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Felipe P. J. de Barros
Sonny Astani Department of Civil and Environmental Engineering, University of Southern California,

3620 S. Vermont Avenue, KAP 224B, Los Angeles, CA 90089, USA
(Dated: November 30, 2016)

We study the relation between flow structure and fluid deformation in steady flows through
two-dimensional heterogeneous media, which are characterized by a broad spectrum of stretching
behaviors, ranging from sub- to superlinear. We analyze these behaviors from first principles, which
uncovers intermittent shear events to be at the origin of subexponential stretching. We derive
explicit expressions for Lagrangian deformation and demonstrate that stretching obeys a coupled
continuous time random walk, which for broad distributions of flow velocities becomes a Lévy walk.
The derived model provides a direct link between the flow and deformation statistics, and a natural
way to quantify the impact of intermittent shear events on the stretching behavior.

I. INTRODUCTION

The deformation dynamics and stretching history of
material fluid elements are fundamental for the un-
derstanding of hydrodynamic phenomena ranging from
scalar dispersion, pair dispersion [1–3], mixing [4–9]
and reaction [10–13] to the alignment of material ele-
ments [14] and the distribution of stress in complex flu-
ids [15]. Fluid elements constitute the Lagrangian sup-
port of a transported scalar. Thus, their deformation
histories determine the organization of the scalar distri-
bution into lamellar structures [16–19]. Observed broad
scalar concentration distributions are a manifestation of
a broad distribution of stretching and compression rates
and can explain intermittent patterns of scalar increment
distributions [16, 17]. The temporal scaling of the aver-
age elongation 〈ℓ(t)〉 of material lines controls the decay
of scalar variance, the effective kinetics of chemical reac-
tions and the distribution of scalar gradients [20]. The
mechanisms of linear stretching due to persistent shear
deformation, and exponential stretching in chaotic flows
have been well understood [20]. Observations of sub-
exponential and non-linear fluid elongation [19, 21, 22],
pair-dispersion [1–3, 23, 24], and scalar variance de-
cay [25, 26], however, challenge these paradigms and ask
for new dynamic frameworks. As a consequence, differ-
ent mechanisms of subexponential stretching have been
proposed, including fractal or spiral mixing [e.g. 26], non-
sequential stretching [e.g. 22], and modified Richardson
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laws [e.g. 25]. The dynamics of particle pair separation,
for example, have been described using Levy processes
and continuous time random walks [1, 3, 27]. Elongation
time series for stretching in d = 2 dimensional hetero-
geneous porous media flows have been modeled as geo-
metric Brownian motions [8]. Most stochastic stretch-
ing models, however, do not provide relations between
the deformation dynamics and the local Lagrangian and
Eulerian deformations and flow structure. This means,
the fluctuation mechanisms that cause observed algebraic
stretching are often not known.
We focus here on fluid deformation in flows through

heterogeneous porous media, which play a key role for
the understanding of mixing and reaction processes in
natural and engineered materials [28, 29]. For such flows,
the mechanisms of (anomalous) particle dispersion have
been the subject of intense theoretical and experimen-
tal studies [30–42]. The mechanisms of fluid stretch-
ing, however, are much less known. Here, we study
the relation between velocity fluctuations and fluid de-
formation in non-helical steady flows through random
media, specifically, we refer to steady d = 2 pore-scale
and d = 2 and d = 3 dimensional Darcy-scale flows in
heterogeneous media [28]. The Darcy equation, which
governs flow through porous media, implies that helicity
is 0 in d = 3 dimensions [43, 44], and prohibits closed
streamlines in d = 2 [45]. Thus, flows through hetero-
geneous porous media are characterized by open stream-
lines, along which fluid particles may sample the full ve-
locity spectrum [32, 46–48]. We derive here the mecha-
nisms of subexponential and powerlaw stretching behav-
iors in such flows. To this end, we formulate Lagrangian
deformation in streamline coordinates [49], which allows
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relating elongation to Lagrangian velocities and shear de-
formation from first principles. The consequences of this
coupling are studied in the framework of a continuous
time random walk (CTRW) [36, 50–52] that links tran-
sit times of material fluid elements to elongation through
Lagrangian velocities. The CTRW framework has been
used extensively for the quantification of particle motion
in flows through heterogeneous media [36]. We develop
here a CTRW framework to quantify the stretching of
material fluid elements.

II. FLUID DEFORMATION

Our analysis starts with the equation of motion of a
fluid particle in a steady spatially varying flow field. The
particle position x(t|a) in the divergence-free flow field
u(x) evolves according to the advection equation

dx(t|a)

dt
= v(t), (1)

where v(t) = u[x(t|a)] denotes the Lagrangian velocity.
The initial condition is given by x(t = 0|a) = a. The
particle movement along a streamline can be formulated
as

ds(t)

dt
= v(t), dt =

ds

vs(s)
, (2)

where s(t) is the distance travelled along the stream-
line, v(t) = |v(t)| and the streamwise velocity is vs(s) =
|v[t(s)]|. With these preparations, we focus now on the
evolution of the elongation of an infinitesimal material
fluid element, whose length and orientation are described
by the vector z(t) = x(t|a+δa)−x(t|a). According to (1),
its evolution is governed by

dz(t)

dt
= ǫ(t)z(t), (3)

where ǫ(t) = ∇u[x(t|a)]⊤ = ∇v(t)⊤ is the velocity gra-
dient tensor. Note that z(t) = F(t)z(0) with F(t) the
deformation tensor. Thus, F(t) satisfies Eq. (3) and the
following analysis is equally valid for the deformation ten-
sor. The elongation ℓ(t) is given by ℓ(t) = |z(t)|. We
transform the deformation process into the streamline
coordinate system [49], which is attached to and rotates
along the streamline described by x(t|a),

x′(t) = A⊤(t) [x(t)− x(t|a)] , (4)

where the orthogonal matrix A(t) describes the rota-
tion operator which orients the x1–coordinate with the
orientation of velocity v(t) along the streamline such
that A(t) = [v(t),w(t)]/v(t) with w(t) · v(t) = 0 and
|w(t)| = v(t). From this, we obtain for z′(t) = A⊤z(t) in
the streamline coordinate system

dz′(t)

dt
= [Q(t) + ǫ̃(t)] z′(t), (5)

where we defined ǫ̃(t) = A⊤(t)ǫ(t)A(t) and the antisym-

metric tensor Q(t) = dA⊤(t)
dt A(t). Thus, the velocity gra-

dient tensor ǫ(t) transforms into the streamline system
as ǫ

′(t) = Q(t) + ǫ̃(t). A quick calculation reveals that
the components of Q(t) are given by Q12(t) = −Q21(t) =

ǫ̃21(t), where we use that dv(t)
dt = ǫ(t)v(t). This gives for

the velocity gradient in the streamline system the upper
triangular form

ǫ
′(t) =

[

ǫ̃11(t) σ(t)
0 −ǫ̃11(t)

]

, (6)

where we define the shear rate σ(t) = ǫ̃12(t)+ ǫ̃21(t) along
the streamline. Note that ǫ̃11(t) = dvs[s(t)]/ds by defini-
tion. Furthermore, due to the incompressibility of u(x),
ǫ̃22(t) = −ǫ̃11(t). For simplicity of notation, in the fol-
lowing we drop the primes. The upper triangular form
of ǫ(t) as a direct result of the transformation into the
streamline system permits explicit solution of (5) and
reveals the dynamic origins of algebraic stretching.
Thus, we can formulate the evolution equation (5) of

a material strip in streamline coordinates as

dz1(s) =
dvs(s)

vs(s)
z1(s) +

σ(s)

vs(s)
z2(s)ds (7a)

dz2(s) = −
dvs(s)

vs(s)
z2(s), (7b)

where we used (2) to express z(t) = z[s(t)] in terms of
the distance along the streamline. The system (7) can be
integrated to

z1(s) =
vs(s)

vs(0)



z1(0) + z2(0)

s
∫

0

ds′σ(s′)
vs(0)

2

vs(s′)3



 (8a)

z2(s) =
vs(0)

vs(s)
z2(0). (8b)

Note that the deformation tensor F(t) in the streamline
system has also an upper triangular form. Its compo-
nents can be directly read off the system (8). The angle
of the strip z(t) with respect to the streamline orienta-
tion is denoted by φ(t) such that z1(t) = ℓ(t) cos[φ(t)]
and z2(t) = ℓ(t) sin[φ(t)]. The initial strip length and
angle are denoted by ℓ0 and φ0. The strip length is given
by ℓ(t) ≡ ℓ[s(t)] with ℓ(s) = [z1(s)

2 + z2(s)
2]1/2.

The system (8) is of general validity for d = 2 dimen-
sional steady flow fields. It reveals the mechanisms that
lead to an increase of the strip elongation, which is fully
determined by the shear deformation σ(s) and the veloc-
ity vs(s) along the streamline. For a strip that is initially
aligned with the streamline, z2(0) = 0, the elongation
is ℓ(s) = z2(0)vs(s)/vs(0) because z2(s) ≡ 0 remains
zero. This means ℓ(s) merely fluctuates without a net
increase [53]. Only if the strip is oriented away from
the streamline can the streamwise velocity fluctuations
be converted into stretching. This identifies the integral
term in (8a) as the dominant contribution to the strip
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FIG. 1. (a) Illustration of the evolution of length (rescaled)
and orientation of material strips along streamlines in a steady
d = 2 dimensional divergence-free random flow [19]. The color
scales illustrate the velocity magnitude decreasing from blue
to yellow. Strips are drawn along streamlines at equidistant
times. We observe persistent stretching in low velocity zones.
This is reflected in the bottom panels, which illustrates (b)
strip elongations ℓ(t) for two distinct streamlines character-
ized by high (green dashed) and low (red solid) velocities, (c)
strip velocity time series, and (d) shear deformation corre-
sponding to the strip evolutions illustrated in the left panel
by the same colors.

elongation. It represents the interaction of shear defor-
mation and velocity with a linear contribution from the
shear rate and a non-linear contribution from velocity
as 1/vs(s)

3, which may be understood as follows. One
power comes from the divergence of streamlines in low
velocity zones, which increases z2(s) and thus leads to
enhanced shear deformation. The second power is purely
kinematic due to the weighting with the residence time
in a streamline segment. The third power stems from
the fact that shear deformation in low velocity segments
is applied while the strip is compressed in streamline di-
rection. This deformation is then amplified as the strip
is stretched due to velocity increase. As a result of this

non-linear coupling, the history of low velocity episodes
has a significant impact on the net stretching as quan-
tified by the integral term in (8b). This persistent ef-
fect is superposed with the local velocity fluctuations.
These mechanisms are illustrated in Figure 1. While for
a stratified flow field with u(x) = u(x2) velocity and
shear deformation are constant along a streamline such
that ℓ(t) = [(z1(0) + z2(0)σt)

2 + z2(0)
2]1/2, that is, it

increases linearly with time, stretching can in general be
sub- or superlinear, depending on the duration of low ve-
locity episodes. In the following, we will analyze these
behaviors in order to identify and quantify the origins of
algebraic stretching.

III. DEFORMATION CTRW

To investigate the consequences of the non-linear cou-
pling between shear and velocity on the emergence of
sub-exponential stretching, we cast the dynamics (8) in
the framework of a CTRW for the Lagrangian flow ve-
locities vs(s) [48]. Thus, we assume that the random
flow field is stationary and ergodic [54]. Furthermore,
we assume Lagrangian ergodicity [55], this means fluid
elements can sample the full velocity spectrum along a
streamline [56]. As outlined in the Introduction, flow
through heterogeneous porous media are in general char-
acterized by open streamlines so that fluid particles can
sample the full velocity spectrum as they move along
a trajectory. This is not the case for flows in strati-
fied media, in which velocities are perfectly correlated.
Thus, here we consider random flows u(x) whose veloc-
ities fluctuations are controlled by a characteristic cor-
relation length scale and focus on the impact of broad
velocity point distributions rather than on that of long
range correlation [30, 57]. This is particularly relevant
for porous media flows. It has been observed at the pore
and Darcy scales that the streamwise velocity, that is,
the velocity measured equidistantly along a streamline
follows a Markov process [38, 40, 41, 46, 58]. Thus, if we
choose a coarse-graining scale that is of the order of the
streamwise correlation length λc, (2) can be discretized
as

sn+1 = sn + λc, tn+1 = tn +
λc
vn
. (9)

The vn = vs(sn) are identical independently distributed
random velocities with the probability density function
(PDF) pv(v). A result of this spatial Markovianity is that
the particle movement follows a continuous time random
walk (CTRW) [32, 51]. The PDF of streamwise veloci-
ties pv(v) is related to the Eulerian velocity PDF pe(v)
through flux weighting as pv(v) ∝ vpe(v). The Eule-
rian velocity PDF in d = 2 dimensional pore-networks,
for example, can be approximated by a Gaussian-shaped
distribution, which breaks down for small velocities [59].
For Darcy scale porous and fractured media the veloc-
ity PDF can be characterized by algebraic behaviors at
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small velocities [32, 41, 60], which implies a broad dis-
tribution of transition times τn = λc/vn. Note, how-
ever, that the proposed CTRW stretching mechanisms
is of general nature and valid for any velocity distribu-
tion pv(v). Thus, in order to extract the deformation
dynamics, we coarse-grain the elongation process along
the streamline on the correlation scale λc. This gives for
the strip coordinates (8)

z1(sn) = z1(0)
vn
v0

+ z2(0)
vnv0
v2c

σcτvrn (10a)

z2(sn) = z2(0)
v0
vn
, (10b)

with vc and σc a characteristic velocity and shear rate,
and τv = λc/vc a characteristic advection time. The
process rn, which results from the integral term in (8a),
describes the coupled CTRW

rn+1 = rn +
v3c
σc

σn
v3n
, tn+1 = tn +

λc
vn
. (11)

The elongation at time t is given by ℓ(t) = [z1(snt
)2 +

z2(snt
)2]1/2. It is observed over several 2d flows that the

shear rate may be related to the streamwise velocity as
σn = ξnσc(vn/vc)

α̂ with α̂ ≈ 1, σc a characteristic shear
rate, and ξn an identical independent random variable
that is equal to ±1 with equal probability. The aver-
age shear rate 〈σn〉 = 0 due to the stationarity of the
random flow field u(x). Thus, (11) denotes a coupled
CTRW whose increments ρn ≡ rn+1 − rn are related to
the transition times τn = λc/vn as

ρn = ξn (τn/τv)
α
, α = 3− α̂. (12)

It has the average 〈ρn〉 = 0 and absolute value |ρn| =
(τn/τv)

α. The joint PDF of the elongation increments ρ
and transition times τ is then given by

ψ(ρ, τ) =
1

2
δ [|ρ| − (τ/τv)

α]ψ(τ), (13)

where δ(ρ) denotes the Dirac delta distribution. The
transition time PDF ψ(τ) is related to the streamwise
velocity PDF pv(v) as ψ(τ) = λcτ

−2pv(λc/τ).

IV. ALGEBRAIC STRETCHING

In the following, we consider a streamwise velocity
PDF that behaves as pv(v) ∝ (v/vc)

β−1 for v smaller
than the characteristic velocity vc. Such a power-law is
a model for the low end of the velocity spectra in dis-
ordered media [30] and porous media flows [36, 39, 41].
Note however that the derived CTRW-based deformation
mechanism is valid for any velocity distribution. The
relation between the streamwise and Eulerian velocity
PDFs, pv(v) ∝ vpe(v) implies that β ≥ 1 because pe(v)
needs to be integrable in v = 0. The corresponding tran-
sition time PDF ψ(τ) behaves as ψ(τ) ∝ (τ/τv)

−1−β for
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FIG. 2. Evolution of the (open symbols) mean elonga-

tion 〈ℓ(t)〉 = 〈[z1(snt
)2 + z2(snt

)2]1/2〉 with ℓn given ob-
tained from numerical Monte-Carlo simulations using (10)
and (11) for a uniform distribution of initial strip orienta-
tions φ ∈ [−π/2, π/2] and a Gamma PDF of streamwise ve-
locity. The full symbols are obtained from the approxima-
tion (14) for (squares) β = 3/2, (circles) β = 5/2, (triangles)
β = 7/2 and (rhombi) β = 9/2. The solid lines indicate the
late time power-law behaviors of 〈ℓ(t)〉 ∝ t3−β for 1 < β < 2,

〈ℓ(t)〉 ∝ t2/β for 2 < β < 4, and 〈ℓ(t)〉 ∝ t1/2 for β > 4. The
inset illustrates the evolution of ℓ(t) in a single realization of
the velocity field vn for β = 5/2 for an initial orientation of
φ = 0.

τ > τv = λc/v and decreases sharply for τ < τv. Due to
the constraint β > 1, the mean transition time 〈τ〉 < ∞
is always finite, which is a consequence of fluid mass con-
servation. For transport in highly heterogeneous pore
Darcy-scale porous media values for β between 0 and 2
have been reported [36, 39]. It has been found that de-
creasing medium heterogeneity leads to a sharpening of
the transition time PDF and increase of the exponent
β [41] with β > 1. With these definitions, the coupled
CTRW (11) describes a Levy walk.

Figure 2 shows the evolution of the average elongation
〈ℓ(t)〉 for α = 0 and different values of β obtained from
numerical Monte-Carlo simulation using (10) and the
Levy walk (11) for the evolution of the strip coordinates
based on a Gamma PDF of streamwise velocities [53].
The mean elongation shows a power-law behavior and in-
creases as 〈ℓ(t)〉 ∝ tν . As discussed above, long episodes
of small velocity maintain the strip in a favorable shear
angle, which leads to a strong stretching. These dynam-
ics are quantified by the Lévy walk process (11), which
relates strong elongations to long transition times, i.e.,
small streamwise velocities, through (12). This is also
illustrated in the inset of Figure 2, which shows the elon-
gation of a single material strip. The elongation events
increase with increasing time as a consequence of the cou-
pling (12) between stretching and transition time. This is
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an intrinsic property of a CTRW characterized by a broad
ψ(τ); the transition times increase as time increases, and
thus, through the Levy walk coupling also the stretching
increments. In fact, the strip length can be approximated
by [53]

ℓ(t) ≈ ℓ0 +
σcτ

2
v 〈v〉

〈τ〉vc
|z2(0)||rnt

|. (14)

The leading behavior of the mean elongation 〈ℓ(t)〉 of a
material element is directly related to the mean absolute
moment of r(t) as 〈ℓ(t)〉 ∝ 〈|rnt

|〉. Thus, even though rnt

is in average 0, the addition of large elongation events in
its absolute value |r(t)|, which correspond to episodes of
low velocities, leads in average to an algebraic increase
of ℓ(t) as detailed in the following.
The statistics of the Levy walk (11) have been analyzed

in detail in Ref. [61] for α > 0 and β > 0. Here, β
is restricted to β > 1 due to fluid mass conservation.
Furthermore, we consider α ≥ 1. The scaling of the
mean absolute moments of rnt

depends on the α and β
regimes.
If the exponent β > 2α, which means a relatively

weak heterogeneity, we speak of a weak coupling between
the elongation increment ρn and the transition time τn
in (12). In this case, the strip elongation behaves as
〈ℓ(t)〉 ∝ t1/2. We term this behavior here diffusive or
normal stretching. For α = 2 as employed in the nu-
merical simulations this means that β > 4. The cou-
pled Levy-walk (11) reduces essentially to a Brownian
motion because the variability of transition times is low
so that the coupling does not lead to strong elongation
events. Note that scalar dispersion in this β–range is
normal [36, 51].
For strong coupling, this means β < 2α and thus

stronger flow heterogeneity, it has been shown [61] that
the density of rnt

is characterized by two scaling forms,
one that characterizes the bulk behavior and a different
one for large rnt

. As a consequence, we need to distin-
guish the cases of β larger and smaller than α. Also,
the scaling of |rnt

| cannot be obtained by dimensional
analysis. In fact, rnt

has a strong anomalous diffusive
character [61].
For α < β < 2α the scaling behavior of the mean

elongation is 〈ℓ(t)〉 ∝ tα/β . This means for α = 2, the
stretching exponent ν is between 1/2 and 1, the β–range
is 2 < β < 4. It interesting to note that scalar dispersion
in this range is normal as well. Here, the frequency of

low velocity regions is high enough to increase stretching
above the weakly coupled case, but not to cause super-
diffusive scalar dispersion.

For 1 < β < α in contrast, the mean elongation scales
as [61] 〈ℓ(t)〉 ∝ t1+α−β . The stretching exponent is
between 1 and α, this means stretching is stronger than
for shear flow. The range of scaling exponents ν of the
mean elongation here is 1/2 ≤ ν < α. Specifically, α ≈ 2
implies that stretching is super-linear for 1 < β < 2,
this means faster than by a pure shear flow, for which
ν = 1. Here the presence of low velocities in the flow
leads to enhanced stretching and at the same time to
superdiffusive scalar dispersion.

V. SUMMARY AND CONCLUSIONS

In summary, we have presented a fundamental mech-
anism for power-law stretching in random flows through
intermittent shear events, which may explain algebraic
mixing processes observed across a range of heteroge-
neous flows. We have shown that the non-linear cou-
pling between streamwise velocities and shear deforma-
tion implies that stretching follows a coupled CTRW,
which explains observed subexponential stretching be-
haviors that can range from diffusive to super-diffusive
scalings, 〈ℓ(t)〉 ∝ tν with 1/2 ≤ ν < 2. The derived cou-
pled stretching CTRW can be parameterized in terms
of the Eulerian velocity and deformation statistics and
provides a link between anomalous dispersion and fluid
deformation. The presented analysis demonstrates that
the dynamics of fluid stretching in heterogeneous flow
fields is much richer than the paradigmatic linear and
exponential behaviors. The fundamental mechanism of
intermittent shear events, which is at the root of non-
exponential stretching, is likely present in a broader class
of fluid flows.
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This supplementary material gives details on the derivation of the equations for the strip defor-
mation in the streamline coordinate system, the approximations for the calculation of the average
strip elongation, and the numerical random walk particle tracking simulations.

I. DEFORMATION IN THE STREAMLINE COORDINATE SYSTEM

Here we briefly present the key steps leading to the explicit solutions for the evolution of a material strip in the
streamline coordinate system. First, we note that the deformation rate tensor ǫ

′(t) in the streamline coordinate
system is triangular. This can be seen as follows. As derived in the main text, ǫ′(t) is given by

ǫ
′(t) = Q(t) + ǫ̃(t), (1)

where Q(t) = dA⊤(t)/dtA(t) and ǫ̃(t) = A⊤(t)ǫ(t)A(t). Note that A(t) = [ev(t), ew], with ev(t) = v(t)/v(t) and
ew(t) = w(t)/v(t) and v(t) ·w(t) = 0. Thus, we obtain directly that Q11(t) = Q22(t) = 0 and Q12(t) = −Q21(t) =
ew(t)dev(t)/dt, where

dev(t)

dt
= −

d ln v(t)

dt
ev(t) +

1

v(t)

dv(t)

dt
= −

d ln v(t)

dt
ev(t) +

1

v(t)
ǫ(t)v(t) (2)

= −
d ln v(t)

dt
ev(t) + ǫ(t)ev(t) (3)

From the latter we obtain directly Q12(t) = ǫ̃21(t), which gives the triangluar form of ǫ′(t).
The equations for the strip components z′1(t) and z

′

2(t) then are given by

dz′1(t)

dt
= ǫ′11(t)z

′

1(t) + σ(t)z′2(t) (4)

dz′2(t)

dt
= −ǫ′11(t)z

′

2(t). (5)

We transform now dt = ds/vs(s) and note that ǫ′11 = dvs/ds in order to obtain

dz′1(s)

ds
= vs(s)

−1 dvs(s)

ds
z′1(s) +

σ(s)

vs(s)
z′2(s) (6)

dz′2(s)

ds
= −vs(s)

−1 dvs(s)

ds
z′2(s). (7)

∗ marco.dentz@csic.es
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This system can be integrated. We start with the second equation for z′2(s), which can be written as

dz′2(s)

z′2(s)
= −

dvs(s)

vs(s)
. (8)

Thus, it can be directly integrated to

ln[z′2(s)/z
′

2(0)] = − ln[vs(s)/vs(0)]. (9)

Taking the natural exponential on both sides gives

z′2(s) =
vs(0)

vs(s)
z′2(0). (10)

Inserting the latter into (6), we obtain

dz′1(s)

ds
= vs(s)

−1 dvs(s)

ds
z′1(s) +

σ(s)vs(0)

vs(s)2
z′2(0). (11)

This equation can be solved by separation of variables. Thus, we write z′1(s) = f(s)g(s), where f(s) satifies

df(s)

ds
= vs(s)

−1 dvs(s)

ds
f(s). (12)

Its solution is

f(s) = f(0)
vs(s)

vs(0)
. (13)

By inserting z′1(s) = f(0)vs(s)/vs(0)g(s) into (11) gives for g(s) the equation

dg(s)

ds
=

1

f(s)

σ(s)vs(0)

vs(s)2
z′2(0) = f(0)−1σ(s)vs(0)

2

vs(s)3
z′2(0) (14)

Integration of the latter yields

g(s) = g(0) + f(0)−1z′2(0)

s
∫

0

ds′
σ(s′)vs(0)

2

vs(s′)3
(15)

and thus for z′1(s)

z′1(s) = g(0)f(0)
vs(s)

vs(0)
+ z′2(0)

vs(s)

vs(0)

s
∫

0

ds′
σ(s′)vs(0)

2

vs(s′)3
(16)

The integration constants g(0)f(0) are determined by the initial condition z′1(0) such that

z′1(s) = z′1(0)
vs(s)

vs(0)
+ z′2(0)

vs(s)

vs(0)

s
∫

0

ds′
σ(s′)vs(0)

2

vs(s′)3
. (17)

II. STRIP ELONGATION

In order to derive Eq. (14) in the main text for the strip elongation, we use the fact that vnt
/v0 in (10a) in the

main text evolves in average towards 1, and that v0/vnt
in (10b) in the main text evolves in average slower than |rnt

|
as detailed below. Thus, we disregard vnt

/v0 and v0/vnt
as subleading. Furthermore, as shown below, we use that

vs(s)vs(0) converges in average towards the constant 〈v〉λc/〈τ〉 in order to obtain expression (14) in the main text.
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A. Average Elongation Perpendicular to the Streamline

We first determine the average deformation of the material strip perpendicular to the streamline, 〈|z2(t)|〉. It is
given by

〈|z2(t)|〉 = 〈|z2(0)|〉

〈

v0
vnt

〉

= 〈z2(0)〉

∞
∑

n=0

〈

v0
vn

t
∫

0

dt′δ(t′ − tn)I(0 ≤ t− t′ < τn)

〉

. (18)

It reads in Laplace space as

〈|z2(λ)|〉

〈|z2(0)|〉
=

∞
∑

n=0

〈

v0
vn

exp(−λtn)
1− exp(−λτn)

λ

〉

(19)

=
1− ψ(λ)

λ
+ 〈v0 exp(−λτ0)〉

∞
∑

n=1

ψ(λ)n−1

〈

1

vn

1− exp(−λτn)

λ

〉

(20)

=
1− ψ(λ)

λ
+

〈τ−1

0 exp(−λτ0)〉

1− ψ(λ)

〈

τ
1− exp(−λτ)

λ

〉

(21)

=
1− ψ(λ)

λ
+

1

λ

〈τ−1

0 exp(−λτ0)〉

1− ψ(λ)

[

〈τ〉+
dψ(λ)

dλ

]

(22)

If 〈τ2〉 <∞, we obtain asymptotically

〈|z2(λ)|〉 ≈
〈|z2(0)|〉〈v0〉〈τ

2〉

λs0〈τ〉
. (23)

Thus, the long time value is given by

lim
t→∞

〈|z2(t)|〉 ≈
〈|z2(0)|〉〈v0〉〈τ

2〉

s0〈τ〉
. (24)

In this Letter, we employ the Gamma distribution of streamwise velocities

pv(v) =
(v/vc)

β−1 exp(−v/vc)

vcΓ(β)
(25)

The velocity moments are given by

〈vn〉 =
vnc Γ(β + n)

Γ(β)
. (26)

The moments of the transition times τ = s0/v are given by

〈τn〉 =
τnv Γ(β − n)

Γ(β)
. (27)

for β > 2.
Thus, for the gamma velocity PDF employed in this Letter, we obtain for the long time value

lim
t→∞

〈|z2(t)|〉 =
〈|z2(0)|〉Γ(β + 1)Γ(β − 2)

Γ(β)Γ(β − 1)
. (28)

For 1 < β < 2, the second moment 〈τ2〉 is not finite. In this case, we obtain in the limit λτv ≪ 1 for the Laplace
transform of ψ(τ)

ψ(λ) = 1− 〈τ〉λ+ aβ(λτv)
β . (29)

Thus, in the limit of λτv ≪ 1 and 1 < β < 2 we obtain for 〈|z2(λ)|〉 in leading order

〈|z2(λ)|〉 ≈
〈|z2(0)|〉〈v0〉

s0λ2〈τ〉

[

〈τ〉+
dψ(λ)

dλ

]

∝ λβ−3, (30)

which gives in real time the behavior

〈|z2(t)|〉 ∝ t2−β . (31)
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FIG. 1. (Symbols) Average elongation perpendicular to the streamline for (left panel) β = 3/2 and (right panel) β = 5/2.
(Dashed) Evolution of elongation in a single realization for z1(0) = 0 and z2(0) = 1. The horizontal solid line in the right panel
indicate the asymptotic value (28).

B. Average Elongation Along the Streamline

Now we consider the contribution δz1(t) = vnt
/v0, which quantifies the elongation for a material strip that is

initially aligned with the streamline, that is z2(0) = 0. Similarly as for 〈z2(t)〉, we obtain for the Laplace transform
of 〈δz1(t)〉

〈|δz1(λ)|〉

〈|z1(0)|〉
=

1− ψ(λ)

λ
+

〈τ0 exp(−λτ0)〉

1− ψ(λ)

〈

1− exp(−λτ)

λτ

〉

(32)

=
1− ψ(λ)

λ
+

1

λ

〈τ0 exp(−λτ0)〉

1− ψ(λ)

[

〈v〉

s0
−

〈

τ−1 exp(−λτ)
〉

]

(33)

=
1− ψ(λ)

λ
−

1

λ[1− ψ(λ)]

dψ0(λ)

dλ

[

〈v〉

s0
−
〈

τ−1 exp(−λτ)
〉

]

(34)

In the limit of λ≪ 1 and 1 < β < 2 we obtain in leading order

〈δz1(λ)〉 ≈
〈|z1(0)|〉

λ
. (35)

Thus, we obtain asymptotically

lim
t→∞

〈δz1(t)〉 = 〈|z1(0)|〉. (36)

C. Average Velocity Cross-Product Along the Streamline

Here, we determine the average velocity cross-product Cv(t) = 〈v(0)v(t)〉, which can be written as

Cv(t) = 〈v0vnt
〉 =

∞
∑

n=0

〈

v0vn

t
∫

0

δ(t′ − tn)I(0 ≤ t− t′ < τn)

〉

(37)
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FIG. 2. (Symbols) Average elongation along the streamline for (left panel) β = 3/2 and (right panel) β = 5/2. (Dashed)
Evolution of elongation in a single realization for z1(0) = 1 and z2(0) = 0. The horizontal solid lines indicates the asymptotic
values (36).

Its Laplace transform is given by

Cv(λ) =

∞
∑

n=0

〈

v0vn exp(−λtn)
1− exp(−λτn)

λ

〉

(38)

=
1− ψ(λ)

λ
+ 〈v0 exp(−λτ0)〉

∞
∑

n=1

ψ(λ)n−1

〈

vn
1− exp(−λτn)

λ

〉

(39)

=
1− ψ(λ)

λ
+ s20

〈τ−1

0 exp(−λτ0)〉

1− ψ(λ)

〈

τ−1 1− exp(−λτ)

λ

〉

(40)

=
1− ψ(λ)

λ
+
s20
λ

〈τ−1

0 exp(−λτ0)〉

1− ψ(λ)

[

〈v〉

s0
−
〈

τ−1 exp(−λτ)
〉

]

(41)

In the limit of λ≪ 1, we obtain

Cv(λ) ≈
1

λ
〈v0〉

s0
〈τ〉

. (42)

Thus, the asymptotic long time value is given by

lim
t→∞

Cv(t) =
s0〈v0〉

〈τ〉
. (43)

For the gamma velocity PDF employed in this Letter, we obtain from (26) and (27)

lim
t→∞

〈v(0)v(t)〉 = v2c
Γ(β + 1)

Γ(β − 1)
. (44)

III. NUMERICAL SIMULATIONS

The numerical Monte-Carlo simulations illustrating the average strip elongation in Figure 2 model the streamwise
velocity PDF by the Gamma distribution

pv(v) =
(v/vc)

β−1 exp(−v/vc)

vcΓ(β)
, (45)

which yields for the transition time distribution

ψ(τ) =
1

τvΓ(β)

exp(−τv/τ)

(τ/τv)1+β
. (46)

We set vc = 1 and s0 = 1 such that τv = 1. The initial strip orientation angle φ is uniformly distributed in [−π/2, π/2].
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FIG. 3. (Symbols) Average velocity cross-product for (left panel) β = 3/2 and (right panel) β = 5/2. (Dashed) Evolution of the
cross-product in a single realization for z1(0) = 0 and z2(0) = 1. The horizontal solid lines indicate the asymptotic values (44).


