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SUMMARY5

We present two-dimensional numerical simulations of convergence at a hyper-extended6

passive margin with exhumed sub-continental mantle. We consider visco-elasto-plastic7

deformation, heat transfer and thermo-mechanical coupling by shear heating and asso-8

ciated thermal softening due to temperature dependent viscosity. The simulations show9

subduction initiation for convergence velocities of 2 cm.yr−1, initial Moho temperatures10

of 525 oC and maximal deviatoric stresses of ca. 800 MPa, around the Moho, prior to11

localisation. Subduction initiates in the region with thinned continental crust and is con-12

trolled by a thermally-activated ductile shear zone in the mantle lithosphere. The shear13

zone temperature can be predicted with a recently published analytical expression. The14

criterion for subduction initiation is a temperature difference of at least 225 oC between15

predicted temperature and initial Moho temperature. The modelled forced subduction16

broadly agrees with geological data and reconstructions of subduction during closure of17

the Piemont-Liguria basin, caused by convergence of the European and Adriatic plates18

during the Alpine orogeny.19

Key words: Subduction initiation, thermal softening, shear heating, numerical mod-20

elling, thermo-mechanics.21
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1 INTRODUCTION22

Subduction is an essential feature of plate tectonics, however, the processes controlling subduction23

initiation (SI) are still contentious (e.g. Vlaar & Wortel, 1976; Gurnis et al., 2004; Stern & Gerya,24

2018). SI mechanisms are commonly classified as induced (i.e. caused by plate motions far away from25

the SI site) and spontaneous (i.e. caused by forces originating at the SI site; e.g. Stern, 2004). We fo-26

cus here on induced SI at a passive margin with exhumed sub-continental mantle (e.g. Peron-Pinvidic27

& Manatschal, 2009). SI requires the formation of a major shear zone that transects the lithospheric28

mantle. Such shear zone could be pre-defined by inherited trans-lithospheric weak zones (e.g. Tom-29

masi et al., 2009) or could be generated spontaneously by softening mechanisms (see recent review of30

Stern & Gerya, 2018), such as shear heating and associated thermal softening (e.g. Thielmann & Kaus,31

2012), grain size reduction and microstructural damage (e.g. Bercovici & Ricard, 2012; Mulyukova32

& Bercovici, 2018) or softening due to increased water content along fluid pathways (e.g. Regenauer-33

Lieb et al., 2001). Out of the many softening mechanisms proposed to be important for SI, thermal34

softening is of particular interest because it (i) must occur due to energy conservation and temperature-35

dependent rock strength, and (ii) requires no additional assumptions about microscale processes such36

as grain size distribution and evolution or permeability structure and evolution. Recently, Kiss et al.37

(2019) presented a new analytical expression that predicts the quasi-constant temperature in a duc-38

tile shear zone that formed spontaneously by thermal softening. Their temperature prediction does39

not require any information of the shear zone itself, such as its thickness, stress or strain rate. Their40

prediction was validated with one-dimensional (1D), 2D and 3D numerical simulations, considering41

dislocation creep in a homogeneous material under constant ambient temperature. Kiss et al. (2019)42

speculated that their estimate is also applicable for visco-elasto-plastic deformation of the lithosphere,43

exhibiting heterogeneous material properties, due to crust and mantle, and considerable ambient tem-44

perature variation across the lithosphere. Furthermore, Kiss et al. (2019) argued that thermal softening45

may likely trigger SI at passive margins for convergence velocities on the order of a few centimeters46

per year. Here, we present 2D thermo-mechanical numerical simulations of convergence at a pas-47

sive margin and show that (i) the expression of Kiss et al. (2019) indeed predicts the temperature in48

lithospheric mantle shear zones caused by thermal softening and (ii) induced SI by thermal softening49

indeed occurs for laboratory-derived flow laws, natural convergence velocities and realistic tempera-50

tures. We argue that our model is applicable to SI during closure of the Piemont-Liguria basin, caused51

by convergence of the European and Adriatic plates during the Alpine orogeny.52
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2 METHODS53

2.1 Mathematical model54

Our model is based on continuum mechanics (e.g. Mase & Mase, 1970; Turcotte & Schubert, 2014).55

We assume slow, incompressible deformation under gravity. We consider visco-elasto-plastic defor-56

mation assuming a Maxwell visco-elastic model and a Drucker-Prager brittle-plastic yield criterion.57

We consider heat transfer by conduction and advection, and heat production by shear heating and ra-58

diogenic decay. Heat transfer and deformation are coupled by shear heating, because dissipative work59

is converted into heat, required by the conservation of energy. Topography evolution is enabled by a60

free-surface, where erosion and sedimentation is mimicked by a linear diffusion of the topography.61

The applied equations and numerical method are described in the supplementary material.62

Considering dislocation creep and velocity driven shearing, Kiss et al. (2019) show that the tem-63

perature in the shear zone, caused by thermal softening, always approaches a quasi-constant tempera-64

ture that increases only slightly with deformation time, t. This temperature, TSH, is predicted by:65

TSH ≈ −1.13
Q

nR

[
ln

(
∆v2nR

λQ
A− 1

n

{
∆v√
κt

} 1
n
−1
)

+ 1.1

]−1

. (1)

where ∆v is the far-field velocity difference (either for pure or simple shear); all other flow law and66

thermal parameters are given in Table S1.67

2.2 Model configuration68

The model mimics a hyper-extended passive margin with exhumed sub-continental mantle (Fig. 1a).69

The model is 1500 km wide and 400 km deep. In the exhumed mantle domain (left model side), the70

lithosphere is 90 km thick. The mantle flow law is for dry olivine with a combination of dislocation,71

diffusion and Peierls creep (Kameyama et al., 1999; Hirth & Kohlstedt, 2003) (Fig. 1a). The continen-72

tal lithosphere has a 20 km thick upper crust with a flow law for Westerly granite (Carter & Tsenn,73

1987). The lower crust is 10 km thick with a flow law for Maryland diabase (Mackwell et al., 1998).74

In the middle of the model the crust thins gradually to zero thickness towards the exhumed mantle75

domain within a 100 km wide zone (Fig. 1a). The lithosphere is initially in isostatic equilibrium gen-76

erating an initial topographic difference between regions of exhumed mantle and unthinned crust of 577

km. The depth of the lithosphere-asthenosphere boundary below the unthinned crust is 123 km.78

We apply free slip boundary conditions at the bottom and at the right model sides. The top bound-79

ary is a free surface. At the left boundary we apply a constant horizontal inflow velocity in the upper80

200 km and a constant outflow velocity in the lower 200 km, so that the vertically-integrated velocity81
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is zero (e.g. Erdős et al., 2014). We apply a constant temperature of 15 oC at the free surface, constant82

1350 oC at the model bottom and zero heat flux on the two sides. The asthenosphere is initially set83

to T = 1350 oC and the initial temperature in the lithosphere is the equilibrium temperature. We84

apply different thermal conductivities in the crust to vary slightly the initial Moho (i.e. crust-mantle85

boundary) temperature (Table S1).86

We performed four simulations: (1) with a 525 oC initial Moho temperature and 2 cm.yr−1 con-87

vergence velocity, (2) 550 oC initial Moho temperature and 2 cm.yr−1 convergence velocity, (3) 55088

oC initial Moho temperature and 4 cm.yr−1 convergence velocity, (4) without shear heating, 525 oC89

initial Moho temperature, 2 cm.yr−1 convergence velocity (see also supplementary figures S1 to S4).90

3 RESULTS91

In simulation (1) visco-elastic stresses build up during the initial stages of convergence to reach the92

brittle-plastic yield and steady-state viscous flow stress (Fig. 1b and d). The evolving stress field shows93

the highest deviatoric stress magnitudes of ca. 800 MPa inside the lower crust around the brittle-ductile94

transition (i.e. transition from Drucker-Prager yield to any of the creep mechanisms) in the exhumed95

mantle region (Fig. 1b and d). The corresponding driving force per unit length (vertical integral of96

the difference between horizontal total stress, σxx, and lithostatic pressure) increases during stress97

build up to a maximal value of ca. 3.9× 1013 N.m−1 (supplementary Fig. S5). Initially, convergence98

is characterized by distributed thickening and associated dissipative heating, resulting in a ca. 75 oC99

temperature rise around the Moho during the first 7 Myr (see 500 and 600 oC isotherm of Fig. 1a and100

c). The lower crust is slightly folding causing small lateral stress variations (Fig. 1d). Shear heating101

and thermal softening around the Moho is locally efficient enough to cause the spontaneous develop-102

ment of a ductile shear zone ca. 150 km away from the transition between crust and exhumed mantle103

(at x-position 300 km in Fig. 1c, d, e and f). The temperature rise around the shear zone just below the104

Moho is ca. 200 oC (Fig. 1e). Due to thermal softening and localization, stresses decrease by several105

hundred MPa (Fig. 1d and f), and the corresponding horizontal driving force decreases significantly106

during localization to a value of ca. 1.5 × 1013 N.m−1 (supplementary Fig. S5). During progressive107

convergence, the shear zone remains localised and forms a subduction zone, which subducts the ex-108

humed mantle and parts of the thinned crustal region below the continental lithosphere with normal109

crustal thickness (Fig. 1g and h). Upper crustal material and sediments, deposited in the trench region,110

are subducted and lubricate the subduction interface. Once crustal material is subducted to ca. 90 km111

depth the small stresses, due to elevated temperatures and lubrication, do not generate significant shear112

heating and dissipation anymore (Fig. 2a).113

For simulation (2) the initially 25 oC higher Moho temperature results in lower effective viscos-114
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ity around the Moho, hence the dissipation is smaller due to the lower stresses. Thermal softening115

still impacts the deformation of the lithosphere, but causes localised thickening of the crust because a116

localised shear zone could not develop (Fig. 2b). A similar behaviour, that is a lower ambient temper-117

ature promoting stronger strain localisation, has been observed in 2D numerical studies of strike-slip118

deformation (Takeuchi & Fialko, 2012, 2013). For simulation (3) the initial Moho temperature is iden-119

tical to the one in simulation (2) but the convergence velocity is increased to 4 cm.yr−1. For the higher120

convergence velocities, thermal softening causes again a localised shear zone and subduction similar121

to simulation (1) (Fig. 2c). For simulations (2) and (3) the initially 25 oC higher Moho temperatures122

result in lower stresses and driving forces (Figs. S1 to S5). For simulation (4) without shear heating123

there is no SI, only lithospheric scale folding whereby one of the lower crustal buckles amplifies into124

a drip-like structure at the same position where subduction initiates in simulations (1) and (3).125

To test the temperature prediction of equation (1) we calculate TSH for the mantle lithosphere126

for the applied parameters and specific times. Simulations (1) and (3) generated a localised ductile127

shear zone and corresponding values of TSH are 754 oC and 786 oC, respectively (Fig. 2a and c).128

Different values of TSH are due to different velocities and/or simulation times corresponding to the129

displayed results (Fig. 2). We plot the temperature change, with respect to the initial temperature, of130

material points together with the isotherms for the corresponding value of TSH, and TSH±100 oC. The131

maximal temperature rise is ca. 300 oC for the simulations with shear heating (1-3), that is dominantly132

due to shear heating. For the temperature comparison, we chose a time step for which the dissipation133

in the mantle was highest. Maximal dissipation in simulations (1-3) is on the order of 100 µWm−3
134

which is approximately two orders of magnitude larger than heat production due to radioactive decay135

(Table S1). The isotherms of TSH follow closely the ductile shear zones indicated by the band of high136

temperature increase in the mantle lithosphere (Fig. 2a and c). For both simulations, the temperature137

of the shear zone is within ±100 oC compared to TSH, while the total temperature rise of the shear138

zone material is > 250 oC . Therefore, equation (1) can reasonably accurate predict ductile shear139

zone temperature in models of visco-elasto-plastic lithosphere deformation (see also animation in140

supplementary material).141

4 DISCUSSION142

The equation for TSH was tested by Kiss et al. (2019) with 1D, 2D and 3D numerical simulations for143

dislocation creep, homogeneous material properties and constant, homogeneous ambient temperature.144

For these conditions, Kiss et al. (2019) proposed that TSH should be at least 50 oC higher than the145

ambient temperature to cause shear zone formation. The conditions in the presented lithosphere mod-146

els are far more complex due to the visco-elasto-plastic rheological model, the heterogeneous material147
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properties and the significant temperature gradients across the lithosphere. To initiate subduction, a148

significant shear zone, associated with decreased deviatoric stress (Fig. 1f and h), must form in the149

mantle lithosphere (Fig. 2). Hence, we use the dislocation creep flow law parameters (Hirth & Kohlst-150

edt, 2003) for the mantle to calculate TSH representative for the mantle lithosphere. To illustrate the151

slight time dependence of TSH: a time interval of 2.6 Myr generates an increase of TSH of only 5 oC152

(Fig. 2a and b). We propose to use the initial Moho temperature as representative ambient temperature,153

because spontaneous ductile shear zone formation by thermal softening occurs most likely around the154

Moho where deviatoric stress in the mantle lithosphere and/or lower crust are highest. For our model155

configuration, the predicted TSH of ca. 750 oC is ca. 225 oC higher than the initial Moho temperature156

of 525 oC in simulation (1). For simulation (2) with an initial Moho temperature of 550 oC a localised157

shear zone did not form. Hence, for the presented configuration, a critical temperature difference, ∆Tc,158

between TSH and the initial Moho temperature, of at least 225 oC is required to generate a localised159

ductile mantle shear zone. The higher values of ∆Tc for lithospheric shear zone formation, compared160

to values for homogeneous material, are likely due to the fact that during lithospheric deformation161

additional modes of localised deformation are possible, such as localised folding or thickening. For162

values of ∆Tc < ca. 225 oC localised thickening dominates in our simulations (Fig. 2b). However,163

the localised thickening is also associated with dissipation and thermal softening so that thermal soft-164

ening also strongly affects lithosphere deformation even if it does not result in localised shear zone165

formation. For mantle flow laws other than applied in our models (e.g. Gouriet et al., 2019), that might166

provide lower deviatoric stress in the mantle lithosphere, slightly higher convergence velocities and/or167

lower initial Moho temperatures can compensate the lower stresses so that thermal softening could be168

significant also for “weaker” mantle flow laws.169

The calculated temperatures of the mantle shear zones are between ca. 750 to 900 oC at depths170

between ca. 40 and 100 km, and are in broad agreement with temperature estimates for natural mantle171

shear zones (e.g. Vauchez et al., 2012).172

In our models with SI the maximal values of the driving force are between 3.6 × 1013 and 3.9 ×173

1013 N.m−1 (Fig. S5). These values are significantly larger than estimates for ridge push, ca. 3.9 ×174

1012 N.m−1, and lower than maximal estimates for slab pull, or trench pull, of ca. 4.9× 1013 N.m−1
175

(e.g. Turcotte & Schubert, 2014). It makes sense that the driving force for SI must be considerably176

larger than estimates for ridge push, because otherwise subduction should have already been initated at177

many passive margins worldwide, which is not the case, for example at passive margins along the west178

coast of Africa or the east coast of South America. Furthermore, the driving force in our models likely179

overestimates the driving force required for natural SI because we do not consider any pre-existing180

weak zones or additional microscale processes such as grain size reduction. The required stress for181
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strain localization in models with thermal softening coupled with softening due to grain size reduction182

is considerably smaller than the required stress in models with thermal softening only (Thielmann183

et al., 2015). In our models with SI, the maximal deviatoric stress of ca. 800 MPa around the Moho184

is high, but such values are in agrement with experimentally derived flow laws for a compressed185

strong mantle lithosphere and lower crust (e.g. Burov et al., 2006; Jain et al., 2017). We speculate186

that sufficiently high driving forces required for SI could be reached locally for a transient period187

on Earth due to effects such as geometrical stress focusing (e.g. laterally variable passive margin188

geometry or plate-rotation with radially increasing velocities) or stress concentrations due to material189

heterogeneities (e.g. laterally variable mantle strength due to variation in water fugacity or grain size).190

Our model mimics a hyper-extended magma-poor passive margin with exhumed sub-continental191

mantle. Such margin is observed at the Iberia-Newfoundland margins and geologically reconstructed192

for margins of the Jurassic Piemont-Liguria basin between the European and Adriatic plates (e.g.193

Peron-Pinvidic & Manatschal, 2009; Mohn et al., 2010). Several studies argue that forced, conver-194

gence induced, subduction initiation was the mechanism to initiate subduction in the Piemont-Liguria195

basin, related to the northward migration of Africa. (e.g. De Graciansky et al., 2010; McCarthy et al.,196

2018). Furthermore, subduction started in the continental region of the distal Adriatic margin, because197

earliest Alpine high-pressure units are the Sesia-Dent Blanche crustal units, which are attributed to198

the former Adriatic margin (e.g. Manzotti et al., 2014). Forced subduction, with SI in the continental199

crustal region of a passive margin and subsequent subduction of exhumed mantle was proposed for200

the Western Alps and is in agreement with our model results. We, hence, argue that thermal softening201

was likely an important mechanism for SI in the Piemont-Liguria basin.202

5 CONCLUSIONS203

We show with 2D thermo-mechanical numerical simulations that induced SI occurs due to thermal204

softening at passive margins with exhumed sub-continental mantle. SI occurs for convergence ve-205

locities of 2 cm.yr−1, Moho temperatures between 525 and 600 oC and maximal deviatoric stresses206

around the Moho of ca. 800 MPa. Subduction initiates in the margin region of thinned continental207

crust. The modelled SI is similar to geological reconstructions for the closure of the Piemont-Liguria208

basin during Western Alpine orogeny.209

The maximal temperature in the ductile mantle shear zone can be predicted with an analytical210

expression (eq. 1). If the predicted temperature is at least 225 oC higher than the initial Moho temper-211

ature, then subduction initiation triggered by thermal softening is most likely to occur. The analytical212

solution can, hence, in principle be used as criterion for forced subduction initiation by thermal soft-213

ening.214
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500 oC 800 oC
1300 oC
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1300 oC

500 oC 800 oC
1300 oC

Figure 1. Evolution of model geometry (left column) and stress field (right column) for simulation (1). Left col-

umn: White lines indicate isotherms every 100 oC and colored fields indicate different model units; see legend

below left column. Right column: Stress is quantified with second invariant of deviatoric stress tensor. Black

lines indicate from bottom to top: lithosphere-asthenosphere boundary, Moho and upper-lower crust boundary.

Colourmaps are from Crameri (2018).
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Figure 2. Colourplot of temperature change, with respect to initial temperature, of material points, ∆T , for

models (1, a) to (3, c) at specific simulation times, t. For better visibility the colour bar is saturated at 250 oC,

however, the maximal change is 312, 290 and 331 oC for models (1, a) to (3, c), respectively. Values of TSH are

calculated with equation (1) for parameters of mantle dislocation creep (Table S1), corresponding convergence

velocity and simulation time. Isotherms are plotted for corresponding TSH and TSH ± 100 oC (see legend). The

yellow contours bound the area with significant dissipation, QSH ≥ 10 µW.m−3.


