd,

cA,c(Rd, t) = HAρd

1 − (
R0

Rd

)2 , cA,c(R, t) = HAρd for t > 0,

dRd

dt
= w =

DA,c

ρd

∂cA,c

∂r |r=Rd

for t > 0.

(60)

Eq. (60) can be written in its dimensionless form using399

r∗ =
r
R

, R∗d =
Rd

R
, t∗ =

t
τ

, c∗ =
cA,c

HAρd
, (61)

where asterisks denote dimensionless variables and

τ =
R2

HADA,c
. (62)

The time-scale τ corresponds to the time it takes a mass πρdR2L in a cylinder of radius R and length L to diffuse400

out of the system if the mass flux density is DA,cLπHAρd. For DA,c = 10−6 m2/s, τ = 100 s. Substituting into401

Eq. (60) yields402

HA

(
∂c∗

∂t∗
+ w∗

R∗d
r∗
∂c∗

∂r∗

)
=

1
r∗

∂

∂r∗

(
r∗
∂c∗

∂r∗

)
for r∗ > R∗d,

c∗(R∗d, t
∗) = 1 −

(
R∗d(0)

R∗d

)2

, c∗(1, t∗) = 1 for t∗ > 0,

dR∗d
dt∗

= w∗ =
∂c∗

∂r∗ |r∗=R∗d
for t∗ > 0

(63)

Since HA << 1, the concentration of A in the liquid phase can be assumed at equilibrium at the time-scale of the403
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motion of the interface. Therefore, Eq. (63) becomes404

1
r∗

∂

∂r∗

(
r∗
∂c∗

∂r∗

)
= 0 for r∗ > R∗d,

c∗(R∗d, t
∗) = 1 −

(
R∗d(0)

R∗d

)2

, c∗(1, t∗) = 1 for t∗ > 0,

dR∗d
dt∗

= w∗ =
∂c∗

∂r∗ |r∗=R∗d
for t∗ > 0

(64)

An analytical solution for Eq. (64) writes405

cA,c(r, t) = HAρd

1 − (
R0

Rd

)2 ln(r/R)
ln(Rd/R)

 , for r > Rd,

1
4

(
R4

d ln
(Rd

R

)
− R4

0 ln
(R0

R

))
−

1
16

(
R4

d − R4
0

)
= −R2

0HADA,ct, for t > 0.

(65)

The simulations are performed in 2D on a quarter-circle, using symmetry condition on the left and bottom bound-406

aries. In order to investigate convergence, we define the dimensionless grid size407

∆x∗ =
∆x
R
, (66)

and the error for concentration and gas radius408

Err (c (∆x∗)) = maxt


√∫ (

cA,c (∆x∗, t) − cA,c (∆x∗ → 0, t)
HAρd

)2

dt

 ,
Err (Rd (∆x∗)) = maxt

(
|Rd (∆x∗, t) − Rd (∆x∗ → 0, t) |

Rd(0)

)
.

(67)

The domain is first meshed with a uniform Cartesian grid, then all cells containing solid are removed and re-409

placed by rectangular and triangular cells that match the solid boundaries, using the OpenFOAM R© utilities snap-410

pyHexMesh (OpenCFD, 2016). Fig. 9 shows the evolution of the convergence errors with grid resolution. All411

simulations are performed with a time-step of 0.1 µs, for which they have all converged in time. Again, we ob-
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Figure 9: Evolution of convergence of concentration and gas radius during growth of binary gas in infinite cylinder. Both measures show
first-order convergence.
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serve that both measures show first-order convergence, due to the first-order upwinding discretization of the phase413

transfer flux (Eq. 46).414

Fig. 10 shows the evolution of the dimensionless concentration of component A and of the gas-liquid interface,415

for a grid resolution of ∆x∗ = 4 × 10−3, obtain using snappyHexMesh with an initial Cartesian grid of 250×250.416

The final grid contains 46801 cells.

C*

t=0 s t=2.5 s t=5.0 s

Figure 10: Evolution of dimensionless concentration of component A (colour map) and of gas-liquid interface (white curve) during growth of
binary gas in infinite cylinder.

417

We observe that the volume of gas grows as component A diffuses across the interface. Fig. 11 shows418

a comparison between numerical and analytical solution for the dimensionless concentration and radius. The419

observed errors (9×10−3 for concentration, 7×10−3 for radius) are due to the difficulty of maintaining a sharp420

interface. In addition, we observe that the curvature of the interface is not perfectly circular (Fig. 10). In fact,421

it oscillates slightly during the simulation due to parasitic currents. In our work, the impact of these spurious422

currents is only limited and smoothing the indicator function prior to the computation of interface curvature is423

enough to limit them. To increase robustness and accuracy, various techniques to reduce them further can be424

considered, such as sharpening of indicator function prior to surface tension force computation (Francois et al.,425

2006), filtering of capillary force (Raeini et al., 2012) or coupled VOF level-set method (Albadawi et al., 2013),426

but are outside the scope of this work.
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Figure 11: Comparison between numerical and analytical solution for the dimensionless concentration and dimensionless radius during growth
of binary gas in infinite cylinder.
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3.4. Mass transfer from a single-component rising gas bubble in creeping flow428

The objective of this test case is to validate the interface mass transfer in a 3D geometry with dynamic motion429

of the interface, on both structured and unstructured grids. For this, we consider the rising of a 3D gas bubble in430

the creeping flow regime (Re<< 1). Although no analytical solution of the full species equation for this problem is431

available, Fleckenstein and Bothe (2015) proposed a semi-analytical method to solve the mass transfer across the432

interface. This uses the Hadamard-Rybczynski analytical solution (Hadamard, 1911) of flow around a spherical433

bubble at low Reynolds number. In spherical coordinate and in a reference frame moving with the barycentre of434

the bubble, the velocity field is given by435

urad = −Ub

(
1 −

1.5µd/µc + 1
µd/µc + 1

1
r/R

+
µd/µc

µd/µc + 1
1

(r/R)3

)
cos θ,

uθ = Ub

(
1 −

1.5µd/µc + 1
µd/µc + 1

1
2r/R

+
µd/µc

µd/µc + 1
1

2 (r/R)3

)
sin θ,

(68)

where urad and uθ are the radial and tangential components of the velocity, R is the radius of the bubble and Ub is436

the bubble rising velocity, given by437

Ub =
2
3
ρd − ρc

µc
gR2 1 + µd/µc

2 + 3µdµc
. (69)

Then, assuming rotational symmetry, the stationary species equation in the continuous phase is given by438

ur
∂c
∂r

+ uθ
1
r
∂c
∂θ

= D
(

1
r2

∂

∂r

(
r2 ∂c
∂r

)
+

1
sin θ

∂

∂θ

(
sin θ

∂c
∂θ

))
. (70)

Fleckenstein and Bothe (2015) numerically solves a simplified form of Eq. (70) that neglects the last term on the439

right-hand side by assuming assumes good mixing along the streamline, then computes the interface mass transfer440

to update the bubble radius R.441

Mass transfer from a single-component gas bubble has been simulated and compared to the semi-analytical442

solution. The fluid properties are summarised in Table 2. A Henry’s coefficient of 0.2 is chosen. A bubble with

Density Dynamic viscosity Diffusivity Interfacial tension
(kg/m3) (Pa.s) (m2/s) (mN/m)

Gas 1.2 1.8×10−5 0 60
Liquid 1245 0.46 1.48×10−6

Table 2: Fluid properties for mass transfer from gas bubble in creeping flow

443

initial radius R = 2 mm has been simulated in a computational domain of dimension 1.2 cm × 2.4 cm × 1.2 cm.444

Symmetry conditions are applied to the plan x=0 and z=0, so only a quarter of the bubble is simulated. The other445

boundary conditions are free-flow.446

Two different grids are considered here, a structured one and an unstructured one. The structured grid is447

obtained by meshing the computational domain uniformly with 150×300×150 cells. For the unstructured grid, a448

tetrahedral mesh is first obtained using the open source software gmsh (Geuzaine and Remacle, 2009) by extruding449

a 2D triangular mesh. Then, the OpenFOAM R© polyDualMesh utility (OpenCFD, 2016) is used to convert to a450

polyhedral mesh. In order to obtain a similar number of cells for both grids, the resolution of the triangular mesh451

is set to 9.23×10−5 m (260 points per direction). The final grids contain 6.75 million cells for the structured mesh452

and 6.81 million cells for the unstructured mesh.453

The simulations were run with a constant time-step of 20 µs. Initially, the centre of the bubble is placed at454

(0 mm, 3 mm, 0 mm). In order to compare with the semi-analytical, mass transfer from a rising bubble with no455

volume change and while forcing the species concentration in the bubble, and therefore the density, to remain456

constant is simulated until the barycentre of the bubble reaches (0 cm, 1.2 cm, 0 cm). The simulations are then457
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restarted with local volume change taken into account. Fig. 12 shows the interface position and the dimensionless458

concentration c∗ = c/ (α + H (1 − α)) profile at t=0.2 s, for both structured and unstructured grids. The profile are

Figure 12: Interface position (white line) and dimensionless concentration profile at t=0.2 s for both structured and unstructured grids during
rising of a gas bubble in creeping flow.

459

very similar. The unstructured solution is slightly more diffuse, and the bubble velocity slightly reduced, but the460

difference is not significant.461

At t=0, the rising velocity obtained in the simulation is equal to 3.0 cm/s, while the exact velocity obtained462

with the Hadamard-Rybczynski solution is approximately 3.5 cm/s. Similarly to Fleckenstein and Bothe (2015),463

Eq. (70) is adjusted for the semi-analytical computation to account for this discrepancy. Fig. 13 shows the464

evolution of the normalised mass of gas obtained with the numerical model and compared to the semi-analytical465

solution. After a total simulated time of 0.25 s, the mass has decreased to 81% of its initial value in the structured466

grid simulation, 81.4% in the unstructured grid simulation, and to 80.6% of its initial value in the semi-analytical467

solution. This corresponds to a relative deviation of 0.5% for the structured grid and 1% for the unstructured grid468

at the end of the simulation.469
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Figure 13: Comparison of semi-analytical model and numerical simulation for normalised total mass of gas during rising of a gas bubble in
creeping flow.
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4. Application470

4.1. Competing mass transfer in infinite cylinder471

In industrial applications involving mass transfer at fluid interfaces, species being transferred from the gas472

phase to the liquid phase and species being transferred in the opposite direction can both happen simultaneously.473

This competing mass transfer directly affect the volume of each phase and must be taken into account in any474

numerical modelling.475

Here, we consider competing mass transfer with two species A and B in an infinite cylinder of radius R=1 mm.476

The solvent of the continuous phase is not soluble in the disperse phase. The fluid properties (Table 1) and the477

geometry (Fig. 8) are the same as in section 3.3, with the initial radius of the dispersed gas phase R0 = 0.5 mm,478

so that the domain is filled with gas for 0 ≤ r < R0 and with liquid for R0 < r < R.479

Initially, the gas phase is composed at 100% of B (cA,d = 0, cB,d = ρd = 1 kg/m3), and the liquid phase is480

at chemical equilibrium with the gas phase (cA,c = 0, cB,c = HBρd). The diffusion coefficient are DA,d = DB,d =481

10−4 m2/s and DA,c = DB,c = 10−6 m2/s. At the outside boundary of the system, the pressure remains constant, the482

concentration of B is equal to 0 and the concentration of A is equal to HAρd.483

Like in section 3.3, the simulations are performed on a quarter-circle. The domain is represented by a 50 × 50484

uniform Cartesian mesh. All cells containing solid are removed and replaced by rectangular and triangular cells485

that match the solid boundaries. The final grid contains 1875 cells. The simulation is run with a constant time-step486

of 1 µs. We consider four cases, with HA =1.0, 0.5 and HB =1.0, 0.5. The evolution of the mass fraction of A and487

B in the gas phase as well as the evolution of the gas phase radius Rd in each case are plotted in Fig. 14.488
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Figure 14: Evolution of mass fraction in gas phase and of gas phase radius during competing mass transfer in infinite cylinder of two component
A and B with HA =1, 0.5 and HB =1, 0.5.

We observe that when HA = HB = 1.0 and HA = HB = 0.5, the radius of the gas phase remains constant. That489

is because when HA = HB = H, the sum of the concentration of A and B in the liquid phase is a constant equal490

to Hρd. In this case, the mass transfer fluxes at the interface are exactly opposite, and the volume of gas remains491

unchanged.492

For the two cases when HA , HB, the total mass transfer is equal to zero at t=0, since the system is initially493

at chemical equilibrium, but as component A diffuses toward the centre of the cylinder and component B diffuses494
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away from the centre of the cylinder, the chemical balance is modified and the volume of gas change. When495

HA < HB, the gas phase recedes and when HA > HB, the gas phase grows. In both case, we observe that from496

t=0.02 s to t=0.1 s, the slope is maximum and the radius changes almost linearly with time. This is because the497

fraction of A in the gas phase is still marginal. With increasing time, the composition of the gas phase changes498

significantly. As the system evolves toward chemical equilibrium for component A, the rate of volume change499

decreases.500

Additional multi-physics need to be included in order to model the full behaviour of the system, such as gas501

compressibility and pressure/temperature dependent equilibrium constant. This shall be investigated in future502

work.503

4.2. Mass transfer during rising of a single-component gas bubble at low Schmidt number504

In this section, the impact of the local volume change on the Sherwood number during the rising of a single-505

component gas bubble at low Schmidt number is investigated. Two cases are considered and the fluid properties506

are summarised in Table 3. For test case 1, we consider a domain of size 1.2 cm × 2.4 cm × 1.2 cm. A gas bubble

Density Dynamic viscosity Diffusivity Interfacial tension
(kg/m3) (Pa.s) (m2/s) (mN/m)

Gas 1.2 1.8×10−5 0 65
Liquid 1 1200 0.024 2×10−5

Liquid 2 1200 0.46 3.83×10−4

Table 3: Fluid properties for mass transfer for rising of single-component gas bubble at low Schmidt number

507

of radius R = 2 mm is immersed in liquid 1 (Table 3). The Eötvös number can be calculated using the diameter508

of the bubble as a reference length and we find Eo=3. The Morton number is independent of the bubble size and509

Mo=10−5. For these values, Clift’s diagram describing the shape regime (Clift et al., 1978) predicts an ellipsoidal510

shape and a Reynolds number around 30. The bubble is initially at capillary equilibrium in the absence of gravity511

and interface mass transfer, with centre placed at (0 cm, 0.3 cm, 0 cm).512

For test case 2, the domain considered and the gas bubble are five time larger (R=10 mm), and the bubble is513

immersed in liquid 2 (Table 3). The Eötvös and Morton numbers are 70 and 1.3, respectively. For these values,514

Clift’s diagram (Clift et al., 1978) predicts a dimpled ellipsoidal-cap shape and a Reynolds number around 10.515

Again, the bubble is initially at capillary equilibrium in the absence of gravity and interface mass transfer, with516

centre placed at (0 cm, 1.5 cm, 0 cm).517

At t=0, gravity and interface transfer are “turned on”. The bubble starts rising and shrinking. Note that in both518

case, the diffusivity coefficient in the liquid phase corresponds to a Schmidt number Sc=1.0.519

Like in section 3.4, symmetry conditions are applied to the plan x=0 and z=0, so only a quarter of the bubble520

is simulated. The other boundary conditions are free-flow. The computational domain is resolved uniformly with521

150×300×150 cells. The simulation is run with a constant time-step of 20 µs for case 1 and 100 µs for case 2. For522

each case, we consider two possible values of H: one with H = 0.01, so the species is only weakly dilute in the523

liquid phase, and one with a larger Henry’s coefficient H = 0.2. Fig. 15 show the evolution of the phase fraction524

during the simulations and Fig. 16 shows the species dimensionless concentration c∗ = c/ (α + H (1 − α)) at the525

end of the simulation (t=0.12 s for case 1, t=0.4 s for case 2). For H = 0.01, the bubble deforms as it rises.526

For case 1, it reaches an ellipsoidal shape at t=0.05 s, and for case 2, it reaches a dimpled ellipsoidal-cap shape at527

t=0.1 s. The impact of the bubble shape on its total surface is quantified using the shape factor Sr, defined as528

Sr =
AΣ

Asphere
. (71)
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Figure 15: Evolution of phase distribution during rising of a gas bubble for case 1 and 2, H=0.01 and H=0.2.

H=0.01 H=0.01H=0.2 H=0.2

Case 1 Case 2

Figure 16: Species dimensionless concentration during rising of a gas bubble for case 1 (t=0.12 s) and case 2 (t=0.4 s), H=0.01 and H=0.2.

The shape factor reaches a value of 1.04 for case 1 and 1.38 for case 2. Fig. 17 shows the evolution of the Reynolds
number during the simulations. The velocity of the bubble reaches a maximum of 0.155 m/s for case 1 and 0.19
m/s for case 2, which corresponds to Reynolds number Re=31 and Re=9.9. For H = 0.01, the total loss of bubble
volume at the end of the simulation is only 6% for case 1 and 8% for case 2, so the local volume change has
a limited impact on the Reynolds number. The Sherwood number is obtained by computing the mass exchange
coefficient k using Eq. (50). The numerical results are plotted in Fig. 18 and compared to the correlations proposed
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by Oellrich et al. (1973), with a shape factor correction (Deising et al., 2018)

Sh.Sr = 2 + 0.651
Pe1.72

1 + Pe1.22 if Re→ 0 and S c→ ∞ (72)

Sh.Sr = 2 + 0.232
Pe1.72

1 + 0.205Pe1.22 if Re→ ∞ and S c→ 0 (73)

We observe that the numerical results are closer to the case Re→0, Sc→ ∞, which suggests that Eq. (72) is valid529

for a larger parameter range. This was previously observed for mass transfer with no local volume change (Bothe530

and Fleckenstein, 2013; Deising et al., 2018).531

For H = 0.2, the bubble also deforms as it rises but, as gas dissolves in the liquid phase, the volume of the532

bubble decreases and so the Eötvös number decreases as well. For case 1, Eo is equal to 1.98 at t=0.05 s, 1.55533

at t=0.08 s and 1.0 at t=0.12 s. For these values, Clift’s diagram (Clift et al., 1978) predicts a transition from534

ellipsoidal to spherical shape, which is observed in Fig. 15. The shape factor Sr is equal to 1.03 at t= 0.05 s, 1.02535

at t=0.08 s and 1.01 at t=0.12 s. The total loss of bubble volume at the end of the simulation is 79%. For case536

2, Eo is equal to 45 at t=0.1 s, 27 at t=0.2 s, 13 at t=0.3 s and 3.3 at t=0.4 s. For these values, Clift’s diagram537

(Clift et al., 1978) predicts a transition from dimpled ellipsoidal-cap to ellipsoidal shape and then from ellipsoidal538

to spherical shape, which is observed in Fig. 15. The shape factor Sr is equal 1.30 at t=0.1 s, 1.22 at t=0.2 s, 1.10539

at t=0.3 s and 1.08 at t=0.4 s. The total loss of bubble volume at the end of the simulation is 99%.540

Moreover, the bubble velocity decreases as it dissolves. Fig. 17 shows the evolution of the Reynolds number541

during the simulations. We observe that the bubble does not reach the same maximum Reynolds (Re=31 for case542

1 and Re=10 for case 2) as for H = 0.01. Instead, the Reynolds reaches a maximum Re=24 at t=0.04 s for case543

1 and Re=8.9 at t=0.08 s for case 2, and then decreases almost linearly. Fig. 18 shows a comparison between the544

Sherwood number numerically obtained and the ones obtained from Oellrich correlations (Eqs. (72) and (73)).
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Figure 17: Evolution of Reynolds number during rising of a gas bubble for case 1 and 2, H=0.01 and H=0.2.

545

Again, we observe that the numerical results are closer to the case Re→0, Sc→ ∞. Moreover, the trend of546

the Sherwood number which decreases as the bubble volume decreases is accurately represented. This suggests547

that the impact of local volume change on Sherwood number might be accurately described by using the time-548

dependent Reynolds number in the same integral correlations.549

5. Conclusion550

In this paper, a novel unified single-field formulation for Volume-Of-Fluid simulation of interfacial mass trans-551

fer with local volume changes has been presented. The main focus of this work is a rigorous derivation of the552

25

julien maes
Highlight

julien maes
Highlight

julien maes
Highlight

julien maes
Highlight



0 0.02 0.04 0.06 0.08 0.1 0.12

Time (s)

2

4

6

8

10

S
h
.S

r

(a) Case 1, H=0.01

Numerical results

Oellrich Re →0, Sc →∞

Oellrich Re →∞, Sc→0

0 0.02 0.04 0.06 0.08 0.1 0.12

Time (s)

2

4

6

8

10

S
h
.S

r

(b) Case 1, H=0.2

Numerical results

Oellrich Re →0, Sc →∞

Oellrich Re →∞, Sc→0

0 0.1 0.2 0.3 0.4

Time (s)

2

3

4

5

6

7

S
h
.S

r

(c) Case 2, H=0.01

Numerical results

Oellrich Re →0,Sc→∞

Oellrich Re →∞,Sc→0

0 0.1 0.2 0.3 0.4

Time (s)

1

2

3

4

5

6

7

S
h
.S

r

(d) Case 2, H=0.2

Numerical results

Oellrich Re →0, Sc →∞

Oellrich Re →∞, Sc→0

Figure 18: Evolution of Sherwood number and comparison with Oellrich correlation during rising of a gas bubble for case 1 and 2, H=0.01
and H=0.2.

single-field local mass transfer between phases at the interface, which is re-injected in the phase conservation553

equation. To compute this mass transfer and the local volume change, both convective and diffusive contribution554

are considered. The single-field formulation couples the mass and momentum transfer via a source term in the555

pressure equation.556

The numerical method is validated by comparison with four test cases. For the first test case, artificial mass557

transfer is evaluated for a case with infinite Péclet number, and we observed consistency between advection of558

phase fraction and advection of species concentration in the case of an algebraic VOF method with compression559

of the interface using the normal C-CST method. For the second and third test cases, analytical solutions of560

the dissolution of a single-component gas phase into an immiscible liquid solvent in a semi-infinite tube and of561

the growth of a binary gas phase in an infinite cylinder are considered. For the last test case, we use the semi-562

analytical solution described by Fleckenstein and Bothe (2015) for the mass transfer across the interface of a563

rising gas bubble in the creeping flow regime. A very good agreement of the numerical results with the reference564

solution is obtained in each case. The main weakness of the approach is the first-order accurate discretization of565

the interface transfer ṁ. Additional research is needed to develop a bounded second-order discretization.566

The validated approach is first applied to investigate competing mass transfer between two species A and B567

in an infinite cylinder. The simulation was able to reproduce the direction of the gas/liquid interface motion for568

various cases where HA = HB, HA < HB and HB < HA, as well as the impact of total mass fraction in the bubble. In569

future work, additional multi-physics such as gas compressibility and pressure/temperature dependent equilibrium570

constant will be included.571

Finally, the method is applied to investigate mass transfer during the rising of a single-component gas bubble572

at low Schmidt number. Our results suggests that the impact of local volume change on the Sherwood number573

might be accurately described by using the time-dependent Reynolds number in the same integral correlations.574

By comparison with the two-field method presented by Fleckenstein and Bothe (2015), the advantage of the575

single-field formulation is that it is fully consistent in principles with any algebraic VOF method, as long as the576

same discretization schemes are applied for all advected quantities. We showed that within a VOF method with577

compression of the interface, it can be applied on structured and unstructured grids, with comparable results. In578

future work, our numerical model will be used to investigate dissolution during geological trapping of CO2 in579
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aquifers, for which unstructured grids are essential to capture the complex geometry of the porous media and580

accurately estimate key parameters such as pore surface area (Graveleau et al., 2017; Soulaine et al., 2017).581
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Nomenclature585

Variables586

A Area (m2)587

c concentration (kg/m3)588

D molecular diffusivity (m2/s)589

F advective flux (kg/m2/s)590

f interior force (N/m3)591

g gravity accelaration (m2/s)592

H Henry constant593

J molecular diffusion flux (kg/m2/s)594

k mass exchange coefficient (m/s)595

l length (m)596

n normal vector597

p pressure (Pa)598

r radius (m)599

S Stress tensor (kg/m/s2)600

t time (s)601

u velocity (m/s)602

V Volume (m3)603

w interface velocity (m/s)604

α phase volume fraction605

κ interface curvature (m−1)606

µ viscosity (Pa.s)607

Φ flux (kg/m23/s)608

ρ mass density (kg/m3)609
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σ interfacial tension (N/m)610

ṁ mass transfer (kg/m3/s)611

Subscripts612

Σ fluid/fluid interface613

c continuous phase614

comp compressive615

d disperse phase616

f cell phase617

i phase index618

j component index619

n component n, solvent of continuous phase620

r relative621

Abbreviations622

C-CST Compressive Continuous Species Transfer623

CICSAM Compressive Interface Capturing Scheme for Arbitrary Meshes624

CSF Continuous Surface Force625

CST Continuous Species Transfer626

DNS Direct Numerical Simulation627

FCT Flux Corrected Transfer628

FVM Finite Volume Method629

HRIC High Resolution Interface Capturing630

MULES Multidimensional Universal Limiter with Explicit Solution631

NSE Navier-Stokes Equations632

NVF Normalised Variable Formulation633

PISO Pressure Implicit Sequential Operator634

VOF Volume-Of-Fluid635
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