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S U M M A R Y
A Triangular Spectral Element Method (TSEM) is presented to simulate elastic wave prop-
agation using an unstructured triangulation of the physical domain. TSEM makes use of a
variational formulation of elastodynamics based on unstructured straight-sided triangles that
allow enhanced flexibility when dealing with complex geometries and velocity structures. The
displacement field is expanded into a high-order polynomial spectral approximation over each
triangular subdomain. Continuity between the subdomains of the triangulation is enforced us-
ing a multidimensional Lagrangian interpolation built on a set of Fekete points of the triangle.
High-order accuracy is achieved by resorting to an analytical computation of the associated
internal product and bilinear forms leading to a non-diagonal mass matrix formulation. There-
fore, the time stepping involves the solution of a sparse linear algebraic system even in the
explicit case. In this paper the accuracy and the geometrical flexibility of the TSEM is explored.
Comparison with classical spectral elements on quadrangular grids shows similar results in
terms of accuracy and stability even for long simulations. Surface and interface waves are
shown to be accurately modelled even in the case of complex topography with the TSEM.
Numerical results are presented for 2-D canonical examples as well as more specific problems,
such as 2-D elastic wave scattering by a cylinder embedded in an homogeneous half-space.
They all illustrate the enhanced geometrical flexibility of the TSEM. This clearly suggests
the need of further investigations in computational seismology specifically targeted towards
efficient implementations of the TSEM both in the time and the frequency domain.

Key words: elastic waves, numerical simulation, spectral element method, triangular un-
structured grids.

1 I N T RO D U C T I O N

Many problems in geophysics need to infer the physical and chem-

ical parameter distributions of the Earth’s interior from informa-

tion provided by seismic wave propagation through complex me-

dia. Moreover, numerical simulations of earthquake-induced wave

propagation within heterogeneous geological structures have im-

portant implications in terms of earthquake risk assessment and of

strong motion predictions. Continuous improvements during the last

decades, both in terms of acquisition techniques and seismic network

density, lead today the possibility of exploiting new information

provided by high-resolution multicomponent seismograms, over a

wide range of frequencies. The development of new seismic inter-

pretation methods, which take advantage of these high-resolution

∗Presently at: Laego-INERIS, Laboratoire Environnement Géomécanique

et Ouvrages, Ecole des Mines de Nancy, France.

observations, requires accurate numerical modelling tools for the

simulation of the complete waveform field in heterogeneous geo-

logical media with complex geometries.

Recent developments towards high-order numerical modelling of

seismic wave propagation (Seriani et al. 1992; Maggio et al. 1996;

Faccioli et al. 1997; Komatitsch & Vilotte 1998; Komatitsch et al.
1999; Komatitsch & Tromp 1999; Komatitsch et al. 2000, 2001;

Chaljub et al. 2003; Capdeville et al. 2003; Komatitsch et al. 2004)

have been based on spectral element techniques (Patera 1984; Maday

& Patera 1989; Bernardi & Maday 1992). There are several reasons

for using spectral elements in computational seismology. First, by

means of piecewise continuous geometrical maps, spectral elements

have higher geometrical flexibility than spectral or pseudo-spectral

methods, which are mainly confined to smooth problems defined

on simple domains that can be mapped onto the nd-cube (where

nd is the space dimension), while retaining the spatial exponential

convergence for locally smooth solutions with quasi-optimal disper-

sion errors. Second, like low-order finite elements, spectral elements

are based on the weak form of elastodynamics that involve only
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first-order spatial derivatives. The weak formulation has the nice

property to handle naturally both interface continuity and free-

boundary conditions, allowing very accurate resolution of evanes-

cent interface and surface waves that are of major interest in seismol-

ogy. Finally, spectral elements are much easier to implement than

global spectral methods on today’s generation parallel computers,

which involve non-uniform distributed access to the memory.

Previous work with spectral element method (SEM) in computa-

tional seismology typically used explicit time stepping and quadri-

lateral elements, with a clever choice of the polynomial basis for the

function expansion based on the Legendre family of Jacobi polyno-

mials, and with a set of non-uniform collocation points defined as the

Gauss–Lobatto–Legendre (GLL) cardinal points with the associated

quadrature. Moreover, quadrangles allow the use of a tensor prod-

uct to construct the Lobatto–Legendre cardinal interpolation basis

(Bernardi & Maday 1992; Deville et al. 2002) in such a way that the

mass matrix remains diagonal with a time-step restriction scaling

as O(N−2), where N is the order of the polynomial basis, while the

derivatives can be calculated using an efficient sum-factorization

technique (Orszag 1980) at a cost of only O(E N α) with α = 3 and

α = 4 for 2-D and 3-D problems, respectively, and E the number

of elements. Apart from that, this method inherits the nice property

of the associated GLL quadrature allowing for the exact integra-

tion of polynomial functions of order 2N − 1, with only N + 1

points. Finally, straightforward C0 continuity of the kinematic field

can be insure while using conforming quadrangle meshes thanks

to the local conforming maps and the cardinal Lobatto–Legendre

interpolation basis.

The need for geometric flexibility is especially important in com-

putational seismology when dealing with complex wave phenom-

ena, such as the scattering by rough topographies of the Earth and

sea bottom surfaces, or the seismic response of sedimentary basins

with complex structures and fault geometries. Today, such flexibil-

ity is hardly achieved when using quadrangles for several reasons.

First, when using non-conforming grids, continuity between mis-

matched elements must be enforced in a variational sense by re-

sorting to the so-called mortar method (Bernardi et al. 1994; Ben

Belgacem 1999), which adds both programming complexity and

operation costs. Second, when resorting to unstructured meshes,

that is meshes referenced using only one index, very few robust

grid-generation software based on hexahedra are available today

and all of them have difficulties to handle rapid multiscale mesh

refinements and de-refinements. Third, the stability of explicit nu-

merical schemes can be strongly affected when using quadrangles

that are highly skewed, leading to non-uniform resolution and severe

time-step restrictions. Higher geometrical flexibility is, therefore, a

strong motivation for exploring the use of triangular elements and

unstructured meshes, an extension that has been investigated by

hp-finite element methods in these last decades using multivariate

Lagrangian interpolation (Chen & Babuska 1995).

Extension of SEMs to unstructured triangular meshes hinges upon

the application of more complex polynomial basis specifically tai-

lored to accurately approximate smooth functions defined on the

nd-simplex. Drawing on ideas from Orszag’s work on spherical har-

monics (Orszag 1974), and on orthogonal polynomial basis initially

derived by Proriol (1957) and Koorwinder (1975), Dubiner (1991)

first overcame these difficulties and obtained a tensor-product-like

spectral method for triangles based on Jacobi polynomials. In the

construction of such orthogonal polynomial basis, Dubiner makes

use of a non-rotational collapsed coordinate system, induced by the

mapping of each triangular region to a rectangle, and of the gen-

eralization of the direct tensor products by the so-called warped

tensor product. Dubiner’s basis has been extended to incompress-

ible Navier–Stokes equations in 3-D by Sherwin & Karniadakis

(1995a,b); Karniadakis & Sherwin (1999), and to geophysical fluid

dynamics problems by Wingate & Boyd (1996).

One possible approach relies on a modal hierarchical approx-

imation that has been extensively investigated by Sherwin &

Karniadakis (1995a,b, 1996); Karniadakis & Sherwin (1999). This

approach makes use of an almost orthogonal approximation basis,

based on the modification of the original Dubiner’s basis, which

separate interior and boundary contributions, in order to insure C0

continuity between the triangular subdomains. This so-called mod-

ified Dubiner’s basis (Dubiner 1991), and its interior-orthogonal

variant (Wingate & Boyd 1996), makes use of a triangular polyno-

mial truncation in modes {xnym, m + n ≤ N}, where N is the global

polynomial order of the expansion, together with an efficient warped

tensor product and a Gauss-type quadrature formula defined on a

squared-grid of points. This allows the backward transform to be

still computed in O(E N 4) in 3-D, and the forward transformation in

O(E Nq ), where Nq is the order of the quadrature. All the computa-

tions are done in the modal space. However in practice, as noted in

Hesthaven & Teng (2000), the quadrature formula is oversampled,

it uses more grid points than required by the order of the polyno-

mial basis. Even though the added complexity in the expression of

the modified basis allows for C0 continuity between the triangular

elements, such a construction still depends on the orientation of

the local coordinate system of the contributing elements. Moreover,

the partial orthogonality of the basis destroys much of the spar-

sity of the SEM matrices and leads to a non-diagonal mass matrix

(Warburton et al. 1999).

We investigate a second approach based on a nodal approxima-

tion (Taylor et al. 2000; Warburton et al. 2000; Hesthaven & Teng

2000; Bos et al. 2001). As in classical SEM, resorting to multivari-

ate Lagrange polynomial interpolation allows straightforward C0

continuity between triangular elements. It is worth noting here that

a modal expansion can always be represented as a Lagrange poly-

nomial expansion of equivalent order, defined on an appropriate set

of points, a fact efficiently used in classical SEM on the nd-cube.

The central part is however the identification of an appropriate set

of nodal points on the nd-simplex that ensures good behaviour of

the interpolating polynomials. While, in contrast to the nd-cube,

the identification of an optimal set of nodal points remains an open

problem in the general case, significant progress has been recently

made (Chen & Babuska 1995, 1996; Taylor & Wingate 2000; War-

burton et al. 2000; Hesthaven & Teng 2000; Heinrichs 2005; Blyth

& Pozrikidis 2005), that allows for the construction of well-behaved

high-order approximations of smooth functions defined on the nd-

simplex. Unfortunately, these approximations have no underlying

tensor-product construction. The computational complexity, for ex-

ample, the spatial derivatives computation, scales asymptotically as

O(E N 2nd ), which becomes prohibitive for large N . However, for

small values of N as used in classical SEM, for example, N ≤ 8, the

formulation can still be efficient.

Another important issue is the structure of the associated weight

matrix. Classical SEM applications in computational seismology

are generally explicit and make efficient use of the discrete orthog-

onality of the Lagrangian basis on the nd-cube with respect to the

inherited GLL discrete inner product. In the case of the Triangu-

lar Spectral Element Method (TSEM), such an interesting property

can only be preserved by resorting to a quadrature formula using the

same grid of nodal points than the one used to define the Lagrangian

interpolation basis at the cost of a low-order quadrature. This ac-

curacy loss in the weight matrix has been shown (Komatitsch et al.
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2001) to produce unacceptable dispersion errors in the simulation

of elastic wave propagation.

Here, we explore the use of the unstructured triangle based SEM

introduced in Taylor & Wingate (2000) and Warburton et al. (2000),

relying on the use of the Dubiner’s polynomials (Koorwinder 1975;

Dubiner 1991) and multivariate Lagrangian interpolation based on

Fekete points (Taylor & Wingate 2000; Hesthaven & Teng 2000),

for 2-D seismological applications in time domain with special at-

tention to dispersion errors. It is worth mentioning similar type

of studies that have been recently conducted independently by

Pasquetti & Rapetti (2004) in the context of Helmholtz equations,

and Giraldo & Warburton (2005) in geophysical fluid dynamics.

The organization of the paper is as follows. After introducing the

elastodynamic problem and its variational formulation in Section 2,

Section 3 presents the geometrical and functional discretization of

the problem within the context of triangular spectral elements, and

some of the actual issues of the TSEM formulation are reviewed.

The TSEM is first explored in Section 4 by solving canonical ex-

amples of 2-D elastic wave propagation allowing for comparisons

with analytical solutions and classical SEM solutions. Finally more

realistic 2-D numerical examples, such as the scattering by an elastic

cylinder in a homogeneous half-space, and the elastic wave propa-

gation in a layered medium are provided in Section 5 to illustrate

the enhanced geometrical flexibility of the TSEM. The paper ends

up with a discussion of further research directions.

2 T H E E L A S T O DY N A M I C P RO B L E M

Let us consider an elastic medium occupying an open domain Ω ⊂
Rnd bounded by a smooth boundary ∂Ω with Ω̄ = Ω ∪ ∂Ω, and

a time interval of interest I = [0, T ] ⊂ R+. The displacement

field is denoted by u : Ω̄ × I → Rnd , and the velocity field by

v(x, t) = u̇(x, t) where the dot symbol indicates a differentiation

with respect to time.

The Euler–Lagrange equations of elastodynamics may be written

as

ρ
∂2u

∂t2
= div[σ] + f , (1)

with the initial conditions

u(x, 0) = u0(x) and v(x, 0) = v0(x), (2)

and, for sake of simplicity, let us consider only the following free-

surface boundary condition

σ(x, t)·n(x) = 0 on ∂�, (3)

where ρ(x) denotes the reference mass density. The symmetric

Cauchy stress tensor is denoted by σ : Ω̄ × I → S ⊂ Rnd ×nd where

S is the subspace of symmetric second-order tensors of dimension

nd(nd + 1)/2. For linear elastic medium,

σ = C : ε = C : ∇u, (4)

where the linearized elastic stiffness tensor C(x) is symmetric, with

minor and major symmetries, and positive definite restricted to S.

The infinitesimal strain tensor is denoted ε ∈ S and is defined as,

ε[u]
.= ∇su = 1

2
[∇u + (∇u)T ]. (5)

Although the method can be applied to general anisotropic media, in

the present work only linear isotropic elasticity will be considered,

Ci jkl = λ δi jδkl + μ (δikδ jl + δilδ jk), (6)

with λ and μ the Lamé constants of the medium.

Finally, in the following f is either a collocated force,

f (x, t) = Fδ(x − xs)G(t − t0), (7)

where F ∈ Rnd is the vector of the force amplitude components; or

a generalized body force, that is, it can be expressed as f = div[m],

where m ∈ S is the symmetric second-order moment tensor, with

classically

m(x, t) = −Mδ(x − xs)G(t − t0), (8)

where M ∈ S, δ(·) is the Dirac delta function, and G(·) the source

time function.

A variational formulation of the elastodynamic problem can be

obtained by introducing the space of admissible kinematic fields

(displacement or velocity) fields, as

St := {u(x, t):Ω × I → Rnd | u ∈ H 1(Ω)nd , ∀t ∈ I}, (9)

where H 1(Ω)nd denotes the space of vector fields defined on Ω that

are square integrable and have square integrable first-order partial

derivatives in space, over the domain Ω. Considering the associated

space of kinematic field variations at each time t, δS := {w(x):Ω →
Rnd | w ∈ H 1(Ω)nd }, the variational formulation leads to search for

u ∈ S t such that ∀w ∈ δS and ∀t ∈ I(
w, ρ

∂2u

∂t2

)
= (w, f ) − A(w, u), (10)

with the initial conditions

(w, u(x, 0)) = (w, u0) and (w,v(x, 0)) = (w,v0), (11)

and where the inner products refer to standard L2 and energy inner

products:

(w, u) =
∫
Ω

w·u dΩ, A(w, u) =
∫
Ω

∇w:C :∇u dΩ.

3 D I S C R E T I Z AT I O N O F T H E

E L A S T O DY N A M I C P RO B L E M

In the following, for sake of simplicity, we shall restrict the presen-

tation to the 2-D case even though generalization to 3-D is straight-

forward.

3.1 Geometrical discretization

The original physical domain Ω̄ is approximated by a decomposition

into ne non-overlapping polygonal subdomains Ω̄e as

Ω̄ ≈ Ω̄
h =

ne⋃
e=1

Ω̄e and Ωe ∩ Ωe′ = φ if e 
= e′. (12)

While classical SEM are based on a quadrangular domain decom-

position, we shall assume here a domain decomposition based on

simple straight-sided subdomains Ω̄e allowing for a conforming un-

structured triangulation Ih of Ω̄. It is worth noting here that such

a triangulation is consistent with most of the modelling tools used

in subsurface geophysics and allows to handle complex geological

structures.

Straight-sided triangular subdomains Ω̄e ∈ Ih(Ω̄) can be linearly

transformed, see Fig. 1, into the reference simplex,

T 2 = {(r, s) ∈ � | r + s ≤ 0}, (13)

where � = 
 × 
, with 
 = [−1, 1], is the unit quadrangle. The
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Figure 1. Affine transformation Fe from an arbitrary straight-sided trian-

gular element Ω̄e to the reference simplex T 2.

locally compatible invertible map Fe:Ω̄e → T 2, is an affine map

defined as

x(r, s) = F−1
e (r, s) = − (r + s)

2
v1 + (1 + r )

2
v2 + (1 + s)

2
v3, (14)

where v1, v2, v3 are the position vectors of the three vertices of

Ω̄e. It is worth noting here that such a map yields to a constant

Jacobian Je = | ∂(xy)

∂(rs)
| over each subdomain, an essential feature for

the remaining.

The variational formulation of the elastodynamic can be restated

by simply replacing Ω̄ with Ih(Ω̄), together with the inner products:

(w, u) =
ne∑

e=1

∫
Ω̄e

we·ue dΩ,

A(w, u) =
ne∑

e=1

Ae(we, ue) =
ne∑

e=1

∫
Ω̄e

∇we:C :∇ue dΩ, (15)

where ue and we denotes the restriction of u and w, respectively, to

Ω̄e, that is ue: = u|Ω̄e
: Ω̄e × I → Rnd .

3.2 Piecewise polynomial approximation

Associated with the triangulation Ih , let us consider a piecewise

polynomial approximation of the kinematic fields with the finite

dimensional subspaces

Sh
t ⊂ St = {

uh ∈ St , and uh |Ω̄e
◦ Fe ∈ PN (T 2)

}
, (16)

δSh ⊂ δS = {
wh ∈ δS, andwh |Ω̄e

◦ Fe ∈ PN (T 2)
}
, (17)

where PN (T 2) denotes the space of polynomials of degree less or

equal to N and defined on the reference simplex T 2, that is,

PN (T 2) = {rnsm ; n, m ≥ 0, n + m ≤ N }. (18)

An appropriate starting point in developing the multidimensional

expansion is to construct a system of orthogonal polynomials, with

respect to the L2 inner product, on the reference simplex T 2. Interest

in orthogonal polynomials originates from the fact that they naturally

define a complete basis and allow for a straightforward computation

of their derivatives.

In classical SEM this is readily achieved by resorting to a tensor

product construction of one-dimensional Jacobi polynomials pα,β
n

of degree n, depending of two real parameters α and β with α, β >

−1 (Abramowitz & Stegun 1972). These are the only polynomial

eigenvalue solutions of a singular Sturm–Liouville problem over


, allowing for spectral accuracy as shown by Gottlieb & Orszag

(1977). Such a tensor product construction is rooted in the bounded

definition of the reference domain � = 
 × 
 in a Cartesian co-

ordinate system. However, the reference simplex domain T 2 does

not naturally inherit that property since the bounds of the Cartesian

coordinates (r , s) are dependent on each other.

To develop a suitable tensorial type basis for unstructured trian-

gular regions, a new coordinate system is introduced where local

coordinates have independent bounds. This can be achieved while

using the so-called collapsed coordinate system Karniadakis &

Sherwin (1999), a non-rotational coordinate system resulting from

the singular mapping,

η = 2
(1 + r )

(1 − s)
− 1, (19)

ζ = s, (20)

with like in classical SEM,

T 2 = {(η, ζ ) | (η, ζ ) ∈ �}. (21)

Such a mapping introduces a non-physical singularity at (−1, 1)

much like cylindrical or spherical coordinate systems.

3.2.1 Spectral expansion

Drawing on ideas from Orszag’s work on spherical harmonics

(Orszag 1974), Dubiner (1991) first constructed an orthogonal poly-

nomial basis in two dimensions that takes advantage of the orthog-

onality of Jacobi polynomials and which was further extended to

3-D by Sherwin & Karniadakis (1995a), Karniadakis & Sherwin

(1999). Dubiner’s basis has been shown to be related to the poly-

nomial solution of a separable Sturm–Liouville eigenvalue problem

defined on T 2 achieving spectral accuracy (Owens 1998). Dubiner’s

orthogonal basis is given by

�nm(r (η), s(ζ )) = p0,0
n (η)

(
1 − ζ

2

)n

p2n+1,0
m (ζ ), (22)

where (η, ζ ) are the collapsed coordinates, and by definition pα,β

k is

the kth-order Jacobi polynomial defined on 
 and orthogonal with

respect to L2
w inner product,〈

pα,β

k , pα,β

l

〉w =
∫




w(x)pα,β

k pα,β

l dx = δkl h
α,β

k , (23)

with

w(x) = (1 − x)α(1 + x)β, (24)

hα,β

k = 2α+β+1

2k + α + β + 1

�(k + α + 1)�(k + β + 1)

k! �(k + α + β + 1)
, (25)

where �(·) denotes the Gamma function (Abramowitz & Stegun

1972).

The basis may be cast as the product of two polynomials in the

(η, ζ ) coordinates

�nm(r, s) = �1
n(η)�2

nm(ζ ), (26)

where �1
n(η) = p0,0

n (η) is the Legendre polynomial of degree n,

and �2
nm(ζ ) = ( 1−ζ

2
)n p2n+1,0

m (ζ ) a polynomial introduced to main-

tain the orthogonality of the triangular basis. The Jacobi polyno-

mial pα,0
k has zeros that are declustered away from ζ = −1 for

increasing α, an important feature for maintaining the linear in-

dependence of the expansion and for well-conditioning numerical

systems (Karniadakis & Sherwin 1999). Such factorization of 2-D

functions, as the product of a principal function �1
n and a tensorial

function �2
nm different for each principal function, is referred by

Dubiner as a warped tensor product and results from the decom-

position of the commutative algebra over T 2 into two independent
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Triangular Spectral Element Method on unstructured grids 683

linear subspaces. The warped product construction is an extension

of the classical direct tensor product that retains the numerical ef-

ficiency of the sum-factorization process. The set of polynomials

�nm defined a complete orthogonal polynomial basis with respect

to the uniform Legendre inner product thanks to the factor ( 1−ζ

2
)n ,

〈�pq , �kl〉T 2 =
∫ 1

−1

∫ −s

−1

�pq (r, s) �kl (r, s) dr ds

= γpqδpkδql , (27)

with the normalization constant,

γpq = 2

(2p + 1)

1

(p + q + 1)
. (28)

Let us consider PN (T 2) = span{�nm}(n,m)∈M , where M = {(n, m) ;

0 ≤ n, m ≤ N , n + m ≤ N}. The cardinality of this set is N =
(N + 1)(N + 2)/2, and the truncated spectral expansion PN u at

degree N of any function u ∈ L2(T 2) is given by

PN u(r, s) =
N∑

n=0

N−n∑
m=0

ûnm �nm(r, s), (29)

where {ûnm}(n,m)∈M denotes the modal coefficients of the spectral ex-

pansion of u in the Dubiner’s basis. Taking into account the orthog-

onality relationship, yields to the relations ûnm = 1
γnm

〈u , �nm〉T 2 ,

and 〈u − PN u , �〉T 2 = 0, ∀� ∈ PN (T 2) which simply express

that PN u is the orthogonal projection of u onto PN (T 2) with respect

to the Legendre inner product.

3.2.2 Lagrangian interpolation

The orthogonality of the previous Dubiner’s basis is attractive, but

the impact of using such spectral expansion is that all modes are

needed to evaluate PN u pointwise. Moreover, for the actual reso-

lution of the elastodynamic problem such an expansion has to be

tesselated while maintaining a C0 continuity between subdomains of

the triangulationIh and boundary conditions must be approximated.

This is not easily handled using the modal spectral expansion, and re-

quires splitting into interior and boundary modal contributions with

the penalty that the modified expansion basis becomes only semi-

orthogonal and leads to higher computational complexity (Sherwin

& Karniadakis 1995a; Wingate & Boyd 1996).

Another possible way is to resort, like in classical SEM, to a La-

grangian interpolation approximation (Bos et al. 2001; Taylor et al.
2000; Taylor & Wingate 2000; Warburton et al. 2000; Hesthaven &

Teng 2000) based on a set of nodes defined inside and on the edges

of the reference simplex. Function continuity is easily enforced

by equating coincident nodal values at the nodes shared between

subdomains.

The actual construction of a multivariate Lagrangian interpola-

tion relies on the introduction of a complete polynomial basis. Let

IN u ∈ PN (T 2) be the multivariate Lagrangian interpolation poly-

nomial of u(r, s) ∈ L2(T 2), defined by a set of N nodes that we

shall discuss later, then using the complete Dubiner’s polynomial

basis of eq. (22), we can write

IN u(r, s) =
N∑

n=0

N−n∑
m=0

ũnm�nm (r, s) . (30)

Using the interpolation condition,

IN u(rk, sk) = u(rk, sk) 1 ≤ k ≤ N , (31)

leads to the inverse discrete spectral transform (Karniadakis &

Sherwin 1999)

u(rk, sk) =
N∑

n=0

N−n∑
m=0

�nm(rk, sk)ũnm

=
N∑

n=0

N−n∑
m=0

Vknmũnm =
N∑
j=1

Vkj ũ j , (32)

where in the last term an ordering of the modal coefficients ũ j and the

polynomial basis has been introduced for sake of simplicity, using

a one-to-one relation j : = j(n, m). The generalized Vandermonde

matrix V is defined by the elements Vkj = � j (rk , sk). The associated

discrete spectral transform which determines the modal coefficients

from the prescribed function values u(rk , sk), is therefore given as,

ũl =
N∑

k=1

V −1
lk u(rk, sk). (33)

Defining the cardinal Lagrangian function basis {�i }Ni=1 of PN (T 2),

which satisfies � i (rj, sj) = δ i j, yields the canonical form of the

interpolation polynomial

IN u(r, s): =
N∑
j=1

u(r j , s j )� j (r, s). (34)

Combining eqs (30) and (34), and using eq. (33) leads to the genuine

form of the multivariate Lagrangian interpolation functions as

�i (r, s) =
N∑
j=1

V −T
i j � j (r, s), with V −T

ik = 1

γk
〈�i , �k〉T 2 . (35)

Taking into account the completeness property of the Dubiner’s

basis, any function of L2(T 2) can be decomposed into the formal

series

u(r, s): =
∞∑

k=1

ûk�k(r, s). (36)

Inserting the spectral expansion of eq. (36) in the right-hand side of

the discrete spectral transform (33) yields

ũk =
N∑
l=1

V −1
kl

∞∑
j=1

û j Vl j =
∞∑
j=1

û j

N∑
l=1

V −1
kl Vl j

= ûk +
∞∑

j=N+1

û j

N∑
l=1

V −1
kl Vl j , (37)

and, therefore

IN u(r, s) = PN u(r, s) + RN u(r, s), (38)

where RN u is given by

RN u(r, s) =
N∑

k=0

( ∞∑
j=N+1

û j

N∑
l=1

V −1
kl Vl j

)
�k(r, s). (39)

The aliasing error RN u ∈ PN (T 2) due to the interpolation is a

low-order contribution that depends on the high-order terms of the

spectral expansion of u. The interpolation error can be cast as

‖u − IN u‖2
T 2 = ‖u − PN u‖2

T 2 + ‖RN u‖2
T 2 . (40)

For any function u ∈ L2(T 2), the error norm ‖u − IN u‖T 2 is an

upper bound of the truncation error ‖u − PN u‖T 2 and inherits

the spectral decay of Dubiner’s expansion modes ûk with respect

to k.
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3.2.3 Interpolation points and inner products

Actually the interpolation error may be important and a critical issue,

besides the smoothness of the interpolated function, is the choice

of a suitable distribution of nodal points {(rk, sk)}Nk=1 in T 2. For

classical SEM, interpolation in the reference quadrangle � resorts

to the tensor-product construction of a Lagrangian interpolation

basis of PN (
) defined by N + 1 GLL nodes in 
. This yields

close to optimal interpolation properties, with points defined on the

boundary of 
, a key feature for ensuring C0 continuity between

subdomains and to approximate essential boundary conditions. Ex-

tension to non-tensor-product domains, like the nd-simplex, still

involves extensive search for optimal sets of interpolation points

(Bos 1983, 1991; Chen & Babuska 1995, 1996; Hesthaven 1998;

Taylor & Wingate 2000; Taylor et al. 2000; Heinrichs 2005; Blyth

& Pozrikidis 2006), minimizing the constant LN appearing in the

Lebesgue inequality |u − IN u| ≤ (1 + LN )|u − PN u| which pro-

vides a bound of the interpolation error. At this stage, a natu-

ral choice is the Fekete nodal set (Taylor et al. 2000). They can

be computed numerically by maximizing the determinant of the

Vandermonde matrix V , independently of the choice of the ambient

polynomial basis. For quadrangles, Fekete points (Bos 1991; Bos

et al. 2001) are unique and they are given by the tensor-product of

GLL points. For triangles, when the Vandermonde matrix is not sin-

gular, the Fekete points have been conjectured (Bos 1991) to have a

maximum number of points on the boundary of the reference sim-

plex. These boundary points were shown (Bos 1991; Taylor et al.
2000) to be GLL points. This allows to enforce C0 continuity and

to use mixed conforming meshes combining triangles and quadran-

gles (Komatitsch et al. 2001). Fekete points have to be computed

numerically (Bos 1983, 1991; Chen & Babuska 1995; Taylor &

Wingate 2000; Taylor et al. 2000) and are known up to degree N =
19. They are not actually optimal points, for example, they do not

minimize the Lebesgue constant, but exhibit a good behaviour, for

example, L N ≤ N and L N ∝ √
N (Taylor et al. 2000). Moreover,

the Lagrangian functions built on Fekete points are maximum at

these points.

The numerical quadrature associated with the set of interpola-

tion points plays an essential role for collocated spectral methods.

In classical SEM, the set of interpolation points and the associated

numerical quadrature are built by a tensor-product construction of

the GLL points defined on 
, which allow to exactly integrate poly-

nomials of P2N−1 over 
 using N + 1 interpolation points. Together

with the tensor-product construction, this allows to define an uni-

formly equivalent discrete inner product and a discrete orthogonality

structure, an essential property that optimize the spectral transforms

and lead to the popular collocated form of the SEM with a diago-

nal mass matrix. Today it is yet unclear, despite some interesting

progress (Taylor et al. 2005; Heinrichs 2005; Blyth & Pozrikidis

2005), how to define Gauss–Lobatto type of quadratures for non-

tensor-product domains in order to extend collocated SEM with a

diagonal mass matrix to triangles.

A Newton–Cotes quadrature formula can be associated with the

N Fekete points {(rk, sk)}Nk=1. Let � k be the Lagrangian polynomials

of degree N associated with the Fekete points, then the associated

quadrature weights are given by

ωk =
N∑

α=1

ωα�k(rα, sα) =
∫
T 2

�k(r, s) dΩ

=
∫
T 2

(
N∑
j=1

V −T
k j � j (r, s)

)
�1(r, s) dΩ = γ1 V −T

k1 , (41)

where the orthogonality of the Dubiner’s basis has been used and

�1 is the uniformly constant polynomial �1(r , s) = 1, with γ 1 =
γ 00 = 2 from eq. (28). By construction, the N Fekete points and the

associated weights {ωk}Nk=1 give a formula which exactly integrates

a polynomial of PN (T 2), a minimal result.

In terms of the modal coefficients of the Dubiner’s expansion, the

L2 inner product yields

〈IN u, IN v〉T 2 =
∫
T 2

IN u(r, s) IN v(r, s) dΩ

=
∫
T 2

(
N∑
j=1

ũ j � j (r, s)

) (
N∑

i=1

ṽi �i (r, s)

)
dΩ

=
N∑

i=1

ũi γi ṽi = ũ
−

T Γ ṽ
−
, (42)

where Γ is the diagonal matrix that denotes the Dubiner’s metric,

Γi j = γ iδ i j .

In terms of the Lagrangian basis built on the Fekete points, and

denoting ui = u(ri, si) the function evaluation at the Fekete points,

the L2 inner product yields

〈IN u, IN v〉T 2 =
〈

N∑
j=1

u j � j (r, s) ,

N∑
i=1

vi �i (r, s)

〉
T 2

=
N∑
j=1

N∑
i=1

u j

(
N∑
l=1

V −T
jl γl V

−1
li

)
vi

= u
−

T Wv
−
, (43)

where u
−

denotes the vector that gather all the Fekete point values of

u, for example, u
−

= {u1, . . . , uN }. Finally, the matrix W denotes

the inner product metric, for example, W =V−T ΓV−1.

Taking into account eqs (41) and (43), the quadrature weights can

also be written as

ωk = 〈�k, �1〉T 2 =
N∑
l=1

Wkl , (44)

and the discrete inner product associated with the Newton–Cotes

quadrature formula yields

〈IN u , IN v〉N =
N∑

α=1

ωα uα vα =
N∑

α=1

uα

(
N∑

β=1

Wαβ

)
vα

= u
−

T W̃ v
−
, (45)

where W̃ is the lumped diagonal matrix associated with W .

This collocated form used in Komatitsch et al. (2001) is how-

ever a minimal result since, using the Newton–Cotes quadrature,

such a form is only exact if the integrand belongs to PN . This lack

of accuracy of the Newton–Cotes quadrature associated with the

Fekete points can have dramatic effect when using a diagonal mass

formulation with the loss of the spectral convergence (Pasquetti

& Rapetti 2004). It is worth noting here that improved multivari-

ate quadrature points have been recently proposed by Taylor et al.
(2005) to increase the strength of the numerical quadrature. However

the new quadrature points do not coincide with the Fekete points,

defined for interpolation and C0 continuity, and therefore, do not

provide for an extension of the collocated spectral element formula-

tion to triangles but open interesting perspectives for more general

curved triangulations and non-uniform material properties within a

triangle.
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3.2.4 Spectral element discretization

Within the framework of an unstructured triangulation Ih(Ω) based

on straight-sided triangles, the scalar product can be written as

(wh, ρuh) =
ne∑

e=1

∫
Ωe

ρewhe ·uhe dΩ, (46)

where uhe := uh |Ωe denotes the restriction of the discrete approxi-

mation uh to the element Ωe, with uhe ◦ Fe ∈ PN (T 2).

Assuming piecewise constant material density ρe within the tri-

angulation,∫
Ωe

ρewhe ·uhe dΩ = ρe J e

∫
T 2

whe (r, s)·uhe (r, s) dT 2

= ρe J e
2∑

k=1

〈
w

he
k , uhe

k

〉
T 2

=
2∑

k=1

wk
−

heT Me uk
−

he , (47)

where uk
−

he denotes the vector that gather the values of uhe
k at the

N Fekete points and Me = ρe J eW is an N × N matrix. Denoting

u
−

he := (u1
−

he , u2
−

he ), one gets∫
Ωe

ρewhe ·uhe dΩ = w
−

he T Me u
−

he , (48)

where Me denotes the element mass matrix with Me = I2⊗Me, and

I 2 is the 2 × 2 identity matrix. This induces a vector space norm that

plays the role of the usual unweighted L2 norm. It is worth noting

here that in contrast with classical SEM, the element mass matrix is

only block diagonal but it is exactly computed.

On the other hand, the bilinear form

A(wh, uh) =
ne∑

e=1

∫
Ωe

∇whe :Ce:∇uhe dΩ, (49)

requires the evaluation of Cartesian derivatives. In the reference

simplex, derivatives can be readily computed making use of the

Dubiner’s orthogonal basis as

∂r uhe
k (ri , si ) =

N∑
j=1

ũe
k j∂r� j (ri , si )

=
N∑
l=1

uhe
k (rl , sl )

N∑
j=1

V −1
jl ∂r� j (ri , si ), (50)

denoting Dr
ij = ∂ r� j (ri, si), then

∂r uk
−

he = Dr V−1uk
−

he . (51)

Making use of the affine geometrical mapping F e, the Cartesian

derivatives can be readily computed

D̄
l = (Dr r,l + Ds s,l ) V−1, (52)

where r ,l , and s ,l refers to the geometrical derivatives constants

within each Ω̄e. Assuming piecewise constant stiffnesses Ce
ijkl within

the triangulation, the bilinear form is written as

A(wh, uh) =
ne∑

e=1

J e
nd∑

i jkl=1

wi
−

he T
(
D̄

jT
Ce

i jkl W D̄
l)

uk
−

he . (53)

The external force term (wh, f h), in the case of a collocated force

(7), follows from eq. (46), while in the case of a generalized body

force (8) it follows from eq. (53).

Finally the construction of Sh
t and δSh is completed by impos-

ing C0 continuity between the subdomains of Ih . One of the ma-

jor advantages of the multidimensional Lagrangian basis (35) built

on Fekete points, is that function continuity is easily enforced by

equating nodal values of the functions uk
−

he shared on the boundary

of adjacent subdomains. The associated global numbering results

from numbering only once nodes that are counted twice or more

times when lying on a vertex or an edge of adjacent subdomains.

Let us denote N̄ , the number of global degrees of freedom, that is,

the number of distinct nodes of Ih , and U
−

h ∈ RndN̄ , the vector form

associated with the global numbering. Using the preceding results,

the discrete variational form of the elastodynamics problem leads

to a system of ordinary algebraic differential equations which can

be written in standard form as follows,

M
∂2

∂t2
U
−

h = Fext − Fint(U
−

h), (54)

where M denotes the (ndN̄ ) × (ndN̄ ) global mass matrix, and

Fext, Fint the source and internal force vectors, respectively. The

global mass matrix and vector forces are assembled from the ele-

ment contributions as

M = Ane
e=1M

e , Fext = Ane
e=1 F

−
ext,e , Fint = Ane

e=1 F
−

int,e, (55)

where Ane
e=1 denotes the classical assembling operator, the action of

which is the summation of the entries of coincident nodal values,

and

F
−

ext,e = (
F1
−

ext,e , F2
−

ext,e
)
, F

−
int,e = (

F1
−

int,e, F2
−

int,e
)
, (56)

where Fi
−

int,e and Fi
−

ext,e are element N -vectors. The internal forces

result from the variation of the bilinear form (53) and are written as

Fi
−

int,e = J e
nd∑

jkl=1

(
D̄

jT
Ce

i jkl W D̄
l)

uk
−

he . (57)

3.3 Time discretization

The semi-discrete momentum equation is simply enforced at time

t n+1 using a classical Newmark stepping scheme (Hughes 1987;

Zienkewicz & Taylor 1989),

M Ah
n+1
−

= Fext
n+1 − Fint

(
U h

n+1
−

)
, (58)

U h
n+1
−

= U h
n

−
+ �tVh

n
−

+ �t2

[(
1

2
− β

)
Ah

n
−

+ β Ah
n+1
−

]
, (59)

Vh
n+1
−

= Vh
n

−
+ �t

[
(1 − γ )Ah

n
−

+ γ Ah
n+1
−

]
, (60)

where U h
n+1
−

, Vh
n+1
−

and Ah
n+1
−

denotes the global displacement, ve-

locity and acceleration fields at time t n+1, respectively. The only

member of the classical Newmark family that preserves exactly

conservation of total angular momentum is the explicit central dif-

ference method obtained for β = 0 and γ = 1/2. This scheme is used

hereafter for all the numerical simulations. Such an explicit scheme

is second-order conditionally stable (Hughes 1987). The Courant

condition to be satisfied for time steps is

�t

[
Vp

�x

]
max

≤ ch < 1, (61)
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where �t the time step, Vp is the P wave velocity and �x is the min-

imum distance between interpolation points. The stability value ch

depends on the mesh geometry. Experience has shown that a value

of ch = 0.5 is good enough to keep the simulations on unstructured

meshes stable. In contrast with classical SEM, the resolution phase

requires now solving the linear system of eq. (58) since the ana-

lytical mass matrix M is no more diagonal. Although this matrix

is very sparse (≈1 per cent of non-zero entries), it may have full

bandwidth depending on mesh connectivity. Since the goal of this

study was only to explore the accuracy and the flexibility of unstruc-

tured TSEM, no attempt was made here to optimize the conditioning

of the global mass matrix. For the iterative resolution of the linear

system, a simple preconditioned conjugate gradient method with

a Jacobi pre-conditioner was used. In all the numerical examples

presented in this work, 5 to 10 iterations of the conjugate gradi-

ent algorithm were found satisfactory, for example, with a relative

residual error of 10−4, even for long time evolutions. Clearly more

evolved approaches remain yet to be explored in the context of elas-

todynamics, such as the overlapping Schwarz method proposed by

Fisher (1997) that may allow less stringent stability criteria for the

time stepping.

4 N U M E R I C A L E X A M P L E S

4.1 Bi-periodic elastic wave propagation in an

homogeneous medium

4.1.1 A comparison with classical SEM

A simple example of 2-D elastic wave propagation in homogeneous

medium is first considered to investigate the long term stability and

accuracy of the unstructured TSEM and to compare with classical

SEM based upon structured quadrangular elements. The dimen-

sions of the problem are shown in Fig. 2, with P wave velocity Vp =
3200 m s−1, S wave velocity Vs = 1847.5 m s−1 S and a mass den-

sity of 2200 kg m−3. The source is an explosive point source located

exactly at the centre of the domain with a Ricker time wavelet of

16 Hz central frequency (f 0). The computational domain is subdi-

vided in a structured grid of 40 by 40 quadrangular elements of 50 m

side, which are subdivided using the diagonal of each element to cre-

ate a mesh of triangular elements as shown in Fig. 2. A polynomial

order of 5 is used for the interpolation, and therefore, both global

grids, for example, the Gauss–Lobatto grid for quadrangular ele-

ments and the Fekete grid for triangular elements, have the same

Figure 2. (Left) Schema of the homogeneous domain with bi-periodic

boundary conditions. Source and receiver locations are shown. (Right) De-

tail of structured meshes. Global interpolation points with polynomial order

of 5. Fekete points (•) used in this study, Gauss–Lobatto–Legendre points

(×) used in classical SEM. Note that both set of points coincide at element’s

edges.

0 0.5 1 1.5 2
time (s)

Analytique
Residuals*5 triangular elements
Residuals*5 quadrangular elements

Analytical
Residuals*5 triangular elements
Residuals*5 quadrangular elements

Figure 3. Horizontal component of the displacement field at receiver 1.

Residuals between analytical and numerical solutions are amplified by a

factor of 5. The vertical component is exactly similar (not shown).

number of 40401 interpolation points. In Fig. 2 both set of interpo-

lation points are shown to coincide at the element edges. The number

of points per minimum wavelength λmin = Vs/ f max with f max = 2.5

f 0 is between 4 and 5, which is the accuracy lower limit when using

classical SEM (Seriani et al. 1992; Komatitsch & Vilotte 1998).

Bi-periodic boundary conditions are imposed to propagate waves

several times through the grid and a time step �t = 0.5 ms is used,

corresponding to a Courant number of 0.3. Simulations have been

performed on the triangular mesh and on the quadrangular mesh,

both up to 2 s total time (4000 time steps). Comparison of the hori-

zontal displacement predicted by the TSEM and the classical SEM

for the horizontal component at receiver 1 can be seen in Fig. 3.

Comparison with the analytical solution shows that both methods

perform well even for waves travelling several times through the

computational mesh, for example arrivals later than 0.5 s.

4.1.2 Unstructured triangulation

The main advantage of triangular elements is to resort to unstruc-

tured meshes for the discretization of complex geometries. In this

section we assess the performance of the TSEM when using an un-

structured mesh built with the help of the mesh generator Triangle
of Shewchuk (1996). It is worth noting here that for homogeneous

media, this mesh generator does not seem to be optimal, for ex-

ample, it does not generate equilateral triangles within an homoge-

neous medium for bi-periodic boundary conditions. The numerical

example of the previous section is repeated here but now using a

unstructured mesh shown in Fig. 4. This mesh is composed of 3202

triangles and 40426 global grid points, when using polynomial or-

der of degree 5 for the interpolation within each triangular element

(quite similar to the 3200 elements and 40 401 global grid points

used in the structured case). Bi-periodic boundary conditions are

again imposed. Keeping the same source and time parameters as in

the structured case, leads to 5 points per minimum wavelength and a

Courant number of about 0.3. A snapshot of the displacement field

at t = 0.5 s is shown Fig. 4 where no S wave is observed even in the

case of such an unstructured mesh.

As in the previous example, the horizontal component of the

displacement field calculated by the TSEM using the unstructured

mesh is shown in Fig. 5 against the analytical solution. The result

is quite accurate and it compares well with both structured mesh

simulations shown in Fig. 3.

In a second test, both the consistent and the lumped mass TSEM

are compared when using the unstructured triangular mesh. The re-

sults are shown in Fig. 6 where only the first P arrivals are compared

to the analytical solution. The consistent TSEM formulation clearly

exhibits much better accuracy than the lumped mass formulation. A
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Figure 4. Snapshot of displacement at 0.5 s. Source and receiver locations

are also shown. Note the absence of any numerically generated S wave in

spite of the mesh irregularity.

0 0.5 1 1.5 2
time (s)

Analytique
Residuals*5 unstructured mesh

Analytical

Residuals*5 unstructured mesh

Figure 5. Horizontal component of the displacement field at receiver 1.

Residuals between analytical and numerical solution calculated using the

unstructured mesh are amplified by a factor of 5.

clear ringing instability after the P wave arrival can be observed in

the latter case, a fact that was already noticed by Komatitsch et al.
(2001). Nevertheless it is worth mentioning that as expected, the

computational time is greatly reduced by almost a factor of 5 when

using the diagonal mass matrix formulation.

4.2 The Lamb’s problem

The Lamb’s problem (Lamb 1904) is a classical problem for assess-

ing wave propagation algorithms. It involves elastic wave propaga-

tion in an homogeneous elastic half-space due to a point source.

When the source is located just below the free surface, three main

phases are excited: a direct P wave, a direct S wave and a non-

dispersive Rayleigh wave. The physical domain considered here is

a homogeneous half-space with a P wave velocity of 3200 m s−1,

a S wave velocity of 1847.5 m s−1 and a density of 2000 kg m−3.

The numerical model has a width of 4000 m and a depth of 2000 m.

The vertical point source is located just below the surface, at a com-

putational node located at xs = 1500 m and zs = 1950 m, in order

to generate a strong Rayleigh wave. The source time function is a

Ricker wavelet of 10 Hz central frequency leading to a minimum

wavelength of λmin = 74 m.

0 0.1 0.2 0.3 0.4

x–component receiver 1

Time (s)

Analytical
Residuals*10
Residuals*10 quadrature

0 0.1 0.2 0.3 0.4

y–component receiver 1

Time (s)

0 0.1 0.2 0.3 0.4

x–component receiver 2

Time (s)
0 0.1 0.2 0.3 0.4

y–component receiver 2

Time (s)

Figure 6. Horizontal x-component (left) and Vertical y-component (right) of

the displacement field recorded at receivers 1 (top) and 2 (bottom). Residuals

to the analytical solution are amplified by a factor of 10. Note the instabilities

that appear after the P wave arrival while using a quadrature rule for the mass

matrix calculations.

In order to test the spectral convergence of the TSEM, we have

used three different meshes composed of Nel = 628, 2500 and

6882 triangles, with average triangle edges h of 180 m, 105 m and

65 m, respectively. The polynomial degree in each triangle is chosen

from N = 3, 5, 7 and 9. Therefore, the spatial resolution goes from

2.4 points per minimum wavelength (for the coarsest mesh with the

lowest polynomial degree) up to around 9 points per minimum wave-

length (for the finest mesh with the highest polynomial degree). The

snapshots of the displacement field at 0.5 s over each computational

mesh are shown in Fig. 7. In order to minimize time discretization

errors, we fix the Courant number at ch = 0.2 and calculate the time

step for each simulation using eq. (61) and the minimum distance

between nodal points in the corresponding mesh.

The analytical solution for this problem is calculated using the

Cagniard-de Hoop method (de Hoop 1960) for two receivers located

at the free surface in (2200, 2000 m) receiver 1, and (2700, 2000 m),

receiver 2. It is worth mentioning that the accuracy obtained from the

available code to calculate the analytical solution is around 10−3. In

Fig. 8 the comparison between the analytical solution and the TSEM

simulations for the mesh with Nel = 2500 and N = 5, 7 and 9 are

shown. It is clear the rapid convergence to the analytical solution

while augmenting the polynomial interpolation degree. This illus-

trates the high accuracy of the TSEM for simulating Rayleigh wave

propagation even in the case of an unstructured mesh, as shown in

the zoomed image of Fig. 7.

In the following, the error is calculated as an average of the

L ∞ error in the two components of receivers 1 and 2, that is, the

maximum difference between analytical and numerical seismo-

grams in the time window. Fig. 9 shows the semi-log plot of the

error as a function of the polynomial degree N for the three differ-

ent meshes. As expected, the convergence to the analytical solution

is exponential in N for this example, confirming that the overall

error is still dominated by the spatial discretization.

Let suppose we ask the method to simulate Rayleigh waves for

1 s with an error level around 2 per cent. From Fig. 9, two (h, N )

combinations are possible: h = 105, N = 7, or h = 65, N = 5.
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Figure 7. Lamb’s problem. Snapshots of the displacement field at 0.5 s on top of the unstructured meshes with (from left to right) 628, 2500 and 6882 elements.

The direct P wave (P), S wave (S), and the Rayleigh wave (R) can be seen. Vertical point source location and receivers 1 and 2 are also shown.
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Figure 8. Horizontal x-component (left) and Vertical y-component (right) of

the displacement field recorded at receiver 1 (top) and 2 (bottom). Residuals

to the analytical solution are amplified by a factor of 5 for N = 5 and a factor

of 10 for N = 7 and 9. The main arrival corresponds to the non-dispersive

Rayleigh wave.

Both have similar sampling of the wavefield (around 5.6 points per

minimum wavelength) and �ts (around 0.3 ms). The difference

lies on the number of degrees of freedom N̄ in each simulation, a

factor directly related to the computational cost of the algorithm. For

(h, N ) = (105, 7) we obtain 61713, while for (h, N ) = (65, 5) we

obtain 86531. Therefore, the pair with higher interpolation order in

the coarser mesh should be chosen.

5 2 - D N U M E R I C A L S I M U L AT I O N S

More realistic 2-D simulations are now considered to illustrate the

ability of the TSEM to take into account complex geometries using

unstructured triangulations.

5.1 The elastic wedge problem

The problem considered is the reflection and transmission of a

Rayleigh wave at a step of the free surface. This so-called ‘elas-

tic wedge problem’ (Lapwood 1961; Hudson & Knopoff 1964) can

be associated to a fault or a stiff cliff at the free surface. The physical

domain is defined here as a heterogeneous quadrangle of 2000 m

side separated by one of its diagonals into two different elastic me-

dia of different materials properties shown in Table 1. This example
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Figure 9. L ∞ error for three different meshes showing the spectral conver-

gence of the method for the Lamb’s problem.

Table 1. Physical parameters for the elastic wedge problem.

Parameter Material 1 Material 2

P-wave velocity [m s−1] 2500 4000

S-wave velocity [m s−1] 1250 2000

Density [kg m−3] 2000 2200

Rayleigh velocity [m s−1] 1165 1865

illustrates two well-known problems in the simulation of elastic wave

propagation: accurate approximation of interface waves; and strong

velocity contrasts between elastic media. The physical problem is,

therefore, the impinging of a Rayleigh wave into a homogeneous

elastic corner, at the upper left of the domain, and into a hetero-

geneous elastic 45◦ wedge, at the upper right of the domain. The

displacement, velocity and acceleration fields of the unperturbed

Rayleigh wave solution are prescribed initially, and computed ana-

lytically from the solution of the problem in a homogeneous half-

space of Material 1 properties. The time function is chosen here to

be a Ricker wavelet with a 20 Hz central frequency. Two snapshots,

at t = 0.25 s and t = 1.125 s, of the displacement field are shown

Fig. 10. The computational mesh of 2915 spectral elements is su-

perimposed on the same figure. Unstructured triangulations easily

allow for a coarser mesh in the domain of higher seismic velocities,

longer wavelengths, and therefore, for a uniform sampling of 5 in-

terpolation points per minimum wavelength. When using a uniform

polynomial order of 5 in the whole domain, a natural conforming

unstructured mesh is obtained all along the material interface. The

total number of global grid points is 29226, and the elastic wave-

field is propagated for 1.5 s with a time step of 0.25 ms. In Fig. 10

recording stations placed along both corners are also shown. The
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Figure 10. Snapshots of the displacement field at t = 0.25 s (top) and

t = 1.125 s (bottom). In the top one, the incident Rayleigh waves travelling

along the top boundary of the model can be seen. In the bottom one, we can

identify the reflected Rayleigh waves (Rr), the transmitted Rayleigh waves

(Rt) and the Rayleigh to P conversion at the homogeneous corner (P).

corresponding seismograms can be seen in Fig. 11, for the homo-

geneous corner, and in Fig. 12, for the heterogeneous corner. When

the waves hit the corners, complicated patterns of diffracted waves

are generated. In the homogeneous (left) corner, it is essentially

characterized by a P wave conversion, a reflected Rayleigh wave

travelling backwards and a transmitted Rayleigh wave travelling

downwards with an inverted phase as predicted by theory (Lapwood

1961; Hudson & Knopoff 1964), and numerically simulated using

classical SEM in Komatitsch & Vilotte (1998). It is worth noting

here that the Rayleigh wave is non-dispersive as expected and prop-

agates with the right velocity. At the heterogeneous (right) corner,

the diffraction pattern is more complicated due to strong reverber-

ations generated at the wedge and to the dispersive characteristic
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Figure 11. Seismograms of horizontal (left) and vertical component (right) of the displacement field recorded at the homogeneous corner. We identify the

main events of Fig. 10.

of the Rayleigh wave in heterogeneous medium. The converted P
wave, the transmitted Rayleigh wave, of much lower amplitude than

in the homogeneous corner as expected when Material 2 is stiffer

than Material 1, and the reflected dispersive Rayleigh wave, can be

identified.

5.2 Elastic scattering by a cylinder

in a homogeneous half-space

This example illustrates the scattering of a plane wave by an elas-

tic cylinder buried in a homogeneous half-space. Such an example

appears frequently in non-destructive testing and near surface seis-

mic studies (cavities, gas inclusions). An analytical solution can be

obtained from the expansion of the displacement field in series of

Bessel functions, as detailed in the Appendix, and used to assess the

accuracy of the TSEM built on an unstructured triangulation. From

the numerical point of view, the main difficulty lies on meshing the

curved internal interface, specially in the case of two media with

high velocity contrast where both an accurate approximation of the

body and the interface waves are mandatory. In order to illustrate

the flexibility of an unstructured triangulation, three cases are con-

sidered here: first, a stiff cylindrical inclusion is included within a

more compliant elastic space; second, a compliant cylindrical in-

clusion is embedded in a stiffer elastic space; and finally a more

compliant inclusion is included in a stiffer elastic space in order

to test the accuracy of the TSEM for extremely high velocity con-

trasts. In the first case the physical model is a circular inclusion

of 500 m diameter with Vp = 3000 m s−1, Vs = 1732 m s−1 and

ρ = 2 kg m−3, embedded in a more compliant elastic half-space of

2000 m by 2000 m with Vp = 2000 m s−1, Vs = 1155 m s−1 and

ρ = 1 kg m−3. These parameters were borrowed from Priolo et al.
(1994) who studied a two quarter space problem, that is two elastic

half-spaces in contact along a vertical material discontinuity, with

special emphasis in the simulation of the interface wave travelling

along the vertical interface, a geometry that is well suited for clas-

sical SEM based on a quadrangular mesh. Here the scattering by

an elastic cylinder of a plane wave travelling downwards is consid-

ered. In this problem, an interface wave is expected to travel along

the circular boundary of the buried cylinder. The triangulation in

this example is composed of 3402 triangles, with a total number

of 42 846 global Fekete points when using a polynomial degree of
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Figure 12. Seismograms of horizontal (left) and vertical component (right) of the displacement field recorded at the wedge corner. Note the dispersive

characteristic of the transmitted (Rt) and reflected (Rr) Rayleigh waves.
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Figure 13. Snapshots of the scattered displacement field by the elastic cylinder over the computational mesh at t = 0.04 s (left), t = 0.24 s (middle) and t =
0.44 s (right). The main scattered waves can be seen, I: interface wave, PP: P wave reflected at the cylinder, PS: P to S conversion at the cylinder. Receivers

along the interface are indicated by filled triangles in the leftmost snapshot.

order 5 for the interpolation. Using unstructured triangulation, with

a maximum area criteria, uniform sampling of the wavefield can

be easily achieved both within the elastic cylinder and the homo-

geneous space. Periodic boundary conditions in the left and right

boundaries allow to simulate an incoming horizontal plane wave

travelling downwards. The plane wave, with a P polarization and a

Ricker wavelet modulation of 16 Hz central frequency, is prescribed

by an initial displacement, velocity and acceleration fields. Along

the curved interface, the sampling is about 4.5 interpolation points

per minimum S wavelength. The wave field is propagated during

0.6 s using a time step of 0.2 ms, leading to a Courant number of the

order of 0.2. Snapshots of the displacement field, at t = 0.04 s, 0.24 s

and 0.44 s, are shown in Fig. 13. The incoming P plane wave travel-

ling downwards, the PP reflection generated at the cylinder and the

strong interface wave can be identified in the snapshot at t = 0.24 s.

These events can also be seen in Fig. 14, where the displacement

seismograms recorded at receivers located all along the interface

are displayed. The P wave arrival can be identified with a kind of

sinusoidal moveout, as well as the interface wave that exhibits a

linear moveout as long as the receivers are equispaced along the

circular interface. It is worth noting here the lack of numerical

artefacts even though the circular interface is only approximated

by straight-sided triangular elements. Accuracy of the TSEM for

this problem, can be assessed when comparing with the analytical

solution at receivers on the circular interface located at (1000 m,

750 m) for receiver 1 and (1237.8 m, 922.4 m) for receiver 11.

These receivers are displayed in the rightmost snapshot of Fig. 13.

The normalized analytical solution for each component of the dis-

placement field and residuals computed using the numerical solu-

tion, amplified by a factor of 10 are displayed in Fig. 15. The L ∞
error is computed and shown on top of each seismogram. An er-

ror of less than 2 per cent for all the arrivals is observed for both

receivers.

In the second case, the physical parameters are interchanged to

obtain a more compliant cylindrical inclusion in a stiffer elastic

space. The triangulation is now refined within the cylindrical inclu-

sion, where the wave speeds are slower, in order to obtain a uniform

sampling of the wavefield within the whole domain. The resulting

triangulation is composed of 2370 triangles with a total number of

29 946 global interpolation points using again a polynomial degree

of order 5 for the interpolation. The triangulation is shown in the

leftmost panel of Fig. 16. The incident wave field is the same as

in the previous example with periodic boundary conditions. Same

time-stepping parameters as before are used and the total simula-

tion time is 0.65 s. In Fig. 16 snapshots of the displacement field, at

t = 0.02 s, 0.20 s and 0.28 s, are shown with the main phases identi-

fied in the seismograms of Fig. 17. The incident wave front is delayed

by the cylindrical inclusion. Comparing again with the analytical
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Figure 14. Seismograms of horizontal (left) and vertical component (right) of the displacement field recorded at the receivers located all along the circular

interface (stiff inclusion). P: direct P wave arrival, St: Stoneley wave travelling along the circular interface.
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Figure 15. Horizontal x-component and vertical z-component of the displacement field recorded at receivers 1 and 11 (stiff inclusion). Residuals are amplified

by a factor of 10. As expected, there is no energy in the horizontal component of receiver 1 placed on the cylinder axis. The arrival around 0.3 s at receiver 11

corresponds to the interface wave.

Figure 16. Snapshots of the scattered displacement field by the elastic cylinder over the computational mesh at t = 0.02 s (left), t = 0.20 s (middle) and t =
0.28 s (right). The main scattered waves can be seen, I: interface wave, PP: P wave reflected at the cylinder, PS: P to S conversion at the cylinder. Receivers

along the interface are indicated by filled triangles in the leftmost snapshot.

solution at the same receivers used for the first case, Fig. 18, en-

sures an error of less than 2 per cent between the analytical and

numerical solutions.

In the third case, a much higher velocity contrast between the com-

pliant cylindrical inclusion and the surrounding space is created by

using Vp = 4000 m s−1, Vs = 2310 m s−1 and ρ = 2 kg m−3 for the

elastic space and Vp = 1400 m s−1, Vs = 600 m s−1 and ρ = 1 kg m−3

for the inclusion. The incident wavefield is the same as in the previ-

ous examples with periodic boundary conditions. In order to keep

a similar Courant number of 0.2, the time step must be reduced to

0.112 ms for this simulation due to the strong mesh refinement in the

cylindrical inclusion. In Fig. 19 snapshots of the displacement field,

at t = 0.0 s, 0.2 s and 0.3 s, are shown with the main phases identi-

fied in the seismograms of Fig. 20. It is interesting to note in Fig. 21

similar error levels as in the previous case (less than 2 per cent),

showing the robustness of the method to deal with such strong

velocity contrast within the elastic medium.

5.3 Elastic half-space with free-surface

and interface topographies

The flexibility of an unstructured triangulation for wave propagation

simulation can be illustrated when considering wave propagation in

a layered 2-D elastic domain with arbitrary topography of the free
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Figure 17. Seismograms of horizontal (left) and vertical component (right) of the displacement field recorded at the receivers located all along the circular

interface (compliant inclusion). I: interface wave.
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Figure 18. Horizontal x-component and vertical z-component of the displacement field recorded at receivers 1 and 11 (compliant inclusion). Residuals are

amplified by a factor of 10. There is no significant energy in the horizontal component on the cylinder axis.

Figure 19. Snapshots of the scattered displacement field by the elastic cylinder over the computational mesh at t = 0.0 s (left), t = 0.2 s (middle) and t =
0.3 s (right). Note the difference in wavelength between the inclusion and the surrounding medium. Receivers along the interface are indicated by filled triangles

in the leftmost snapshot.

surface and internal material interfaces. In the example considered

here, an upper layer is considered as filled by some kind of alluvial

deposit made of soft materials. An extensive study of the seismic re-

sponse of such an alluvial basin is beyond the scope of this paper and

the interested reader can be referred to Sánchez-Sesma et al. (1993).

The main interest here is to illustrate the geometrical flexibility and

the enhanced mesh adaptivity provided by the use of an unstructured

triangulation. The TSEM built on an unstructured triangulation al-

lows enhanced geometrical flexibility as well as the possibility of

spatial mesh refinement in a rather natural and easy way. Accord-

ing to the wave velocity variations in the model, the element size

can be locally reduced to keep uniform sampling of the wavefield.

However, one should keep in mind that for small spectral elements,

the distance between interpolation points may become prohibitively

small with regard to the Courant number and conditional stability of

an explicit time-stepping scheme. A consideration that should also

be kept in mind while using highly deformed quadrangles.

The spatial triangulation is again obtained here using a maxi-

mum area constraint, as provided by the meshing software Triangle,

in order to obtain at least five interpolation points per minimum

wavelength within the whole domain. Material parameters, as well

as some other relevant parameters, are summarized in Table 2. An
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Figure 20. Seismograms of horizontal (left) and vertical component (right) of the displacement field recorded at the receivers located all along the circular

interface.
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Figure 21. Horizontal x-component and vertical z-component of the displacement field recorded at receivers 1 and 11 (compliant inclusion with high velocity

contrast). Residuals are amplified by a factor of 10.

Table 2. Physical and mesh parameters for the elastic layered medium. The

� edge size (last row) is an average of all the triangle edges in the corre-

sponding layer.

Parameter Alluvial Upper Lower

P-wave velocity [m s−1] 1300 2800 4000

S-wave velocity [m s−1] 750 1616 2310

Density [kg m−3] 1200 2200 2500

Minimum wavelength [m] 30 65 92

� edge size [m] 32 60 100

explosive point source, with a Ricker time function of 10 Hz central

frequency, is located in the upper layer just below the free surface

so as to excite a strong Rayleigh wave along the curved topography.

The dimension of the numerical domain has a width extension of

2500 m and an average depth of 1600 m. The discretization is made

of 2418 triangles, and a polynomial degree of order 5 is used for the

interpolation within each triangles. The numerical mesh shown in

the upper-left panel of Fig. 22 is artificially extended to the left, right

and bottom boundaries in order avoid spurious reflections. This can

also be achieved in a more elegant way, using Perfectly Matched

Layers as proposed by Komatitsch & Tromp (2003) and Festa &

Vilotte (2005). The time step in this simulation is �t = 0.25 ms,

leading to a Courant number of 0.35 in the upper layer. Typical snap-

shots of the displacement field are displayed in Fig. 22 together with

the unstructured mesh refined towards the upper layer and especially

within the soft alluvial basin. The main observed phases here are:

a strong Rayleigh wave propagating along the topography, a direct

P wave, together with a PP phase generated at the free surface, a

converted PS wave at the surface topography, and a strong head-

wave that propagates downwards into the medium. In the snapshot

at t = 0.4 s, bottom-left panel, a Rayleigh to body wave conversion

can be observed. Such a conversion is likely to happen when the

Rayleigh wave reaches a strong curvature change of the surface to-

pography (Jih et al. 1988; Komatitsch & Vilotte 1998). Within the

alluvial valley, the refracted wave (Pr) can be seen travelling along

the bottom of the alluvial basin with the P wave velocity of the up-

per layer, as well as a high amplification of the incoming Rayleigh

wave. When considering the line of receivers shown in the upper-

left panel of Fig. 22 and located at the surface of the alluvial basin,

the previous phases can be identified directly from the displacement

seismograms, as shown in Fig. 23.

6 C O N C L U S I O N S

In this study, a TSEM is investigated within the context of elastic

wave propagation in complex geological media. Extension of spec-

tral methods to problems defined on non-tensor-product domains,

like the nd-simplex, is an important issue in computational seismol-

ogy. This would allow expanding the applicability of the SEM to

complex geological structures together with improving mesh adap-

tivity capability. Moreover, using nd-simplex spectral elements al-

lows the use of existing software for automated unstructured mesh

generation used by modern geological modellers.

For the sake of completeness, we reviewed some of the actual

issues on the formulation of such schemes. On nd-simplex subdo-

mains, spectral expansion of the solution can be achieved when

resorting to the Dubiner’s orthogonal basis that results from a
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Figure 22. Snapshot of the displacement field in the layered elastic half-space at 0.2 s, 0.3 s, 0.4 s, 0.5 s (from top left to bottom right). Some main wave fronts

are identified: P direct P wave (P), converted P to S at the free surface (PS), Rayleigh wave (R), Rayleigh to S wave conversion (RtoS), refracted P wave (Pr).

The numerical mesh, the source and the receiver line location can be seen in the top-left snapshot.

0

0.2

0.4

0.6

0.8

10 30 50 70 90
0

0.2

0.4

0.6

0.8

10 30 50 70 90

T
im

e
[s

]

T
im

e
[s

]

rebmunrevieceRrebmunrevieceR

P

Pr

R

RtoP

PtoR

Figure 23. Seismograms of the horizontal (left) and vertical component (right) of the displacement field recorded at the top of the alluvial valley. Some main

events are identified: direct P wave (P), refracted P wave at the bottom of the alluvial valley (Pr), Rayleigh wave (R), Rayleigh to body wave conversion (RtoP)

and P to Rayleigh conversion (PtoR) at the valley’s tip.

warped tensor product of Jacobi polynomials associated with a local

collapsed coordinate system. Such a construction can be seen as a

generalization of the classical tensor product construction in use

with classical SEM built on tensor product domains. This orthogo-

nal polynomial basis can be shown to be the solution of a Sturm–

Liouville eigenvalue problem defined on the reference simplex, and

therefore, to achieve spectral accuracy. Based on this orthogonal

basis, a TSEM can be constructed by resorting, as in classical SEM,

to a multivariate Lagrangian interpolation designed to enforce in

a natural way the C0 continuity requirement between subdomains

of the triangulation. Today, even though no optimal set of points

is known for interpolation on a non-tensor product-domain, such a

multivariate Lagrangian interpolation can be built based on the set

of Fekete points that are shown to endow good interpolation prop-

erties and to maximize the number of points on the boundary of the

subdomains. In these boundaries, Fekete points turn out to coincide

with the classical GLL points used in classical SEM. However, in

contrast with the GLL set of points defined on tensor product do-

mains, Fekete points do not define an optimal quadrature formula in

the sense that the associated Newton–Cotes quadrature formula only
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integrates exactly polynomials of PN . This is clearly a minimal result

that does not allow for the extension of the SEM collocated formula-

tion to non-tensor product domains. As a consequence, the resulting

consistent mass matrix is not diagonal, a feature that adds signifi-

cant computational complexity for explicit time-stepping schemes

typically used within the seismological community. Resorting to a

lumped mass matrix in TSEM implies a significant accuracy loss

that in some cases can even destroy the spectral convergence of the

method. Moreover, there is no tensor product structure associated

with Fekete points and the computation of spatial derivatives re-

quires some careful analysis in order to avoid a prohibitive O(N 2nd )

asymptotic scaling. As it is, the TSEM is attractive enough to explore

its possible use for numerical simulation of elastic wave propaga-

tion in seismology. A preliminary exploration is done in this paper

through classical canonical examples and relevant 2-D elastic wave

problems. Numerical results presented here do show the high ac-

curacy and the geometrical flexibility of the TSEM. Comparison

with classical SEM built on quadrangular grids shows that TSEM

does share the same level of accuracy and stability. Surface and

interface waves are shown to be accurately modelled even in the

case of complex topography with the TSEM. Numerical results for

specific problems such as 2-D elastic wave scattering by a cylin-

der embedded in a homogeneous half-space clearly illustrates the

enhanced geometrical flexibility and mesh adaptivity of the TSEM

and strongly suggests its use in computational seismology.

Although this paper does not address issues on efficient computa-

tional implementations of TSEM, nor precise comparisons in terms

of computational costs between classical SEM and TSEM, it should

be emphasized that without specific improvements, TSEM remains

more expensive than classical SEM. Therefore, there is today clearly

room for improvements of the TSEM.

Regarding the computational implementation of the TSEM pre-

sented here, the actual cost associated with derivative computations

may be significantly reduced when resorting to efficient factoriza-

tion techniques that exploit the symmetries inherent to the Fekete

nodal set and a careful ordering of the nodes. This is clearly empha-

sized in the work of Hesthaven & Teng (2000), where such a careful

implementation is shown to lead to a drastic reduction of the deriva-

tive computational costs that compare well with those obtained in

classical SEM.

Another issue is related to the improvement of efficient strategies

that can cope with the sparse global mass matrix resulting from the

lack of an accurate quadrature formula associated with the Fekete

nodal set. In the time domain, there is some room for improvements

mainly with regard to the iterative resolution of the algebraic system

that results from an explicit time discretization, therefore, governed

by the mass matrix; or a semi-implicit time discretization, governed

by a Helmholtz matrix. In this direction efficient iterative solvers

using conjugate gradients preconditioned by the additive overlap-

ping Schwarz method, introduced by Dryja & Widlund (1987) and

extensively used by Fisher and co-authors (Fisher 1997; Lottes &

Fisher 2005) in the context of computational fluid mechanics with

SEM, remain to be explored for elastic wave propagation in the time

domain, see also Pasquetti et al. (2005). Even though numerical re-

sults do suggest stability scaling in O(N−2) for the time step of the

explicit time stepping in two dimensions, exploring in this context

semi-implicit time stepping may be interesting. In the spectral do-

main, investigating the use of TSEM is of particular interest since a

Helmholtz problem has to be solved for each frequency and even-

tually multiple sources. The geometrical flexibility and the spectral

accuracy of the TSEM, in conjunction with an overlapping Schwarz

iterative method, appear quite attractive with important implications

for exploration geophysics. In both cases, an important related issue

is to investigate the conditioning property of the TSEM for elastic

wave simulation.
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A P P E N D I X A : A N A LY T I C A L

S O L U T I O N F O R T H E I N C I D E N C E O F

P L A N E P WAV E S U P O N A N E L A S T I C

C Y L I N D R I C A L I N C L U S I O N

This solution is well known after the classical work by Jing &

Truell (1956). It was summarized later by Pao & Mow (1973) and can

be obtained after the expansion of potentials in polar coordinates.

Recently Liu et al. (2000) presented the treatment for viscoelas-

tic materials and choose to give explicitly the coefficients of the
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Figure A1. Incoming plane P wave upon the elastic cylindrical inclusion.

expansions. Here, we give the coefficients for the displacements

and the relevant stress components as in Pao & Mow (1973) with

slight modifications to account for our particular example.

With reference to Fig. (A1) consider the incoming plane wave

u(0)
z = exp(− iqez) exp(i ωt), u(0)

x = 0, with qe the P wavenumber in

the region e. It can be shown that the corresponding scalar potential

is simply �(0) = i
qe

exp(−iqez) exp(iωt), which can be expanded

using Neumann’s expansion in a series of Bessel functions which

are series of solutions of the elastic equation. In what follows we

neglect the stationary term exp(i ωt). In order to consider the waves

scattered out and refracted within the cylinder, we use the potentials

� for P waves and � for S waves, both in the exterior region e and

within the interior region c:

�e =
∞∑

n=0

B(0)
n Jn(qer ) cos(nθ ) +

∞∑
n=0

Bn H (2)
n (qer ) cos(nθ ), (A1)

�e =
∞∑

n=1

Cn H (2)
n (ker ) sin(−nθ ), (A2)

�c =
∞∑

n=0

Dn Jn(qcr ) cos(nθ ), (A3)

�c =
∞∑

n=1

En Jn(kcr ) sin(−nθ ), (A4)

where B(0)
n = (i/qe)(− i)nεn , with εn = 1 for n = 0 and εn = 2 for

n ≥ 1 (Neumann’s factor) are the coefficients of the incoming

P wave, the P and S wavenumbers are q (e,r ) = ω/V p(e,r ), k (e,r ) =
ω/V s(e,r ), respectively, and Jn are the Bessel functions of the first

kind, Yn the Bessel functions of the second kind, and H (2)
n = Jn −

iYn the Hankel functions of the second kind (Abramowitz & Stegun

1972).

These potentials give the displacement fields in cylindrical coor-

dinates by means of

ur = ∂�

∂r
+ 1

r

∂�

∂θ
, (A5)

uθ = 1

r

∂�

∂θ
− ∂�

∂r
. (A6)

Substituting the potentials (A2) and (A4) in these equations, and

using the notation of Pao & Mow (1973), we obtain

ue
r = 1

r

[ ∞∑
n=0

(
B(0)

n E (1)
71 (qer, n)+

+ Bn E (2)
71 (qer, n) + Cn E (2)

72 (ker, n)
)

cos(nθ )

]
, (A7)

uc
r = 1

r

[ ∞∑
n=0

(
Dn E (1)

71 (qcr, n) + En E (1)
72 (kcr, n)

)
cos(nθ )

]
,

(A8)

ue
θ = 1

r

[ ∞∑
n=1

(
B(0)

n E (1)
81 (qer, n)

+ Bn E (2)
81 (qer, n) + Cn E (2)

82 (ker, n)
)

sin(−nθ )

]
, (A9)

uc
θ = 1

r

[ ∞∑
n=1

(
Dn E (1)

81 (qcr, n) + En E (1)
82 (kcr, n)

)
sin(−nθ )

]
,

(A10)

where

E (i)
71 (z, n) = E (i)

82 (z, n) = nC(i)
n (z) − zC(i)

n+1(z), (A11)

E (i)
72 (z, n) = E (i)

81 (z, n) = nC(i)
n (z), (A12)

and the functions C(i)
n are

C(i)
n (z) =

{
Jn(z) i = 1,

H (2)
n (z) i = 2.

The needed coefficients Bn, Cn, Dn, En for both the exterior and

the interior expansions are obtained from the fulfilment of bound-

ary conditions of continuity of displacements and tractions at the

interface r = a. The relevant stress components for the cylinder are

given in terms of the potentials as

σrr = λ ∇2� + 2μ

[
∂2�

∂r 2
+ ∂

∂r

(
1

r

∂�

∂θ

)]
, (A13)

σrθ = μ

[
2

(
1

r

∂2�

∂r∂θ
− 1

r 2

∂�

∂θ

)
+ 1

r 2

∂2�

∂θ 2
− r

∂

∂r

(
1

r

∂�

∂r

)]
.

(A14)

After substitution of potentials (A2) and (A4), and using again

Pao & Mow (1973) notation, we obtain

σ e
rr = 2μe

r 2

[ ∞∑
n=0

(
B(0)

n E (1)
11 (qer, n)+

+ Bn E (2)
11 (qer, n) + Cn E (2)

12 (ker, n)
)

cos(nθ )

]
, (A15)

σ c
rr = 2μc

r 2

[ ∞∑
n=0

(
Dn E (1)

11 (qcr, n) + En E (1)
12 (kcr, n)

)
cos(nθ )

]
,

(A16)
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σ e
rθ = 2μe

r 2

[ ∞∑
n=1

(
B(0)

n E (1)
41 (qer, n)

+ Bn E (2)
41 (qer, n) + Cn E (2)

42 (ker, n)
)

sin(−nθ )

]
, (A17)

σ c
rθ = 2μc

r 2

[ ∞∑
n=1

(
Dn E (1)

41 (qcr, n) + En E (1)
42 (kcr, n)

)
sin(−nθ )

]
,

(A18)

where

E (i)
11 (z, n) =

[(
n2 − n −

(
Vp

Vs

)2 z2

2

)
C(i)

n (z) + zC(i)
n+1(z)

]
, (A19)

E (i)
12 (z, n) = [

(n2 − n)C(i)
n (z) − nzC(i)

n+1(z)
]
, (A20)

E (i)
41 (z, n) = E (i)

12 (z, n), (A21)

E (i)
42 (z, n) =

[(
n2 − n − z2

2

)
C(i)

n (z) + zC(i)
n+1(z)

]
. (A22)

It is convenient to express the continuity conditions at the cylinder

interface as

ue
r = uc

r ,

σ e
rr = σ c

rr

ue
θ = uc

θ

σ e
rθ = σ c

rθ

⎫⎪⎪⎪⎬⎪⎪⎪⎭ at r = a. (A23)

This leads to a linear system of order 4 for each n (for n = 0 the

order is 2, which means there are only P waves for n = 0) to retrieve

the expansion coefficients Bn, Cn, Dn and En. After solving the

system, and using (A7) and (A9), we obtain the displacement field

in cylindrical coordinates which can be transformed to the original

Cartesian axis via

ux = ur sin θ + uθ cos θ, (A24)

uz = ur cos θ − uθ sin θ. (A25)

We find that adding up to 80 terms in the sums (A7) and (A9)

are sufficiently enough for our purposes. The final synthetic seis-

mograms are obtained after convolution with a Ricker wavelet spec-

trum and Fourier transforming back to the time domain using the

FFT.
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