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Graphical abstract 

 

Abstract 

The Naturaliste Plateau is a submarine continental ribbon rifted from the southwest 

Australian margin during the Early Cretaceous breakup of East Gondwana. It occupied a key 
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position near the juncture of Greater India and the boundary between Australia and 

Antarctica. However, details of the Early Cretaceous evolution of the plateau are not well 

known because of limited data. Drilling at Site U1513 during IODP Expedition 369 

recovered the first complete Lower Cretaceous succession on the eastern Naturaliste Plateau. 

The succession includes syn-rift volcanic rocks, Hauterivian to early Aptian volcaniclastic-

rich sedimentary rocks, and Albian claystone strata. The 235-m thick volcaniclastic-rich 

sequence represents the missing post-breakup record in the southwest Australian rifted 

margin. It spans the transition from syn- to post-rift phase during the final stages of breakup 

between Greater India and Australia-Antarctica. We report the lithological, petrophysical, 

geochemical, paleontological, and paleomagnetic characteristics of the sequence, and then 

synthesize the results to define the Early Cretaceous depositional environment and 

subsidence history of the Naturaliste Plateau. From the early Hauterivian, weathered volcanic 

products were eroded and re-deposited locally as a volcaniclastic-rich sequence, with a major 

contribution from the southern Naturaliste Plateau. The depositional environment evolved 

from a shelf to upper bathyal condition during the Hauterivian through early Barremian with 

a decreasing sedimentation rate. This period is defined as a late syn-rift subsidence phase by 

NW-SE trending extension. After the final breakup with Greater India, the plateau remained 

at upper bathyal depths with little deposition until the early Aptian. Mid–lower bathyal depths 

inferred from the Albian claystone strata suggest that the post-rift thermal subsidence 

commenced during the late Aptian. This two-phase post-rift subsidence reflects the proximity 

or high temperature of mantle plume, possibly the Kerguelen plume, and its westward 

migration relative to the southwest Australian rifted margin. 
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1. Introduction 

The Naturaliste Plateau is a large submarine continental block located 260 km west of the 

Australian continent (Fig. 1A; Borrisova, 2002; Halpin et al., 2008). It is underlain by thinned 

continental curst (20–25 km; Olierook et al., 2016) displaced from the southwestern 

Australian rifted margin, which is defined as a continental ribbon (Peron-Pinvidic and 

Manatschal, 2010). The Naturaliste Plateau is separated from the Australian continent by the 

Naturaliste Trough to the east, which is a bathymetric feature overlying the deep-water 

Mentelle Basin, and by the Perth Basin, which is a rift basin located beneath the continental 

shelf (Fig. 1). During the Early Cretaceous breakup of East Gondwana, the Naturaliste 

Plateau occupied a key position near the juncture of what would become the Greater Indian, 

Australian and Antarctic plates (Fig. 2A), and was also near the projected position of the 

Kerguelen plume (Gaina et al., 2007; Gibbons et al., 2012, 2013; Veevers et al., 1991; 

Whittaker et al., 2013; Williams et al., 2011). Its tectonic history thus is central to 

understanding the breakup of East Gondwana and the role of the Kerguelen plume on 

continental rifting. However, the Early Cretaceous evolution of the Naturaliste Plateau during 

and after the breakup has not been well established due to limited drilling and sparseness of 

geophysical data (Borissova, 2002; Borissova et al., 2010). 

During International Ocean Discovery Program (IODP) Expedition 369, five boreholes were 

drilled at Site U1513 on the eastern flank of the Naturaliste Plateau (Fig. 1; Huber et al., 

2019). A primary goal of the expedition was to recover the Cretaceous sedimentary 

succession and the first in-situ samples of underlaying volcanic rocks, which provide 

stratigraphic control on the age and nature of the post-breakup succession in the southwest 

Australian rifted margin. In composite, drilling at Site U1513 recovered a succession of 

Cretaceous strata from the late Valanginian to the Campanian (Huber et al., 2019). The Early 
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Cretaceous succession at Site U1513 includes the syn-rift volcanic rocks overlying the 

breakup unconformity, Hauterivian to early Aptian sedimentary rocks containing abundant 

volcanic clasts, and Albian claystone strata (Fig. 1B). In particular, the 235 m-thick 

volcaniclastic-rich sequence at Site U1513 provides the first complete record that spans the 

transition from syn- to post-rift phase during the final stages of breakup between Greater 

India and Australia-Antarctica. It represents the missing stratigraphic record of post-breakup 

events in the onshore southwest Australian rifted margin (Norvick, 2004; Olierook et al., 

2015c). Using a combination of shipboard and post-expedition data, we describe and interpret 

the lithological, petrophysical, geochemical, paleontological, and paleomagnetic 

characteristics of the sequence, and then assess the depositional environment. Based on these 

results and inferences, we discuss the Early Cretaceous subsidence history of the Naturaliste 

Plateau and its implications for the post-breakup evolution of the southwest Australian rifted 

margin. 

2. Geologic setting 

The Naturaliste Plateau covers 90,000 km
2
 in water depths of 2,000–5,000 m that are 

elevated up to 2,500 m above the surrounding seafloor (Fig. 1A; Borissova, 2002). It is 

bounded by transform margins to the north adjacent to the Perth Abyssal Plain and to the 

southwest along the Naturaliste Fracture Zone, and by a rifted margin on the west that formed 

during the final stages of separation between Greater India and Australia. Its eastern flank is 

covered by the western Mentelle Basin (water depths of 2,000–4,000 m; Fig. 1B). The 

southern edge of the plateau is a steep faulted margin that formed during Late Cretaceous 

rifting between Australia and Antarctica (Borissova, 2002; Borissova et al., 2010).  

Seafloor spreading began on the Cuvier and Perth Abyssal Plains and western Australian 

margins to the north of the Naturaliste Plateau during the late Valanginian, and propagated 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

6 

westwards through the Hauterivian (Fig. 2A). The spreading ridge in the Perth Abyssal Plain 

established the western edge of the plateau during the early Barremian, which marked the 

final separation between Greater India and Australia-Antarctica (Colwell et al., 1994; Direen 

et al., 2008; Gaina et al., 2007; Gibbons et al., 2012, 2013; Markl, 1978; Olierook et al., 

2015a; Veevers and Li, 1991; Williams et al., 2013). The late rifting stage was accompanied 

by volcanic eruptions on sections of the conjugate continental margins around the periphery 

of the eastern Indian Ocean, as well as on continental blocks and oceanic plateaus (Fig. 2; 

Colwell et al., 1994; Direen et al., 2008; Olierook et al., 2015a, 2017; Symonds et al., 1998; 

Whittaker et al., 2016; Zhu et al., 2009). On the southwest Australian rifted margin, basaltic 

rocks are exposed onshore as the Bunbury Basalt (Frey et al., 1996; Olierook et al., 2015b, 

2016), and were dredged from the Naturaliste Plateau (Coleman et al., 1982; Direen et al., 

2017; Mahoney et al., 1995). This volcanic activity was followed by deposition of volcanic-

rich clastic sediments around the newly formed Indian Ocean (Sykes and Kidd, 1994; Vallier 

and Kidd, 1977) and along the Tethyan-Himalaya (Ghose et al., 2017; Hu et al., 2010), which 

during the Early Cretaceous was adjacent to the western margin of Australia (Fig. 2). The 

presence of a volcaniclastic-rich sequence on the Naturaliste Plateau was previously inferred 

from seismic reflection data (Borissova, 2002) and its topmost section cored at Deep Sea 

Drilling Project (DSDP) Site 258 (Davies et al., 1974), which is located 1.1 km west-

southwest of Site U1513 (Fig. 1A). 

3. Materials and methods 

IODP Expedition 369 drilled five holes at Site U1513 (Latitude 33°47.62′S, Longitude 

112°29.13′E at Hole U1513D) (Huber et al., 2019). Core recovery was 80.5% and reached a 

total depth of 774.0 meters below seafloor (mbsf) at Hole U1513E. The core-sections were 

systematically described aboard the ship at the macroscopic scale, and smear slides and thin-
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sections were described at the microscopic scale. After the expedition, the core-sections of 

the volcanic and volcaniclastic-rich sequences were re-examined at the Kochi Core Center 

(KCC), Japan, and additional thin-sections were described. Lithology, mineralogical 

composition, grain size, sedimentary structures, bed thickness, and paleontological 

observations from shipboard data were augmented and revised by post-expedition analyses. 

Bulk rock X-ray fluorescence (WD-XRF) composition analysis of 129 samples from Site 

U1513 was conducted using AXIOS Plus (Panalytical) at Institute for Chemistry and Biology 

of the Marine Environment (ICBM) of the Carl von Ossietzky University after the expedition. 

Borate glass beads were prepared from the sample powder using di-lithium tetraborate as a 

flux (700 mg sample, 4.2 g flux). Six additional samples of the volcaniclastic-rich sequence 

were analyzed using AXIOS (Panalytical) at Chonnam National University. Pellets were 

prepared from the sample powder mixed with wax binder (3 g sample, 0.3 g wax 

C18H36O2N2). Whole-rock X-ray diffraction (XRD) measurement and mineral identification 

were conducted during the expedition (Huber et al., 2019). After the expedition, whole-rock 

XRD was measured and identified for nine additional samples of the volcaniclastic-rich 

sequence at Korea Basic Science Institute (KBSI) using a D8 Advance diffractometer with a 

Cu source, voltage of 40 kV, current of 40 mA and measurement range of 8°–80°2θ. 

Selected samples were analyzed for calcareous nannofossils and planktonic and benthic 

foraminifera during the expedition (Huber et al., 2019). Only benthic foraminiferal specimens 

were recovered from the volcaniclastic-rich sequence. After the expedition, eight samples 

were analyzed for palynomorphs at Korea Institute of Geoscience and Mineral Resources 

(KIGAM), using a standard palynological pretreatment method. The palynomorphs were 

identified based on illustrations and associated with texonomic descriptions from the Perth 
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Basin (Backhouse, 1988) by MGPalaeo. Shell fragments in the volcaniclastic-rich sequence 

were identified from shipboard photographs at the Smithsonian Institution. 

Porosity values measured during the expedition (Huber et al., 2019) were used to estimate the 

compaction trend for the Cretaceous succession at Site U1513. The trend was used to 

reconstruct the sedimentation rate and subsidence curve with the BasinVis 2.0 program (Lee 

et al., 2019, in press). Magnetic susceptibility was measured on the split-core surface (2.5 cm 

interval measurement) during the expedition (Huber et al., 2019). Natural remanent 

magnetization (NRM) was measured and stepwise demagnetized on all core-sections and 

selected discrete samples during the expedition (Huber et al., 2019). Geomagnetic polarity 

reversal sequences were identified from the magnetic inclinations at 20 mT alternating field 

and were correlated to the Geomagnetic Polarity Time Scale (Ogg et al., 2012, 2016). 

4. Results and interpretation 

4.1. Lithostratigraphy of Site U1513 and geochemical discrimination 

The cored section from Site U1513 is divided into six Lithostratigraphic Units, I to VI (Fig. 

3A; Huber et al., 2019). The lowermost Unit VI consists of alternating altered basaltic flows 

and volcaniclastic rocks, cut by multiple dolerite dikes. Vesicular texture with brown to red 

colored oxidation is dominant in the basalt flows, which indicate volcanic eruption and 

emplacement in subaerial to shallow water setting (Huber et al., 2019; Tejada et al., in press). 

Strong seismic reflectors from the volcanic sequence (Fig. 1B) are manifest throughout the 

Naturaliste Plateau and the western Mentelle Basin (Borissova, 2002; Borissova et al., 2010). 

The volcaniclastic-rich sedimentary sequence is Unit V at Site U1513, which we correlated to 

Unit V of DSDP Site 258 (an 11 m thick glauconitic sandstone with lithic fragments and 

detrital claystone; Davies et al., 1974) (Fig. 3A). The boundary between Units VI and V, 
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cored in Hole U1513E (interval 2R-4, 0–3 cm), is defined by an irregular contact with an 

altered basalt flow (Tejada et al., in press). Seismic reflection data show that Unit V is 

present only to the Naturaliste Plateau (Fig. 1B). Units IV to III consist of Albian to 

Cenomanian claystone strata, and Units II to I comprise Upper Cretaceous to Neogene chalk 

and ooze. The boundary between Units V and IV occurs at a transition from sandstone to 

claystone and coincides with a decrease in magnetic susceptibility (Fig. 3A). Unit IV to Unit 

I thicken eastward from the flank of the Naturaliste Plateau into the western Mentelle Basin, 

and from there thin further eastward over the eastern Mentelle Basin and Yallingup Shelf (Fig. 

1B). 

Previous studies (e.g., Coleman et al., 1982) have correlated Unit V at Site 258 laterally with 

Unit IV at DSDP Site 264 (altered volcaniclastic conglomerates; Hayes et al., 1975), which is 

located near the southern edge of the Naturaliste Plateau (Fig. 1A). However, the lithological 

characteristics of Unit IV at Site 264 (volcanic pebbles and granules embedded in highly 

altered clayey to sandy or tuffaceous matrix; Ford, 1975) are inconsistent with Unit V of Sites 

U1513 and 258. The volcaniclastic conglomerate section at Site 264 is more similar to altered 

volcaniclastic flows intercalated with basalt flows of Unit VI at Site U1513 (Tejada et al., in 

press). 

The Al-Zr-Ti ternary plot (Fig. 3B) discriminates the volcaniclastic-rich sedimentary rocks 

(Unit V) from sediments and sedimentary rocks of Units I to IV and from the basalt flows 

and volcaniclastic beds of Unit VI. Relatively high Ti contents of Units V and VI are 

attributed to the presence of volcanic clasts and minerals such as pyroxene. However, the Al-

Zr-Ti composition of Unit V cannot be explained by a simple mixture of weathered volcanic 

materials derived from the underlying volcanic rocks (Unit VI) with clay minerals 

(represented by Al), because of their relatively high Zr contents. The composition of Unit V 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

10 

may be attributed to volcanic material sources with relatively high Zr content, similar to the 

basalt fragments dredged from the southern Naturaliste Plateau (Fig. 3B). Alternatively, a 

winnowing effect induced by bottom currents may lead to heavy mineral enrichments (e.g., 

zircon) compared to clay minerals (e.g., Atar et al., 2019; Schnetger et al., 2000). 

4.2. Lithostratigraphic subunits of Unit V 

The 235.33 m-thick volcaniclastic-rich sequence (Unit V) at Site U1513 was recovered 

between 454.92 to 690.25 mbsf (interval U1513D-41R-4, 90 cm, through 66R-1, 8 cm) in 

Hole U1513D and from 685.2 to 688.07 mbsf (interval U1513E-2R-1, 0 cm, through 2R-3, 

100 cm) in Hole U1513E. We subdivide the volcaniclastic-rich sequence into four Subunits 

1–4, numbered from the top downward (Fig. 4A). The major lithological characteristics and 

sedimentary facies of each subunit are as follows (core-section images in Fig. 4B). Subunit 4 

(554.77–690.25 mbsf) consists of coarse to fine-grained, angular to sub-rounded greenish-

black, gray to dark/reddish/greenish gray sandstones and dark gray clayey sandstones with 

abundant glauconite. These are interbedded with siltstone, clayey siltstone, silty claystone, 

and silty sandstone layers. This subunit is generally massive with a few layered intervals 

containing parallel or cross laminations. There are a few examples of normal or inverse 

grading, slump facies, ripples, and soft-sediment deformation. Subunit 3 (498.47–554.77 

mbsf) is massive and consists of dark gray to greenish-black siltstones and dark gray silty 

claystone with sub-angular to sub-rounded grains. Within this unit, grain sizes vary from clay 

to very fine sand. Subunit 2 (472.18–498.47 mbsf) is a dark reddish-gray silty claystone with 

sub-angular and sub-rounded grains. This subunit exhibits parallel laminations, and normal 

grading is evident in interbedded coarse to fine-grained sandstone layers. Subunit 1 (454.92–

472.18 mbsf) is gray to dark greenish-gray, coarse to fine-grained sandstone with angular to 
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sub-rounded grains. The sandstone is generally massive with interbeds containing parallel or 

cross laminations. A few intervals exhibit normal grading. 

The volcanic clasts and lithic fragments are abundant throughout Unit V, and are evident 

macroscopically in the sandstones of subunit 4 (Fig. 4B and C). Ca and Na-rich feldspar (e.g., 

labradorite), montmorillonite, and chlorite are dominant throughout the sequence, while 

kaolinite is dominant in the silty claystone of subunit 2 (Supplementary material 1). These 

minerals are attributed to weathering and erosion of volcanic rocks and materials (e.g., Bain 

et al., 1980; Hathon and Underwood, 1991; Sykes and Kidd, 1994). Primary ash or 

pyroclastic layers were not observed in Unit V. It is thus interpreted to consist of epiclastic 

deposits, which are not deposited by explosive volcanism and its direct effects (e.g., 

pyroclastic flow) (Manville et al., 2009 and references therein). Hydrothermal alteration is 

observed throughout Unit V with a few hydrothermal veins. Calcite cementation is present in 

subunits 1, 3, and 4 filling inclined and irregular shaped veins with minor fault offsets and 

slickensides. Pyrite nodules are present throughout all four units with carbonate and siderite 

nodules present only in subunit 3. 

4.3. Paleontological observations 

Bioturbation and organic matter are common in subunits 4 and 3 of Unit V, decreasing 

upward in the section (Fig. 4C). Subunit 4 shows intense bioturbation and trace fossils (e.g., 

Macaronichnus, Teichichnus) with burrows, borings and horizontal structures indicative of 

the Skolithos and Cruziana ichnofacies that are typically present from the low-tide zone to the 

edge of the continental shelf (Knaust, 2017; Seilacher, 1967). A few trace fossils and 

bioturbated lamination contacts are observed in subunits 2 and 1. Shell fragments are 

abundant in subunits 4 and 3 (Fig. 4C). Shell fragments are 2–4 mm thick and up to several 

centimeters long but are generally too fragmented and/or not exposed well enough on cut or 
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broken core surfaces to be confidently identified. Two individuals were identified as Neithea 

sp. and a third, tentatively, as Cteniopleurium sp. The former is a fairly common Lower 

Cretaceous genus (Hayami, 1975), whereas the latter was originally described from the 

Santonian Gingin Chalk of Western Australia (Feldtman, 1951). If the generic identification 

of the latter is correct, this would be the first occurrence of this taxon from Lower Cretaceous 

strata. Both are found in inner to middle shelf environments and interior basins. Plant debris 

is present throughout Unit V and abundant in subunit 4. 

Benthic foraminiferal specimens with limited biostratigraphic and paleoenvironmental 

significance were recovered in subunits 4 and 3 of Unit V. Specimens of Praebulimina sp. 

and Lenticulinella sp. are identified from Samples U1513D-50R-CC (543.98 mbsf) and 

U1513D-52R-CC (564.43 mbsf). A specimen of Quinqueloculina? sp. was recovered from 

Sample U1513D-48R-CC (525.76 mbsf). Benthic foraminifera present belong to the 

opportunistic, environmentally tolerant benthic taxon Lenticulina spp., the resilient taxon 

Praebulimina sp., and the miliolid taxon Quinqueloculina? sp. (Holbourn et al., 1999; Reolid 

and Martínez-Ruiz, 2012). These benthic foraminiferal taxa have extensive depth ranges from 

inner neritic to lower bathyal, but their highest abundance is found in outer shelf 

environments (Gräfe and Wendler, 2003; Holbourn and Moullade, 1998; Murray, 1991, 

2006). In the overlying Unit IV, agglutinated foraminiferal taxa are dominant with 

Glomospira spp. and the most abundant taxa, Kalampsis sp. and Nothia sp. Few calcareous 

benthic foraminiferal markers for deep-sea environments (Gavelinella sp., Cibicidoides spp., 

Osangularia spp.) are present in some cores. The benthic foraminiferal assemblage in Unit 

IV indicates middle to lower bathyal depths as well as an open marine depositional 

environment (Kaminski and Gradstein, 2005; Tjalsma and Lohmann, 1983; van Morkhoven 

et al., 1986). 
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In several samples of Units V and IV, a few dinoflagellate cysts, phytoclasts, spores and 

pollen were identified (Fig. 4C). Subunit 3 of Unit V includes specimens of 

Leptodinium/Impagidinium sp. (Sample U1513D-50R-1, 33–35 cm; 536.94 mbsf), and 

Apteodinium sp. and Circulodinium hystrix/vannophorum (Sample U1513D-46R-3, 61–63 

cm; 501.62 mbsf). In the Perth Basin (Fig. 1A), Apteodinium sp. has an age range from the 

Hauterivian to the Aptian, although Backhouse (1988) estimates a longer range for this taxon. 

Circulodinium hystrix/vannophorum has an age range from the Valanginian to the Aptian 

(Backhouse, 1988) and can be associated with marginal, brackish, coastal, nearshore 

environments with unstable conditions or high environmental stress (Carvalho et al., 2016). 

In the lowermost claystone of the overlying Unit IV (Sample U1513D-41R-1, 85–87 cm; 

451.06 mbsf), Spiniferites sp., Cribroperidinium edwardsii, and Apteodinium granulatum are 

present (Fig. 4C). These taxa have age ranges that span the Early Cretaceous in the Perth 

Basin (Backhouse, 1988; Helby et al., 1987) and may suggest an inner neritic environment 

(Carvalho et al., 2016), although reworking from a source upslope is possible. 

4.4. Magnetostratigraphy and sedimentation rate of Unit V 

Well-defined magnetic polarity sequences allow us to establish a high resolution 

magnetostratigraphy and an age-depth model for the volcaniclastic-rich sequence (Fig. 5A; 

Supplementary material 2). The uppermost 0.5 m of the sequence correlates with the 

beginning of the long Cretaceous Normal Superchron, chron C34n (125.93-83.64 Ma) (Ogg 

et al., 2012), which extends upward into the lower part of Unit II (Huber et al., 2019). In the 

remainder of the volcaniclastic-rich sequence, between 690.25 and 455.47 mbsf, eighteen 

polarity sequences are distinguished, spanning chrons M10Nn.1n to M0r (134.48-125.93 Ma; 

Ogg et al., 2012). Unit V was thus deposited from the Hauterivian to the early Aptian (Ogg et 

al., 2016), and more than two thirds of total thickness of this sequence accumulated during 
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the Hauterivian (Fig. 5A). The beginning of chron M10Nn.1n (134.48 Ma) is missing at Site 

U1513. The chron ended at 134.22 Ma, giving a minimum age for the volcanic sequence of 

Unit VI. The boundary with underlying Unit VI is defined by a polarity reversal, as well as an 

irregular contact, which suggests a time gap between the volcaniclastic-rich deposition and 

the topmost basalt flow. 

The magnetostratigraphy of Unit V allows a detailed reconstruction of the sedimentation rate. 

The strata within each geomagnetic polarity epoch were decompacted to determine layer 

thickness prior to burial using the onsite compaction trend and BasinVis 2.0 program 

(Supplementary material 2; Lee et al., in press). The decompacted thickness was combined 

with the duration of each geomagnetic chron to reconstruct the sedimentation rate. The 

sedimentation rate varies, but shows an overall decrease upward in the section (Fig. 5B). 

High sedimentation rates are recorded in the early Hauterivian, during chrons M10Nn.1n 

(<134.48–134.22 Ma; >183 m/myr), M10r (134.22–133.88 Ma; 298 m/myr) and M9r 

(133.58–133.3 Ma; 136 m/myr). The sedimentation rate for chron M10Nn.1n is a minimum 

rate, as the bottom (oldest) part of the chron is not recovered in the core. The sedimentation 

rate is much lower from the late Hauterivian to early Aptian, ranging from 1 to 40 m/myr. 

Recent studies have suggested new ages for the geomagnetic chrons in the Valanginian to 

Aptian stages, based on numerical U-Pb and Ar-Ar ages intercalibrated with astrochronology 

(Aguirre-Urreta et al., 2015, 2019; Martinez et al., 2015; Olierook et al., 2019c). With a 

difference of 3.5 to 5.5 m.y., these ages are substantially younger than those proposed in the 

Geologic Time Scale of Ogg et al. (2012, 2016), which suggest <130.9–122.3 Ma for chrons 

M10Nn.1n to M0r of Unit V (Supplementary material 3). It suggests ~130.5 Ma as a 

minimum age of the underlaying volcanic sequence. The relatively consistent shift of ages 

maintains the major trends in the age-depth model and sedimentation rate of Unit V. 
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5. Discussion 

5.1. Early Cretaceous depositional environment 

The age of the volcaniclastic-rich sequence at Site U1513 (134–126 Ma) overlaps with the 

ages of volcanic rocks dredged from the Naturaliste Plateau (132-128 Ma; Direen et al., 

2017), indicating that the deposition of Unit V was coincided with volcanism on the plateau. 

However, no direct evidence of explosive volcanic eruption (e.g., ash, pyroclastic flows) was 

observed in Unit V, and the volcanic clasts and lithic fragments are relatively fine-grained 

and round-shaped (Fig. 4C). The volcanic component is therefore interpreted to indicate 

transport from distant volcanic terrains. Based on volcanic edifices imaged on seismic 

reflection profiles (Borissova, 2002), candidate sources of the volcanic materials in Unit V 

are the exposed equivalents of the underlying volcanic sequence (Unit VI) and the volcanic 

terrains of the southern and northern Naturaliste Plateau. We argue that the southern 

Naturaliste Plateau is a major source of the volcanic materials for the following reasons. 

Firstly, relatively fine and sub-rounded volcanic grains throughout Unit V (Fig. 4C) indicate 

a distant source (>125 km to the southern margin from Site U1513). Secondly, the high Zr 

content in Unit V suggests derivation from volcanic rocks with higher Zr content than Site 

U1513 basalts (Fig. 3B). Thirdly, sediment provenances and distribution paths trending 

parallel to the rift axis are observed in rift basins (e.g., Perth Basin; Olierook et al., 2019a). In 

the case of the Naturaliste Plateau, the trend points to the southern volcanic terrain as the 

provenance source. 

Montmorillonite, found throughout Unit V, is interpreted to be the result of subaerial 

weathering and erosion of volcanic rocks. This is consistent with the environmental setting 

interpreted from the volcaniclastic conglomerate sequence at Site 264 in the southern 

Naturaliste Plateau. The poorly sorted volcanic fragments and lack of mixing with non-
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volcanic detritus are indicative of a volcaniclastic flow deposit sourced from nearby volcanic 

terrain, rather than transported by water (Ford, 1975). The adjacent source terrain is 

potentially part of the volcanic rocks on the southern Naturaliste Plateau, which is supported 

by the similar geochemical composition between volcanic cobbles at Site 264 and dredged 

basaltic samples (Fig. 3B). However, alteration involving seawater interaction described from 

a few volcanic fragments at Site 264 (Ford, 1975) are indicative of subaqueous setting. We 

interpret that the volcanic terrains on the southern Naturaliste Plateau were emplaced and 

weathered in a fluctuating environment between subaerial and shallow-water settings. This 

environmental setting could contribute to the type of clay mineral alteration, subaerial erosion, 

and subsequent transport to the site of the volcaniclastic-rich deposition on the eastern 

Naturaliste Plateau. 

Paleontological evidence from benthic foraminifera, bivalves, palynomorphs as well as trace 

fossils suggests a shelfal to shallow bathyal depositional environment for the early 

Hauterivian to early Barremian (subunit 4 to 3 of Unit V). Together with the regularly 

changing sedimentary facies and sedimentation rate, the data from benthic foraminiferal 

assemblages suggest a restricted and shallow marine environment displaying unsteady 

conditions for the lower part of Unit V. Alternating environmental characteristics, such as 

variations in oxygenation, nutrient supply or alkalinity, can induce high environmental stress, 

which makes a habitat unsuitable for most foraminiferal taxa and might result in the depletion 

of the benthic foraminiferal assemblage and a reduction to few tolerant taxa, respectively. 

This analysis corresponds to the paleoenvironmental interpretation from palynomorph 

specimens. Paleontological evidence from the lower part can therefore be interpreted to 

indicate a marginal marine environment with variations in the terrigenous input, runoff and 

chemical composition of coastal waters, and changes in shape and nature of the basin area. 
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The interpretation of an unstable depositional environment is furthermore supported by the 

highly variable Mg/Al and Rb/Al ratios (Fig. 5C), which can be used to infer changes in 

environmental conditions (e.g., Atar et al., 2019; Martin-Puertas et al., 2010; Schnetger et al., 

2000). Mg and Rb enrichments are associated with increases in terrigenous/detrital input, 

fluvial runoff or precipitation. The highly varying Mg/Al and Rb/Al ratios of the lower part 

(particularly subunit 4) correlate with the interval of high sedimentation rate. The correlation 

strongly suggests considerable input from a land mass. 

The upper part of Unit V (subunits 2 and 1) was likely deposited in deeper water depths than 

the lower part, as indicated from the sparsity of fossils and bioturbation, lower sedimentation 

rate (1–23 m/myr), and lower terrigenous influence inferred from the Mg/Al ratio (Fig. 5C). 

The depth increase could be enhanced by a rise in global sea-level (~60 m; Fig. 6A) during 

the Hauterivian, which culminated in a highstand during the Barremian (Haq, 2014). We infer 

that the upper part was deposited in an upper bathyal environment (200–600 m), which is 

deeper than the shallow marine of the lower part, but not as deep as the middle to lower 

bathyal depths (600–2,000 m) of Unit IV. Together with the changes in the benthic 

foraminiferal assemblage, a significant increase in water depth between Unit V and Unit IV is 

suggested by the lithologic transition to marine claystone, the absence of volcanic clasts and 

lithic fragments, and the abrupt decrease in Ti content and magnetic susceptibility. 

5.2. Subsidence history and implications for the post-breakup evolution of the southwest 

Australian rifted margin 

5.2.1. Syn-rift subsidence phase 

Previous studies (e.g., Borissova, 2002) have interpreted the Hauterivian to early Barremian 

sequence of the Naturaliste Plateau as a post-rift thermal subsidence phase. However, we 
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attribute the interval to the syn-rift subsidence phase. During the early Hauterivian, the 

Naturaliste Plateau subsided fast (~370 m/myr), but high sedimentation rate kept pace with 

subsidence and maintained the depositional environment in a shallow marine condition (Fig. 

6B). The depth increased to an upper bathyal setting through the early Barremian. This 

subsidence period corresponds to the NW-SE trending extension during 7–8 m.y., led by 

seafloor spreading in the Perth Abyssal Plain and its westward propagation along the northern 

margin of the Naturaliste Plateau (Fig. 2A; Gibbons et al., 2012; Hall et al., 2013; Williams et 

al., 2013). In seismic profiles (Borissova, 2002; Borissova et al., 2010; Maloney et al., 2011), 

NE-SW trending faults parallel to the seafloor magnetic anomalies and syn-rift structures 

(e.g., synsedimentary deformation, fault reactivation) are observed in the Hauterivian–

Barremian strata of the Naturaliste Plateau and the Mentelle Basin. Core-sections of Unit V 

contain multiple fault offsets in subunits 4 and 3. During this phase, the syn-rift volcanism 

diminished on the Naturaliste Plateau and the onshore southwest Australian margin (Fig. 6B). 

Most of the Hauterivian to early Barremian strata at Site U1513 are thus a late syn-rift 

sequence. This syn-rift phase indicates ~550 m of basement subsidence in addition to the ~60 

m sea-level rise that occurred during this time (Fig. 6), which we attribute to the crust 

thinning during the extension. 

The deepening trend from the late Valanginian (volcanism near sea-level; Unit VI) through 

the early Barremian at Site U1513 is similar to that observed in the South Perth Shale in the 

Vlaming Sub-basin of the southern Perth Basin (Fig. 1A). The South Perth Shale was 

deposited during a marine transgression and a highstand from the late Valanginian to 

Barremian (Lech et al., 2016). In the eastern Mentelle Basin, the Late Jurassic syn-rift fluvio-

lacustrine deposits transition upward into marine strata (Lithostratigraphic Units IIb and IIa at 
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Site U1515), indicating subsidence and marine transgression from the Valanginian (Wainman 

et al., in press). 

5.2.2. Two-phase post-rift subsidence process 

Classical rift models predict significant thermal subsidence immediately following 

continental breakup in response to lithospheric cooling in early post-rift time (McKenzie, 

1978). After the final breakup between Greater India and Australia-Antarctica during the 

early Barremian, however, the Naturaliste Plateau remained at upper bathyal depths with low 

sedimentation rate through to the early Aptian (Fig. 6B). On the southern Perth Basin, 

faulting and sedimentation ceased virtually from the Barremian (Norvick, 2004; Olierook et 

al., 2015c). These observations indicate that the southwest Australian rifted margin did not 

immediately begin to thermally subside after the final breakup during the late Barremian 

through the early Aptian (Post-rift phase 1; Fig. 6B). Mid–lower bathyal depths from the 

Albian at Site U1513 suggest the initiation of post-rift thermal subsidence during the late 

Aptian (Post-rift phase 2; Fig. 6B). 

The lack of substantial post-rift thermal subsidence on the southwest Australian rifted margin 

could be induced by the effects of mantle plume (e.g., thermal buoyancy, mantle instability, 

small-scale convection; Boston et al., 2019; Dafoe et al., 2017). During this period, the 

margin might be located within a large influence radius of a mantle plume (500–1,000 km; 

White and McKenzie, 1989). Previous works suggest that contemporaneous volcanism along 

the rifted margins of Greater India (Comei-Cona) and Australia (Bunbury Basalt), together 

with that on the Naturaliste Plateau (Fig. 2A) formed the 136–124 Ma Large Igneous 

Province (Direen et al., 2017; Olierook et al., 2016, 2017, 2019b; Watson et al., 2016; Zhu et 

al., 2009). The scattered mafic rocks across the margins have been explained by either 

disconnected limbs of the Kerguelen plume or multiple mantle plumes (Coffin et al., 2002; 
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Olierook et al., 2016; Whittaker et al., 2016). The proximity or elevated temperature of the 

Kerguelen plume and/or other plume(s) could account for the relatively shallow depths of the 

Naturaliste Plateau during the late Barremian through early Aptian. This may be responsible 

for the latest volcanism (~128 Ma; Direen et al., 2017) and hydrothermal alteration age at 

Site 264 (128–123 Ma; Olierook et al., 2017) on the southern Naturaliste Plateau, and 

hydrothermal veins in subunit 1 of Unit V at Site U1513. Alternatively, a transient thermal 

anomaly associated with the slow rifting between the Australian and Antarctic plates (Direen 

et al., 2007) may have kept the southwest Australian margin elevated during the period. 

However, it is uncertain if this mechanism can explain the onset of thermal subsidence during 

the late Aptian, which preceded the plate motion change (~100 Ma; Whittaker et al., 2013) 

and seafloor spreading (~83 Ma; Sayer et al., 2001) between Australia and Antarctica. 

The post-rift thermal subsidence began during the late Aptian (>54 m/myr; Fig. 6B). The 

period corresponds to the onset of extensive magmatic activity associated with the volcanism 

on the Kerguelen Plateau (≥119 Ma; Coffin et al., 2002) and the Gulden Draak Knoll (~117 

Ma; Whittaker et al., 2016). It resulted from the westward migration of the Kerguelen plume 

relative to the southwest Australian margin and associated relocation of spreading center and 

ridge jumps during the opening of Indian Ocean (Fig. 2B; Gibbons et al., 2012; 2013; 

Olierook et al., 2017, 2019b; Watson et al., 2016). The relative westward migration of the 

Kerguelen plume could have removed the thermal buoyancy support on the rifted margin, 

which triggered the thermal relaxation of thinned lithosphere and the thermal subsidence. 

This is marked by the extensive deposition of the Albian claystone in an open marine 

environment, which blanketed most of the Naturaliste Plateau and the Mentelle Basin (Fig. 

1B). In seismic profiles, the strata are mostly unfaulted and thicken into the western Mentelle 

Basin with pinch-out and onlap on the eastern Naturaliste Plateau and the eastern Mentelle 
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Basin through to the Yallingup Shelf (Borissova, 2002; Borissova et al., 2010; Maloney et al., 

2011). The thick claystone strata in the western Mentelle Basin are likely derived from high 

thermal subsidence rates, corresponding to significantly thinned crust (~13 km) beneath the 

Naturaliste Trough (Johnston et al., 2010; Olierook et al., 2016). 

6. Conclusions 

A 235 m-thick volcaniclastic-rich sedimentary sequence was recovered at IODP Site U1513 

on the eastern flank of the Naturaliste Plateau, rifted from the southwest Australian 

continental margin. The volcaniclastic-rich sequence provides a new and in-depth record of 

the Early Cretaceous stratigraphy and changes in the depositional environment immediately 

after the onset of seafloor spreading in the Perth Abyssal Plain. Magnetostratigraphy 

indicates the deposition during the Hauterivian through early Aptian, which spans the final 

stages of breakup between Greater India and Australia-Antarctica. The sequence contains 

abundant volcanic clasts, lithic fragments and clay minerals derived from subaerial 

weathering and erosion of volcanic products. The coeval volcanic rocks on the southern 

Naturaliste Plateau are inferred to be a major source of the volcanic materials. A synthesis of 

sedimentological and paleontological observations, as well as geochemical data, indicates a 

transition of a shelf to upper bathyal environment with a decreasing sedimentation rate. Our 

results highlight the Early Cretaceous subsidence history of the Naturaliste Plateau. We 

define a syn-rift subsidence interval and the two-phase post-rift subsidence process across the 

southwest Australian rifted margin. During the Hauterivian through early Barremian, the 

depositional environment evolved from a shelf to upper bathyal setting with decreasing 

terrestrial input. This progressive deepening corresponds to the syn-rift subsidence by a NW-

SE extensional regime, which is associated with the seafloor spreading in the Perth Abyssal 

Plain and its westward propagation. After the final breakup with Greater India to the west of 
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the Naturaliste Plateau, the region remained at upper bathyal depths with low sedimentation 

rate during the late Barremian through early Aptian. This interpretation suggests that the 

southwest Australian rifted margin had a lack of substantial post-rift thermal subsidence 

following the final breakup. This pause in subsidence could be induced by the proximity or 

high temperature of the Kerguelen plume and/or other mantle plume(s). Mid-lower bathyal 

depths indicated from the extensive Albian claystone strata suggest that the post-rift thermal 

subsidence commenced during the late Aptian, which corresponds to a period of westward 

migration of the Kerguelen plume relative to the southwest Australian rifted margin and 

associated relocation of spreading center and ridge jumps. 
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Figures 

 

Figure 1. A) Map of Naturaliste Plateau (NP), Mentelle Basin (MB), and southern Perth 

Basin with respect to mainland Australia (inset) (revised from Borissova, 2002), showing 

locations of IODP Sites U1513, U1515 (yellow circles), DSDP Sites 258, 264 (white circles), 

faults (grey lines) and a seismic section (red line, shown in B). The bathymetric contour 

interval is 500 m and the Naturaliste Plateau is defined approximately by the 4000-m contour. 

B) Seismic line S310/07 (provided by Geoscience Australia) showing Site U1513 location, 

general lithostratigraphy, the extent of the volcaniclastic-rich sequence (yellow shade), 

projected location of Site U1515, and structural characteristics. Dashed green line indicates 

bottom of the Albian strata. 

 

Figure 2. Plate reconstruction of the Naturaliste Plateau (N) and surrounding regions with 

IODP Site U1513 location (green star) at 130 Ma, 120 Ma, 100 Ma (revised from Gibbons et 

al., 2012). Volcanic rock occurrences (red areas) and volcaniclastic deposit sites (orange dots) 

are inferred from previous studies (Borissova et al., 2003; Direen et al., 2017; Ghose et al., 

2017; Hayes et al., 1975; Hu et al., 2010; Olierook et al., 2015a, 2015b; Whittaker et al., 2016; 

Zhu et al., 2009). AAP: Argo Abyssal Plain, BB: Bunbury Basalt, BK: Batavia Knoll, BR: 

Bruce Rise, CAP: Cuvier Abyssal Plain, CB: Comei Basalt, E: Exmouth Plateau, EB: Elan 

Bank, GAP: Gascoyne Abyssal Plain, GK: Gulden Draak Knoll, K: Kerguelen Plateau, M: 

Mentelle Basin, P: Perth Basin, PAP: Perth Abyssal Plain, RSB: Rajmahal–Sylhet Basalt, W: 

Wallaby Plateau, Z: Zenith Plateau. 
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Figure 3. A) Lithostratigraphic profiles of IODP Site U1513 and DSDP Sites 258, 264 drilled 

on the Naturaliste Plateau (Davies et al., 1974; Hayes et al., 1975; Huber et al., 2019), 

together with ages and magnetic susceptibility (ms) of Site U1513. B) Al-Zr-Ti ternary plot 

for sediments, sedimentary and volcanic rocks recovered from Site U1513. Values for Al 

(multiplied by 10), Ti (multiplied by 100) in wt% and Zr in ppm are normalized to 100%. 

Factors for Al and Ti were used to position the dots closer to the middle of the diagram. 

Yellow dots are data from the volcaniclastic-rich sequence of Unit V. For Unit VI, red circle 

represents mean data from basalt and dolerite dike samples, and red dots are data from 

volcaniclastic beds. Open circles present the mean data from volcanic rocks; dredged samples 

(Direen et al., 2017) and volcanic fragments at Site 264 (Ford, 1975) of the southern 

Naturaliste Plateau (SNP; pink), dredged samples (Coleman et al., 1982; Mahoney et al., 

1995) of the northern Naturaliste Plateau (NNP; orange), and outcrop samples (Olierook et al., 

2016) of the Bunbury Basalt (BB; brown). 

 

Figure 4. A) Lithologic profile of the volcaniclastic-rich sequence (Unit V) with Hole 

U1513D core numbers and Subunits 1–4. B) Core-section images. Subunit 1: massive 

sandstone with volcanic clasts and calcite cementation (462.02–462.32 mbsf; interval 

U1513D-42R-2, 80–110 cm) and low angle to planar stratified sandstone with pyrites 

(464.58–464.88 mbsf; interval U1513D-42R-4, 100–130 cm), Subunit 2: silty claystone with 

interbedded sandstone layers and soft-sediment deformation (494.36–494.66 mbsf; interval 

U1513D-45R-5, 60–90 cm), Subunit 3: massive sandy siltstone with slight bioturbation and 

pyrites (540.27–540.57 mbsf; interval U1513D-50R-3, 65–95 cm), Subunit 4: massive 

glauconitic sandstone with volcanic clasts and lithic fragments (636.37–636.67 mbsf; interval 

U1513D-60R-4, 63–93 cm) and low angle to planar stratified clayey sandstone with volcanic 
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clasts, bioturbation and pyrites (598.07–598.37 mbsf; interval U1513D-56R-3, 103–133 cm). 

C) Macroscopic and microscopic observations of distribution of volcanic clasts, lithic 

fragments, bioturbation, shell fragments, plant debris and unidentified organic matter. Images 

of pollens, volcanic clasts (thin-section image; Sample U1513D-42R-2, 138–143 cm), shell 

fragments, plant debris and trace fossils. S: Spiniferites sp., Ce: Cribroperidinium edwardsii, 

Ag: Apteodinium granulatum, Ch/v: Circulodinium hystrix/vannophorum, A: Apteodinium sp., 

L/I: Leptodinium/Impagidinium sp. 

 

Figure 5. A) Magnetostratigraphic age-depth model for the volcaniclastic-rich sequence 

(Unit V) of Hole U1513D (Huber et al., 2019 with ages from Ogg et al., 2012, 2016). 

Eighteen magnetic polarity reversals from chrons M10Nn.1n to M0r between 690.25 and 

455.47 mbsf. Lithologic profile and subunit ranges of Unit V are from Fig. 4A. B) 

Sedimentation rate vs. age plot with a lithologic profile based on magnetostratigraphic units. 

Dashed pink lines are evaluated from present (compacted) layer thickness, and solid lines 

from restored (decompacted) layer thickness. C) Mg/Al (in purple) and Rb/Al (in orange) 

ratios vs. age. 

 

Figure 6. A) Early Cretaceous global sea-level (SL) curves (Haq, 2014). B) Early Cretaceous 

subsidence history of the Naturaliste Plateau at Site U1513 with Units VI to IV and subunits 

of Unit V. Subsidence curve represents the top depth of volcanic sequence, which is the 

accumulated thickness of volcaniclastic-rich strata in addition to estimated paleobathymetry. 

Major tectonic events are shown with volcanic eruption periods of the Naturaliste Plateau 
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(NP; Direen et al., 2017), Bunbury Basalt (BB; Olierook et al., 2016), Kerguelen Plateau (KP; 

Coffin et al., 2002) and Gulden Draak Knoll (GK; Whittaker et al., 2016). 
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Highlights 

Lower Cretaceous strata at IODP Site U1513 on the Naturaliste Plateau span breakup. 

Volcaniclastic-rich strata have a deepening record from shelf to upper bathyal depths. 

A late syn-rift phase to two-phase post-rift subsidence history is revealed. 
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