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Abstract.

Tectonic nappes have been investigated for more than a hundred years. Although geological studies often refer to a “nappe

theory”, the physical mechanisms of nappe formation are still disputed. We apply two-dimensional numerical simulations

of shortening of a passive margin, to investigate the thermo-mechanical processes of detachment (or shearing off), transport

and stacking of nappes. We use a visco-elasto-plastic model with standard creep flow laws, Drucker-Prager and von Mises5

yield criteria. We consider tectonic inheritance with two initial mechanical heterogeneities: (1) lateral heterogeneity of the

basement-cover interface due to half-grabens and horsts and (2) vertical heterogeneities due to layering of mechanically strong

and weak sedimentary units. The model shows detachment and horizontal transport of a thrust nappe that gets stacked on a

fold nappe. The detachment of the thrust sheet is triggered by stress concentrations around the sediment-basement contact and

the resulting brittle-plastic shear band that shears off the sedimentary units from the sediment-basement contact. Horizontal10

transport is facilitated by a basal shear zone just above the basement-cover contact, composed of thin, weak sediments that act

as a décollement. Fold nappe formation occurs by a dominantly ductile closure of a half-graben and the associated extrusion

of the half-graben fill. We apply our model to the Helvetic nappe system in Western Switzerland, which is characterized by

stacking of the Wildhorn thrust nappe above the Morcles fold nappe. The modeled structures, the deformation rates and the

temperature field agree with data from the Helvetic nappe system. Mechanical heterogeneities must locally generate effective15

viscosity contrast (i.e. ratio of stress to visco-plastic strain rate) of about three orders of magnitude to model nappe structures

similar to the ones of the Helvetic nappe system. Our results indicate that the structural evolution of the Helvetic nappe system

was controlled by tectonic inheritance and that material softening mechanisms are not essential to reproduce the first order

nappe structures.

Copyright statement. All copyrights are reserved.20
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1 Introduction

Tectonic nappes were discovered more than a hundred years ago and are considered as typical tectonic features of orogenic

belts (e.g. Price and McClay, 1981), particularly in the Alps (e.g. Lugeon, 1902; Termier, 1906; Argand, 1916; Tollmann,

1973; Trümpy, 1980; Escher et al., 1993; Pfiffner, 2014). Several definitions of a nappe have been proposed (see discussion in

Price and McClay, 1981), for example, after Termier (1922): “A nappe is a rock packet not in its place, resting on a substratum5

that is not its original one”. Two end-member types of nappes are commonly distinguished, namely fold nappes and thrust

nappes, or thrust sheets (e.g. Termier, 1906; Price and McClay, 1981; Epard and Escher, 1996). Fold nappes are recumbent

folds exhibiting large-scale stratigraphic inversion, typically with amplitudes that are exceeding several kilometers. In contrast,

thrust sheets are allochtonous sheets with a prominent shear zone or thrust at their base, but without a prominent overturned

limb. The importance of tectonic nappes for orogeny, especially for collisional orogens, is nowadays well established, however,10

the physical mechanisms of nappe detachment (or shearing off), transport and stacking are still disputed.

We focus here on the Helvetic nappe system in Western Switzerland (see next section for a geological overview), which is

one of the birthplaces of the concept of tectonic nappes. In 1841, Arnold Escher mentioned a nappe (he used “Decke” in ger-

man) and a colossal overthrust (“colossale Überschiebung”) during the presentation of a geological map of the canton Glarus,

Eastern Switzerland (Escher von der Linth, 1841). Escher did not dare to publish his interpretation, but explained it in the15

field to Roderick Murchinson, who published the overthrust interpretation in 1849 (Murchison, 1849), crediting Escher for the

original observation. Bertrand (1884) argued also convincingly for an overthrust nappe (he used “masse de recouvrement” and

“lambeaux de recouvrement” instead of nappe) in the Glarus region so that finally also Heim (1906) accepted the overthrust

interpretation instead of the earlier preferred double-fold interpretation (“Überschiebungsfalte” instead of “Doppelfalte”). Al-

though the important controversies and observations supporting tectonic nappes are related to the Glarus region, which is part20

of the Helvetic nappe system, the true birth date of the nappe concept in the Alps, according to Trümpy (1991), is the publica-

tion by Schardt (1893) who worked in the Prealps, belonging to the Penninic domain (e.g. Escher et al., 1993). Schardt (1893)

realized that Jurassic breccias have been thrust over Tertiary flysch and that large regions of the Prealps have been actually

emplaced as a major overthrust. After decades of controversy, the existence of nappes was generally accepted approximately a

century ago, revolutionizing Tectonics, Alpine Geology and orogeny in general (for historical reviews see Bailey 1935; Masson25

1976; Merle 1998; Trümpy 1991; Dal Piaz 2001; Schaer 2010).

Since then, a considerable effort has been made in mapping the present-day structure of the Helvetic nappe system (e.g.

Steck, 1999; Pfiffner et al., 2011). Structural and paleogeographic reconstructions have provided a valuable insight into the

kinematics of nappe formation (e.g. Gillcrist et al., 1987; Epard and Escher, 1996; Herwegh and Pfiffner, 2005; Bellahsen

et al., 2012; Boutoux et al., 2014). Therefore, the geometrical structure and kinematic evolution of the Helvetic nappe system30

is reasonably well understood. There are also theoretical and analogue modeling studies investigating the formation of fold-

and-thrust belts and nappes (e.g. Bucher, 1956; Rubey and King Hubbert, 1959; Dietrich and Casey, 1989; Merle, 1989; Casey

and Dietrich, 1997; Wissing and Pfiffner, 2003; Bauville et al., 2013; Poulet et al., 2014; Erdős et al., 2014; Jaquet et al., 2014;

Ruh et al., 2014; Bauville and Schmalholz, 2017). However, the controlling physical processes of nappe detachment, transport
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and stacking, and the associated dominant rock deformation mechanism are still disputed. An overview of suggested driving

forces and deformation mechanisms for nappe formation is given in Merle (1998, his chapter 3). For example, for fold nappes,

many interpretations favor distributed shearing and dominantly ductile deformation mechanisms, such as dislocation or grain-

size sensitive diffusion creep (e.g. Ramsay et al., 1983; Gillcrist et al., 1987; Ebert et al., 2008; Bauville et al., 2013). However,

there are also interpretations arguing for localized thrusting and dominantly brittle-plastic deformation mechanisms, such as5

fracturing related to fluid pressure (e.g. Boyer and Elliott, 1982; Granado and Ruh, 2019). Furthermore, the presumed driving

forces of nappe transport are either external surface forces, due to tectonic compression, or internal body forces, due to gravity.

Heterogeneous shearing due to buttressing in a general compressional regime is an example of deformation driven by external

forces (e.g. Ramsay et al., 1983; Epard, 1990; Bauville et al., 2013; Boutoux et al., 2014). Gravity gliding and spreading

is an example of deformation driven by body forces (e.g. Durney, 1982; Merle, 1989; Merle and Guillier, 1989). For thrust10

sheets, the prominent low-angle thrust planes are likely controlled by mechanical heterogeneities, such as the orientation of the

basement-cover interface and of mechanically weak shale-rich or evaporite layers, as has been suggested for the Helvetic nappe

system (e.g. Pfiffner, 1993; Steck, 1999; Pfiffner et al., 2011; Bauville and Schmalholz, 2017). Several softening mechanisms

have been proposed to localize deformation at the base of the thrust sheet, such as reduction of the effective stress due to pore

fluid pressure causing a reduction of the effective friction angle (e.g. King Hubbert and Rubey, 1959; Rubey and King Hubbert,15

1959) or a dominantly ductile deformation mechanism (e.g. Smoluchowski, 1909; Goguel, 1948; Voight, 1976), presumably

in combination with thermally-, chemically- or mechanically-activated softening mechanisms (e.g. Poirier, 1980; Ebert et al.,

2008; Poulet et al., 2014).

To make another step towards understanding the physical process of nappe formation, we investigate the detachment, trans-

port and stacking of nappes with two-dimensional (2D) numerical simulations based on continuum mechanics. To keep the20

model relatively simple, we focus here on thermo-mechanical processes on the macro-scale, larger than the typical size of

mineral grains. Hence, we do not consider hydro-chemical couplings, such as fluid release by carbonate decomposition (e.g.

Poulet et al., 2014), and micro-scale processes, such as micro-structural grain size evolution with secondary phases (e.g. Her-

wegh et al., 2011). The numerical algorithm is based on the finite difference method. We consider a standard visco-elasto-plastic

deformation behavior, heat transfer and thermo-mechanical coupling by shear heating and temperature-dependent viscosities.25

We also apply velocity boundary conditions that are standard for modeling accretionary or orogenic wedges (e.g. Buiter et al.,

2006). For the comparison between model results and natural observations, we consider a geological section across the Helvetic

Nappe System in Western Switzerland. This section is characterized by two deformed basement massifs, the Aiguilles-Rouges

and Mont-Blanc massifs, a fold nappe, the Morcles nappe, and a thrust nappe, the Wildhorn super-nappe, that has been over-

thrust, or stacked, above the underlying fold nappe (Fig. 1). In our models, we consider the tectonic inheritance of the Mesozoic30

passive margin formation in the form of simple half-grabens and horsts, because the Helvetic nappe system resulted from the

inversion of the pre-Alpine European passive margin (e.g. Trümpy, 1980). We consider two main orientations of inherited me-

chanical heterogeneities: (1) a lateral variation of mechanical strength due to the lateral alternation of basement and sediments

associated with the half-graben structure and (2) a vertical variation of strength due to (i) the basement-cover interface, (ii) the
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alternation of strong carbonate with weak shale-rich units (so-called mechanical stratigraphy after Pfiffner (1993)) and (iii) the

pressure and temperature sensitivity of rock strength and effective viscosity, respectively.

The main aim of this study is to show that a thermo-mechanical model based on the theory of continuum mechanics (i) with

a well established visco-elasto-plastic rheology based on standard flow laws, (ii) with mechanical heterogeneities mimicking

pre-Alpine extensional heritage and stratigraphic layering and (iii) with a wedge-type compressional configuration can self-5

consistently explain the first-order features of nappe detachment, transport and stacking in the Helvetic nappe system.

2 Short overview of the Helvetic Nappe System in Western Switzerland

The Helvetic nappe system is commonly subdivided into Infrahelvetic, Helvetic and Ultrahelvetic units (Fig. 1c) (e.g. Masson

et al., 1980; Escher et al., 1993; Pfiffner et al., 2011). The nappes consist mainly of Jurrasic to Paleogen sediments that

were deposited on the Mesozoic European passive margin before the Alpine orogeny (Fig. 1a). This passive margin inherited10

half-grabens and horsts from the Mesozoic, pre-Alpine extensional phase (e.g. Masson et al., 1980; Escher et al., 1993). The

stratigraphy of the nappes is generally characterized by shale-rich units, totaling several kilometers in thickness, and two major

units of massive platform carbonates, the so-called Quinten (Malm) and Urgonian (Lower Cretaceous) limestones, with a

thickness of several hundred meters (e.g. Masson et al., 1980; Pfiffner, 1993; Pfiffner et al., 2011).

In the studied section, along the Rhone-valley near Martigny (Switzerland), the Infrahelvetic units form the Morcles fold15

nappe (e.g. Steck, 1999). This recumbent fold nappe is strongly deformed, but is still connected to its original position of depo-

sition, the Mesozoic half-graben between the Aiguilles-Rouges and the Mont-Blanc massifs (Fig. 1a). Therefore, the Morcles

nappe is considered as a parautochtonous unit and its root zone, is termed the Chamonix zone (Fig. 1c). The sediments forming

the Helvetic nappes have been deposited on more distal regions of the European passive margin than the units forming the

Morcles nappe. The original regions of deposition of the Infrahelvetic and the Helvetic units have been presumably separated20

by a horst, or basement high (Fig. 1a). The Helvetic nappes have been thrust above the Infrahelvetic units. In the studied re-

gion, the Helvetic nappe is termed the Wildhorn super-nappe, because it can be subdivided into the Diablerets, Mont Gond and

Sublage nappes (Fig. 1c; Escher et al. (1993)). Due to the Rhone valley associated with the Rhone-Simplon fault, the Helvetic

nappes cannot be continuously traced back to their original position of deposition (Fig. 1c). The Ultrahelvetic units have been

depositied on more distal regions than the Helvetic units (Fig. 1a). Today, the Ultrahelvetic units are found in front and between25

the Morcles and Wildhorn nappes (Fig. 1c).

During the Alpine continental collision, the Ultrahevetic units and the Penninic nappes, originating from more distal posi-

tions, have been thrust above the original deposition regions of the sediments forming today the Morcles and Wildhorn nappes

(Fig. 1b) (e.g. Epard and Escher, 1996). These sediments were subsequently sheared off from their original position of depo-

sition and were transported several tens of kilometers towards the foreland, along a northwest transport direction (e.g. Epard30

and Escher, 1996; Ebert et al., 2007). The present day nappe structure represents a thick-skinned tectonic style because the

crystalline basement of the Aiguilles-Rouges and Mont-Blanc massifs exhibits significant deformation (Fig. 1c).
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The above tectonic scenario is supported by peak metamorphic temperatures of the Helvetic nappe system, which range

between 250-385 oC (Kirschner et al., 1996, 1995; Ebert et al., 2007, 2008) increasing downwards and towards the root zone.

The maximal depth of burial of the Morcles nappe has most likely exceeded 10 km and was achieved between 29 Ma and 24

Ma (Fig. 1b) (Kirschner et al., 1996, 1995). In the studied section, the carbonate layers are strongly folded indicating significant

internal ductile deformation of the nappes (Fig. 1c). The Morcles fold nappe is characterized by strong parasitic folding in its5

frontal part and by a ca. 20 km long, highly stretched inverse limb. The Wildhorn super-nappe also exhibits significant internal

deformation, such as the isoclinal fold separating the Diablerets and Mont Gond nappes (Fig. 1c). These observations indicate

that in the studied region ductile deformation was significant during formation of the nappes.

3 Methods

3.1 Mathematical model10

Our mathematical model is based on the concept of continuum mechanics (e.g. Mase and Mase, 1970; Turcotte and Schubert,

2014). We assume slow (no inertial forces), incompressible deformation under gravity. Heat production and transfer by con-

duction and advection are considered. Thermal evolution and deformation are coupled by temperature dependent viscosities

and shear heating, that is, dissipative deformation is converted into heat to conserve energy. The governing system of partial

differential equations is solved numerically. The applied equations are described in detail in Schmalholz et al. (2019). The15

applied numerical algorithm is based on the finite-difference/marker-in-cell method (e.g. Gerya and Yuen, 2003). The diffu-

sive terms in the force balance and heat transfer equations are discretized on an Eulerian staggered grid, with a resolution of

3001× 1001 (width×height). Advection and rotation terms are treated explicitly using a set of Lagrangian markers and a 4th

order in space / 1st order in time Runge-Kutta scheme. The topography in the model is a material interface defined by a contour

line with Lagrangian coordinate points, which is advected with the computed velocity field (Duretz et al., 2016). With ongoing20

deformation, the distance between neighboring points can increase and achieve the size of the numerical finite difference cells.

In such case this contour line is locally remeshed by adding additional points in the deficient contour line segments.

We consider a visco-elasto-plastic deformation behavior and assume a Maxwell viscoelastic model and Drucker-Prager and

von Mises yield criteria (see details in Schmalholz et al., 2019). In the applied creep flow laws, we add a constant pre-factor f

to the dislocation creep flow laws25

ηdis(ε̇disII,T ) = fFA− 1
n (ε̇disII)

1
n−1 exp

(
Q

nRT

)
, (1)

where the expression to the right of f corresponds to the effective viscosity from standard dislocation creep flow laws deter-

mined by rock deformation experiments. In equation (1), ε̇disII is the square root of the second invariant of the dislocation creep

strain rate [s−1], and T is temperature [K]. All other parameters are explained and listed in Table 1.

5



3.2 Model configuration

The applied model configuration mimics a 200 km long section of the upper crustal region of a simplified passive margin

(Fig. 2). We consider four model units with distinct mechanical properties, namely basement, cover, strong layer and weak

unit. The basement unit represents the crystalline basement, the cover unit represents the Ultrahelvetic and Penninic nappes,

the strong layer represents the main carbonate layers (Malm and Urgonian) and the weak unit represents the shale-rich units.5

The initial geometry of the basement unit represents the crystalline upper crust of a passive continental margin with 15 km

thickness, tapering down to 5 km thickness (Fig. 2). The Infrahelvetic basin is represented by an idealized half-graben that is

5 km deep and 25 km wide. The Infrahelvetic and the more distal (right side of the model) Helvetic basin are separated by an

idealized horst structure. We cover the entire passive margin structure with sediments, to obtain a total (basement + sediments)

model thickness of 25 km. The model stratigraphy consits of three units (cover, strong layer and weak units) and each unit has10

homogenous material parameters. Both the half-graben and the basin are filled with weak units up to a depth of 13.5 km. On

top of the weak units we place a 1.5 km thick strong layer. Our initial geometry represents the stage during the Alpine orogeny,

when the proximal passive margin, including the Infrahelvetic and Helvetic basins, was still relatively undeformed, but the

Ultrahelvetic and Penninic units have been already thrust on top of it (Fig. 1b). We consider the overthrust units by adding a 10

km thick, homogenous unit of cover sediments (without distinction between the Ultrahelvetic and Penninic units) on top of the15

model basement and basins (Fig. 2). Adding this 10 km thick unit is important to achieve pressure and temperature conditions

that are close to the recorded ones, because those control the brittle-plastic yield strength and the temperature-dependent

effective viscosities.

We apply boundary conditions that are similar to sandbox experiments of fold-and-thrust belts and orogenic wedges (Fig.

2). The left lateral model boundary moves to the right with a constant horizontal velocity of 1 cm.yr−1, while the right lateral20

boundary does not move horizontally. There are no shear stresses at the vertical model boundaries (i.e. free slip boundary

conditions). The bottom boundary also moves with a horizontal velocity of 1 cm.yr−1, but does not move vertically. This

velocity boundary condition generates a velocity discontinuity at the bottom right corner of the model, which is typical for

sandbox experiments and numerical simulations of accretionary wedges (e.g. Buiter et al., 2006). The top boundary is a free

surface, using the algorithm of Duretz et al. (2016). We apply constant temperature boundary conditions of 10 oC at the top and25

420 oC at the bottom of the model. There is no heat flux across the lateral model boundaries. We apply an initially equilibrated

temperature field which results in a ca. 16 oC.km−1 initial geothermal gradient. Applied parameters are listed in Table 1.

4 Results

First, we present the main results of a reference simulation, for the configuration described above, and then results of sim-

ulations in which some parameters are varied. All simulations show some common, general features: With increasing bulk30

shortening, the initially flat topography is increasing, mostly around the right model boundary, representing a “back-stop” (Fig.

3). The models develop a wedge shape with a topography tilting towards the left side of the model. With progressive shorten-

ing, the increasing topography reaches the left model boundary and the topographic slope diminishes, generating again a flatter
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topography. Also, basement deformation occurs initially around the bottom right corner and progressively propagates towards

the left (Fig. 3). With progressive shortening, the model thickens and the sedimentary units above the basement become rela-

tively thicker than the underlying basement because the sediments are thrust above the basement. The thickened sedimentary

cover results in increasing basement temperatures, hence decreasing its viscosity. The temperature increase at the top of the

basement is documented in figure (3) by the position of the 300 oC isotherm. Such basement temperature increase and the5

related shift to thick-skinned deformation was also reported by Bauville and Schmalholz (2015) in their numerical models of

fold-and-thrust belts. Basement deformation results in the partial or total closure of the half-graben and associated extrusion of

the basin fill. The specific model evolution, however, depends on the applied flow laws and model stratigraphy, which will be

discussed in comparison with the reference simulation.

4.1 Reference model10

We apply the configuration and parameters described in the previous section and displayed in figure 2 to generate a reference

simulation (Figs. 3 and 4). Initially, elastic stress builds up during a few hundred thousand years until the brittle-plastic yield

stress and the steady-state ductile creep stress are reached. The brittle-ductile transition occurs at about 6-8 km depth. We

quantify deviatoric stress magnitudes with the square root of the second invariant of the deviatoric stress tensor, τII, and

maximal deviatoric stresses reach ca. 250 MPa at the brittle-ductile transition (Fig. 4). Maximal strain rates in the developing15

shear zones are between 10−13 and 10−12 s−1, in broad agreement with strain rate estimates for natural shear zones (e.g.

Pfiffner and Ramsay, 1982; Boutonnet et al., 2013; Fagereng and Biggs, 2018). The largest stresses develop around the brittle-

ductile transition in the cover, whereas stresses in the basement and in the strong layer are significantly smaller (Fig. 4).

The model shows several key phases of formation of a nappe stack: (1) Detachment of sedimentary units from their substra-

tum as observed on the basin on the right, which mimicks the Helvetic basin (Figs. 3a and b, and 4a and c). (2) Significant20

horizontal transport of ca. 30 km with little internal deformation indicated by the relatively undeformed strong layer in the de-

tached unit (Figs. 3b to d, and 4b to c). (3) Formation of a fold nappe due to the closure and ductile drag of the left half-graben,

mimicking the Infrahelvetic basin, and associate extrusion of the sedimentary half-graben fill (Figs. 3c to e). (4) A major thurst

nappe stacked on top of a fold nappe (Figs. 3d and e).

During the initial stages of deformation, the strong layer of the right basin is gently folding, or buckling (Fig. 3a). Stress25

becomes concentrated around the contact of this strong layer and around the basement horst (Fig. 5m) causing increased strain

rates in this region. With progressive deformation, a localized shear zone dominated by brittle-plastic deformation develops

across the strong layer, eventually detaching it from the basement (Fig. 5j to l). This shear zone develops within the strong layer

so that a small piece of the strong layer remains attached to the basement (Fig. 5t). The detachment of the strong layer causes

a significant stress drop in the strong layer and the basement (Fig. 5m to p). Once detached, the strong layer and parts of the30

underlying weak unit passively move sub-horizontally over the horst initiating the horizontal nappe transport. Quantification

of elastic strain rates shows that elastic deformation is active during the detachment process and that, hence, elastic stresses are

not completely relaxed through visco-plastic deformation (Fig. 5e to h).
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During the detachment, some parts of the weak cover, originally residing above the strong layer, are dragged below the

detaching strong layer (Fig. 5). During the horizontal transport, the detached unit, consisting of the strong layer and some weak

units, is displaced above the cover material. Significant horizontal transport is facilitated because the underlying basement and

the strong layer of the left half-graben are significantly more competent than the weak units at the base of the overthrusting

nappe.5

While the detached unit from the basin on the right is overthrusting the fill of the half-graben left, this fill is also sheared out

of the half-graben due to (i) shear stresses generated by the overthrusting unit and (ii) closure of the half-graben due to ductile

deformation of basement units. During overthrusting, some parts of the cover units are incorporated between the overthrusting

unit and the fill of the left half-graben. Finally, a nappe consisting of the fill from the basin on the right has been stacked above

a fold nappe made of materials from the left half-graben. The entire process of nappe detachment, transport and stacking occurs10

during ca. 8 Myr for the applied bulk shortening velocity of 1 cm.yr−1. At the end of the simulation, the temperature of the

strong layer range between 250 oC at the top and 350 oC in the root zone of the fold nappe. The final bulk shortening was ca.

38 % after ca. 8 Myr.

4.2 Impact of varying strength contrast

We performed three simulations with the same initial geometry and final bulk shortening as the reference simulation, but with15

modified pre-factors, f , in the applied flow laws. In a first simulation, we used a smaller effective viscosity for the basement

only (f = 0.33). Here, the basement is weak enough to deform significantly from the onset of shortening. Yield stresses are

not reached at the contact of the basement horst with the strong layer (Fig. 6a). The strong layer does not detach from the

basement and overthrusting does not take place. Instead, a several km large fold nappe develops in the strong layer of the basin

on the right. Due to the highly distributed basement deformation, the half-graben closes only partially, resulting in a moderate20

buckling of the strong layer, but not in the formation of a fold nappe. Also, a nappe stack does not form in this simulation.

In a second simulation, we used a stronger cover (f = 0.5 instead of f = 0.1). The effective viscosities of basement and cover

are similar, as a result a mostly evenly distributed thick-skinned deformation takes place (Fig. 6c and d). A large scale fold de-

velops above the horst, but the overturned limb eventually detaches from the basement by necking. Although the overthrusting

stage results in a significant horizontal displacement, this displacement is only half that observed in the reference simulation25

and not sufficient to form a nappe stack. Due to the stronger shear drag from the top, the strong layer of the half-graben on the

left is almost entirely sheared out. The strong layer of the left half-graben forms an overthrust nappe with significant horizontal

displacement and with significant internal extension.

In a third simulation, we used weaker strong layers (f = 0.33). The development of the sediment units of the basin is largely

similar to that in the reference model (Fig. 6). The only notable difference is that before the strong layer is detached from the30

basement, it forms a shear fold that is on the scale of a few km. The development of the units of the left half-graben is largely

different compared to the reference simulation. Since the strong layer is weaker, the drag from the overriding units is sufficient

to detach the strong layer from its left contact with the basement and displace it several tens of km to the left. Due to significant
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horizontal displacements, a nappe stack forms with two thrust sheets on top of each other. However, the strong layer from the

left half-graben is displaced considerably further towards the left than the strong layer from the basin on the right.

The final result of the three simulations differs significantly from the result of the reference simulation, although the effective

viscosities of individual model units have been modified by factors of only three to five (Fig. 6). The results indicate that the

effective viscosity contrast between the model units has a first-order impact on the results.5

At the onset of nappe formation, after ca. 5% bulk shortening, the reference simulation and the three simulations with

different f factors exhibit different distributions and magnitudes of effective viscosity (Fig. 7). The effective viscosity at the

top of the basement is in the order of 1024 Pa.s and the viscosity of the cover directly above the basement is at least one order

of magnitude smaller. The strong layers have locally similar maximal effective viscosities than the top basement in the order of

1024 Pa.s. The effective viscosity contrast between strong layer and weak units in the basin on the right is ca. three orders of10

magnitude (Fig. 7a). The above mentioned viscosity ratios between model units are required to generate the nappe detachment,

transport and stacking in the reference simulation. In the three models with different f factors in some model units, one of

these viscosity ratios is different and, hence, the final result differs from the one of the reference simulation (Fig. 7). In other

terms, slight changes in effective viscosity distribution leads to different outcomes.

4.3 Impact of stress limiters in the basement15

To test the impact of the vertical strength distribution in the basement, we performed four simulations with the same configu-

ration as the reference model, but we limit the deviatoric stress in the basement to 25, 50, 75 and 100 MPa, respectively (Fig.

8a-d). The stress limitation is achieved by setting, in the basement only, the cohesion (C) to the stress limit and the friction

angle to zero. A zero friction angle simulates effectively a pressure-insensitive von Mises yield criterion, which can mimic low

temperature plasticity, such as Peierls creep. In all four simulations, the detachment of the strong layers from the basement in20

the distal basin is caused by a plastic shear zone that cuts through the edge of the horst and shears off a small basement sliver

(Fig. 8a-d). At the half-graben, however, the deformational style depends on the value of the cohesion (C). For C = 25 MPa,

the strong layer in the half-graben is scratching off the top of the left basement and forms a thrust nappe (Fig. 8a). For C = 50

MPa, the strong layer still scratches off a bit of the basement top, but forms now a fold nappe. For increasing values of C, the

amount of strain in the basement is decreasing, hence the shape of the nappe from the half-graben is becoming more similar to25

the shape in the reference simulation (Fig. 8b-d).

4.4 Impact of multilayers

We also run simulations in which we replaced the single strong layer in the reference model with two thinner ones that are

separated by weak units. We run three simulations with different initial thickness distributions of the two strong layers and

alternating weak units. The initial thickness configuration is displayed on the right of the three panels in Fig. 9. The material30

parameters of every unit are the same as in the reference model. The basement deformation agrees with the one in the reference

model. The deformation of the strong layers is different.
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On the right side, the strong layers form initially shorter wavelength (due to their smaller thickness) buckle folds, in agree-

ment with the dominant wavelength theory (e.g. Biot, 1961; Schmalholz and Mancktelow, 2016). In the simulations, where

the upper strong layer rests directly below the cover (Fig. 9b, c), the top layer is being detached and transported in a similar

fashion as in the reference model. The lower layer, on the other hand, forms a fold nappe first, with an extremely thinned

inverse limb. Eventually this inverse limb develops boudinage, and once necking takes place it detaches from the basement. In5

the simulation, in which a weak unit is located between the upper strong layer and the cover (Fig. 9a), both layers form folds

and detach from the basement horst by necking in the inverse limb.

Around the half-graben on the left, the deformation of the units is similar to the reference model, when weak units are

located between the upper strong layer and the cover (Fig. 9a). The main difference to the reference simulation is that the weak

unit located on top of the half-graben is sheared out, and both strong layers form a fold nappe with a more intensely stretched10

inverse limb. In the models, in which the upper strong layer is in direct contact with the cover (Fig. 9b, c), the drag from the

overriding unit is sufficient to displace this layer considerably horizontally. Drag from the top shears the upper strong layer of

the left half-graben above the basement to the left and it detaches the layer from the half-graben. As a result, buckle and shear

folds form around the left tip of the layer (Fig. 9b). The upper strong layer starts moving sub-horizontally without considerable

internal deformation, and eventually forms a rootless nappe. The lower strong layer of the half-graben stays mostly in place,15

until the weak units are extruded from the half-graben due to its closure. Then, the lower strong layer forms a fold nappe, with

a highly stretched inverse limb (Fig. 9b, c).

4.5 Impact of softening mechanisms

We also test the impact of two different softening mechanisms, activated in the reference simulation, that can enhance strain

localization (Fig. 10). The first mechanism is thermal softening by shear heating due to the conversion of mechanical work20

into heat and the resulting decrease of the temperature-dependent viscosity (e.g. Yuen et al., 1978; Kaus and Podladchikov,

2006; Jaquet and Schmalholz, 2017; Kiss et al., 2019). Although this mechanism is activated in all simulations, for the applied

1 cm.yr−1 convergence velocity its impact on structure development is negligible. However, with 5 cm.yr−1 convergence

velocity, thermal softening is sufficient to cause spontaneous shear zone formation (Kiss et al., 2019). In the higher velocity

simulation, prominent ductile shear zones are formed in the cover that also promote more localized brittle deformation zones25

(Fig. 10a). Heat production in the ductile shear zone raises the temperature of the units close to the "back-stop" on the right side

of the model. Thus, at this location, the basement deformation is more intense, whereas the left half-graben in the basement is

not being closed and the sediment fill is not being squeezed out (Fig. 10a).

The other considered softening mechanism is frictional-plastic strain softening. Such softening is frequently applied in

numerical models of crustal deformation in order to enforce highly-localized brittle deformation by decreasing the friction30

angle as a function of accumulated plastic strain (e.g. Buiter et al., 2006). Such softening algorithm induces mesh dependence

of load bearing capacities, but we apply it here for comparison (e.g. Buiter et al., 2006; Erdős et al., 2014; Ruh et al., 2014). We

used two different parameter sets to model strain softening. In the first case (Fig. 10b), we start with a friction angle of 30o that

we linearly decrease to 5o between an accumulated plastic strain of 0.5 and 1.5, which is a strain interval typically considered in
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geodynamic models with frictional strain softening (e.g. Erdős et al., 2014). Compared to the reference simulation, we observe

strongly localized brittle deformation that is characterized by high angle (� 0o from horizontal) and small displacement (< 10

km) overthrusts. This is the only simulation, where a strong back-thrust forms over the right basin that also deforms the strong

layer. In the second case (Fig. 10c), we start with a friction angle of 15o that we linearly decrease to 5o between accumulated

plastic strain of 0.5 and 1.5. Such initially lower friction angle is often suggested to mimic fluid-pressure reduced effective5

friction angles (e.g. Erdős et al., 2014). In this simulation, the detachment mechanism of the strong layer from the right side

of the horst is different than in the reference simulation. The initial buckling and folding phase is entirely missing, and plastic

yielding dominates from the beginning of deformation. Initially, the angle of thrusting is ca. 35o from the horizontal. Once a

sufficient amount of weak units are sheared on top of the horst, the transport direction is sub-horizontal. Similarly to the other

simulations with significant softening mechanisms, the basement around the half-graben is only deformed to a small degree10

and the half-graben is not closed.

5 Discussion

5.1 Numerical robustness

We investigated the impact of different numerical resolutions on the model results to test the robustness of these results. Such

test is important, because of weak and thin material between strong material can cause mechanical decoupling but only when15

resolved numerically. We compare the reference model with an original resolution of 3001×1001 (width×height) numerical

grid points (initially 66×25 m grid spacing) with two simulations having identical configuration and parameters, but with

smaller resolutions of 1501×501 (initially 133×50 m) and 751×251 (initially 267×100 m). The resulting structures after

38% of bulk shortening are essentially identical (Fig. 11). Similarly, the strain rate fields below the brittle-ductile transition

are similar too. However, the strain rate distribution in the brittle part and around the brittle-ductile transition is resolution20

dependent (Fig. 11). This is typical for the applied non-associated plasticity scheme with the Drucker-Prager yield criterion,

that is merely a stress limiter, inhibiting the stresses to exceed the failure limit. Thus the exact geometry of the brittle-plastic

shear bands is resolution dependent, but the effective load bearing capacity of the brittle layer converges with increasing

resolution (Yamato et al., 2019, their appendix). Keeping in mind these limitations regarding the brittle-plastic deformation,

the results in our main area of interest, that is the ductile nappe stacking, are essentially independent on the resolution within25

the studied range. Hence, our results are numerically robust concerning the detachment, transport and stacking of nappes under

dominantly ductile deformation.

5.2 Comparison of the model results with the geological observations

There are several features of the Helvetic Nappe System that we could successfully reproduce in our thermo-mechanical

model. Similarly to Bauville and Schmalholz (2015), a structure resembling a fold nappe has been formed by the extrusion of30

the sedimentary fill from a half-graben. During formation of this fold nappe, the half-graben has been closed and the sediments
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squeezed between the two basements resemble the structure of the Chamonix zone located between the Aiguilles-Rouges

and Mont-Blanc massifs (Fig. 1c). Hence, our model generated the first-order structural features (i.e. features larger than the

applied numerical resolution of 66×25 m) of the Infrahelvetic complex in W-Switzerland, namely a recumbent fold nappe with

a root located between two deformed basement massifs. Additionally, our model reproduced the detachment and sub-horizontal

transport of sedimentray units from a passive margin. The thrust nappe, which originates from the basin on the right in our5

model, resembles the Wildhorn super-nappe. The horizontal transport of this thrust nappe is in the order of 30 km in the model.

Furthermore, in the model this thrust sheet is stacked above the fold nappe and the final model structure resembles a thrust

nappe that is stacked above a fold nappe, as observed in the Helvetic nappe system. Moreover, there is a considerable amount

of cover units entrapped between the fold nappe and the thrust sheet. The entrapped lower region of the cover unit resembles

the Ultrahelvetic units so that our model can explain how these Ultrahelvetic units have been entrapped between the Morcles10

fold nappe and the Wildhorn super-nappe (Fig. 1c). At the end of the simulated formation of the nappe system, the maximum

temperature in the nappe system ranges between 250 oC and 350 oC. The Wildhorn nappe exhibits peak temperatures between

250 oC and 300 oC and the underlying Morcles nappe hotter peak temperatures between 290 oC and 350 oC, which is in

broad agreement with the metamorphic peak temperatures of the Helvetic nappe system reported by Kirschner et al. (1996)

and Ebert et al. (2007). In the simulations, the nappe stack is formed within ca. 8 Myr, which is also in broad agreement15

with the estimated time span of main formation of the Morcles fold nappe from ca. 28 to 17 Ma (Kirschner et al., 1995). The

simulations with two thin strong layers, separated by weak units, can explain the significant parasitic, or second order, folding

of the two main carbonate units (Quinten and Urgonian limestone formations) which is observed in the Wildhorn super-nappe.

Some features of the Helvetic Nappe System are not reproduced by the simulations. In the frontal part of the fold nappe, orig-

inating from the left half-graben, the front is first thrust out of the half-graben and the overturned limb develops subsequently.20

This deformation generates a “nose-like” structure in the frontal part of the fold nappe, which is not observed. However, a

stress limiter in the basement favours the formation of a fold nappe without the “nose-like” structure, indicating that the stress

contrast between the basement top and the strong layer has a first-order control on the developing fold nappe geometry. Also,

in all simulations the fold nappe has only a minor second order folding, in contrast with the prominent parasitic folds of the

Morcles nappe. In the numerical models, we likely overestimated the amount of shale-rich sediments in the basin on the right,25

mimicking the Helvetic basin, as the total volume of the Wildhorn super-nappe south of the Morcles nappes is much thinner

than in the simulations. There was also a likely significant amount of vertical flattening, and presumably pressure solution

related volume decrease, after the main phase of nappe formation and during the exhumation of the nappe system, which is

not modelled in our simulations. Moreover, several basement shear zones have been mapped in the Aiguilles-Rouges and in

the Mont-Blanc massifs, which are not present in the simulations. This is likely because (i) the straight bottom boundary of30

the model may prohibit any significant vertical displacement of the basement units and hence inhibit significant shear zone

formation, (ii) the model basement is mechanically homogeneous and there are no heterogeneities that can trigger shear zone

localization and (iii) the amount of brittle-plastic deformation is underestimated in the basement. We considered a horizontal

model base while during natural nappe formation the overall basement-cover interface was likely dipping, or tilting, in the

direction of subduction (i.e. direction of basal velocity), so that a model base gently dipping towards the subduction direction35
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zone be more realistic. The deformation at the base of our model is viscous and the surface slope for evolving crustal wedges

with a viscous base depends on the viscous shear stress at the base, whereby larger shear stresses are related to higher surface

slopes (e.g. Ruh et al., 2012). Keeping the basal viscous shear stress the same, a tilting of the model base towards the subduction

zone would reduce the surface slope. Therefore, in our models the surface slopes towards the foreland (left) region represent

high end-member surface slopes so that effects of gravity-related forces directed towards the foreland region are on the higher5

end.

Finally, the applied "numerical sandbox" model configuration and velocity boundary conditions constrain the deformation in

the model domain. During the large-scale dynamics of Alpine orogenic wedge formation, the straight bottom and right model

boundaries do not exist. Processes such as laterally-varying vertical isostatic adjustment, flexure due to subduction and back-

thrusting, or back-folding, generate geodynamic conditions for the formation of the Helvetic nappe system which are clearly10

more dynamic and complex than implied by the considered model configuration. Lithospheric scale numerical models can

self-consistently model the generation of orogenic wedges and major crustal shear zones, including effects of isostasy, flexure

and back-folding (e.g. Erdős et al., 2014; Jaquet et al., 2018; Jourdon et al., 2019; Erdős et al., 2019). With higher numerical

resolution such lithosphere models may eventually be able to resolve the upper crustal deformation with a resolution as applied

in our model. Hence, the impact of isostasy and flexure on the presented results and the formation of the Helvetic nappe system15

can be tested eventually with larger scale models.

5.3 Tectonic inheritance, mechanical heterogeneities and potential softening mechanisms

Geological reconstructions of the Helvetic nappe system showed the correlation of the nappes with their original positions

along the pre-Alpine European passive margin, which was characterized by half-grabens and horsts (e.g. Epard, 1990; Boutoux

et al., 2014). In agreement with previous modelling studies (e.g. Beaumont et al., 2000; Wissing and Pfiffner, 2003; Bellahsen20

et al., 2012; Lafosse et al., 2016; Bauville and Schmalholz, 2017), our results suggest that tectonic inheritance in the form

of half-grabens and horsts has a strong impact on the development of fold and thrust nappes during crustal deformation. Our

results indicate that two types of tectonic inheritance are important, namely the geometry and the magnitude of mechanical

heterogeneities. The geometry of half-grabens and horsts controls the location of nappe initiation (Bauville and Schmalholz,

2017). The basement and sediments must, of course, have different mechanical strength, otherwise the geometry of the base-25

ment would be unimportant. Our results suggest that tectonic inheritance was necessary to the evolution of the Helvetic nappe

system, but not sufficient. The results show that specific strength-contrast between basement and sediments and within the

sediments are required to model nappe structures resembling those of the Helvetic nappe system (Figs. 6 and 7). The reference

simulation exhibits an effective viscosity contrast between weak units and strong layer and basement in the order of three to

four orders of magnitude (Fig. 7a). Although the effective viscosity in the basement and strong layer is in the order of 102430

Pa.s, the stresses in the basement and strong layer are far below the brittle-plastic yield stress and typically smaller than 100

MPa (Fig. 4). If the effective viscosity contrast between strong layer and basement is not large enough, then the sediments of

the basin on the right side are not detached in the manner of a thrust sheet (Fig. 6a). One possibility to enforce detachment for

smaller viscosity contrasts is the application of plastic strain softening and/or initially reduced friction angles (Fig. 10b and c).
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Application of strain softening favors the formation of thrust sheets in the models, but prohibits the formation of fold nappes

(Fig. 10b and c). The importance of tectonic inheritance and the pre-Alpine configuration on the nappe formation underlines

the importance of considering geological field work and associated geological reconstructions for the model configuration, be-

cause only such field based reconstructions can provide estimates for the pre-Alpine configurations. Our results are consistent

with those of Duretz et al. (2011) which showed that inherited mechanical heterogeneities, promoting large lateral strength5

contrast, are essential to trigger exhumation of lower crustal granulites as observed in the Bohemian Massif. Generally, our

results are consistent with a variety of studies, which show the importance of structural inversion of extensional systems during

compressional deformation and are based on geological field observation, analogue deformation experiments and numerical

models (e.g. Gillcrist et al., 1987; Buiter and Adrian Pfiffner, 2003; Buiter et al., 2009; Bellahsen et al., 2012; Bonini et al.,

2012; Lafosse et al., 2016; Granado and Ruh, 2019).10

For the model configuration, a significant localization due to thermal softening does not occur for a convergence velocity of

1 cm.yr−1, but it does for 5 cm.yr−1. Average convergence velocities during the Alpine orogeny are typically estimated to be

in the order of 1 cm.yr−1 (Schmid et al., 1996). However, some short periods with higher convergence velocities cannot be

excluded. So if there were short periods during the formation of the Helvetic nappe system with convergence velocities larger

than ca. 5 cm.yr−1, then thermal softening might have been important.15

There is field evidence for grain size reduction associated with mylonitic shear zones at the base of nappes in the Helvetic

nappe system (e.g. Ebert et al., 2007, 2008). We did not consider the microscale grain size reduction in our models for several

reasons: First, the major mylonitic shear zones with significant grain size reduction have a thickness in the order of 10 m.

Although we use high resolution models we have a numerical grid size of ca. 66×25 m, hence, this resolution is still not large

enough to resolve the internal deformation within shear zones having thickness of 10 m. Second, recent numerical simulations20

including grain size reduction and combined diffusion and dislocation creep flow laws suggest that grain size reduction does

not have a dramatic impact on strain localization (Schmalholz and Duretz, 2017), which is in agreement with theoretical

results of Montési and Zuber (2002). The reason is that a piezometer-type stress to grain size relation, when subsituted into

a grain-size-sensitive diffusion creep flow law, generates a power-law type flow law with stress exponents similar to the one

of the corresponding dislocation creep flow law (e.g. Montési and Zuber, 2002). However, other studies argue that microscale25

processes such as coupled grain evolution and damage mechanisms can generate significant strain localization and that these

mechanisms have been responsible for generating subduction and plate tectonics (e.g. Bercovici and Ricard, 2014). Therefore,

future simulations should consider such coupled microscale processes in order to quantify their importance on the first order

tectonic nappe detachment, overthrusting and stacking.

6 Conclusions30

Our 2D thermo-mechanical simulations support geological interpretations arguing that tectonic and structural inheritance con-

trolled the tectonic evolution and resulting first order structures in the Helvetic nappe system. We show that both the geometry

and magnitude of mechanical heterogeneities, representing the tectonic and structural inheritance, control the nappe formation.
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The two main heterogeneities are caused by the laterally varying basement-cover interface, that is characterized by half-grabens

and horsts, and by the vertical alternation of sedimentary layers with different mechanical strength. If these heterogeneities are

included in numerical simulations, based on continuum thermo-mechanics, with standard creep flow laws and with Drucker-

Prager and von Mises yield criteria, then the simulations can produce the first order features of nappe detachment, transport

and stacking in the Helvetic nappe system. In our models, an effective viscosity contrast of approximately three to four orders5

of magnitude between weak sediments and strong sediments and basement is essential to reproduce the first order tectonic

features. Furthermore, our results suggest that it is not essential to consider additional rock mechanic processes, in addition

to the applied creep and brittle-plastic deformation, such as grain size evolution, frictional strain softening or pore fluid pres-

surization in order to explain these first order features, although all these additional processes most likely occured during the

formation of the Helvetic nappe system. Therefore, our model requires likely the least amount of assumptions concerning rock10

deformation mechanisms for the explanation of the first order features of the Helvetic nappe system.

Based on the first-order agreement between our model results and natural data, we propose a thermo-mechanics based in-

terpretation for the tectonic evolution of the Helvetic nappe system of Western Switzerland: The pre-Alpine European passive

margin was characterized by significant mechanical heterogeneities due to a basement-cover contact with half-grabens and

horst, and due to the alternation of mechanically strong and weak sediment units. During the continental collision, the pas-15

sive margin was deformed by external compressive stresses. During deformation, mechanical heterogeneities, and not material

softening mechanisms, control the detachment, transport and stacking of nappes. Detachment of sedimentary units of the Wild-

horn super-nappe is caused by stress concentrations around the contact between basement and sediments. The transport of the

Wildhorn super-nappe was facilitated by weak shale-rich units and weak Ultrahelvetic units, which have been entrapped from

above to below the Wildhorn super-nappe. Formation of the Morcles fold nappe is associated to the closing of a half-graben,20

bounded by basement massifs that form now the Aiguilles-Rouges and Mont-Blanc massifs, and the associated squeezing-out

of sediments from this half-graben. Closing of the half-graben occurred by an overall distributed deformation without major

reactivation of earlier half-graben normal faults and without major localized thrusting in the basement.
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Erdős, Z., Huismans, R. S., and Beek, P. v. d.: Control of increased sedimentation on orogenic fold-and-thrust belt structure–insights into the

evolution of the Western Alps, Solid Earth, 10, 391–404, 2019.

Escher, A., Masson, H., and Steck, A.: Nappe geometry in the western Swiss Alps, Journal of structural Geology, 15, 501–509, 1993.

Escher von der Linth, A.: Geologische Carte des cantons Glarus und seiner Umgebung, nebst Profilen, Verhandlungen der Naturforschenden20

Gesellschaft in Zürich, pp. 52–62, 1841.

Fagereng, Å. and Biggs, J.: New perspectives on ‘geological strain rates’ calculated from both naturally deformed and actively deforming

rocks, Journal of Structural Geology, 2018.

Gerya, T. V. and Yuen, D. A.: Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geo-

logical flows with strongly variable transport properties, Physics of the Earth and Planetary Interiors, 140, 293–318, 2003.25

Gillcrist, R., Coward, M., and Mugnier, J.-L.: Structural inversion and its controls: examples from the Alpine foreland and the French Alps,

Geodinamica acta, 1, 5–34, 1987.

Goguel, J.: Introduction à l’étude mécanique des déformations de l’écorce terrestre: par Jean Goguel,... 2e édition, Impr. nationale, 1948.

Granado, P. and Ruh, J. B.: Numerical modelling of inversion tectonics in fold-and-thrust belts, Tectonophysics, 763, 14–29, 2019.

Hansen, F., Carter, N., et al.: Semibrittle creep of dry and wet Westerly granite at 1000 MPa, in: The 24th US Symposium on Rock Mechanics30

(USRMS), American Rock Mechanics Association, 1983.

Heim, A.: Die vermeintliche «Gewölbeumbiegung des Nordflügels der Glarner Doppelfalte» südlich vom Klausenpass, eine Selbstkorrektur.,

Vjsch. natf Ges. Zurich., 51, 403–431, 1906.

Herwegh, M. and Pfiffner, O.-A.: Tectono-metamorphic evolution of a nappe stack: A case study of the Swiss Alps, Tectonophysics, 404,

55–76, 2005.35

Herwegh, M., Linckens, J., Ebert, A., Berger, A., and Brodhag, S.: The role of second phases for controlling microstructural evolution in

polymineralic rocks: A review, Journal of Structural Geology, 33, 1728–1750, 2011.

18

https://doi.org/https://doi.org/10.1016/j.lithos.2010.10.013
http://www.sciencedirect.com/science/article/pii/S0024493710002963
https://doi.org/10.1093/gji/ggv526
https://doi.org/10.1093/gji/ggv526


Jaquet, Y. and Schmalholz, S. M.: Spontaneous ductile crustal shear zone formation by thermal softening and related stress, temperature and

strain rate evolution, Tectonophysics, 2017.

Jaquet, Y., Bauville, A., and Schmalholz, S. M.: Viscous overthrusting versus folding: 2-D quantitative modeling and its application to the

Helvetic and Jura fold and thrust belts, Journal of Structural Geology, 62, 25–37, 2014.

Jaquet, Y., Duretz, T., Grujic, D., Masson, H., and Schmalholz, S. M.: Formation of orogenic wedges and crustal shear zones by thermal5

softening, associated topographic evolution and application to natural orogens, Tectonophysics, 746, 512–529, 2018.

Jourdon, A., Le Pourhiet, L., Mouthereau, F., and Masini, E.: Role of rift maturity on the architecture and shortening distribution in mountain

belts, Earth and Planetary Science Letters, 512, 89–99, 2019.

Kaus, B. J. and Podladchikov, Y. Y.: Initiation of localized shear zones in viscoelastoplastic rocks, Journal of Geophysical Research: Solid

Earth, 111, 2006.10

King Hubbert, M. and Rubey, W. W.: Role of Fluid Pressure in Mechanics of Overthrust Faulting, Geological Society of America Bulletin,

70, 115, https://doi.org/10.1130/0016-7606(1959)70[115:ROFPIM]2.0.CO;2, 1959.

Kirschner, D. L., Sharp, Z. D., and Masson, H.: Oxygen isotope thermometry of quartz-calcite veins: Unraveling the thermal-tectonic history

of the subgreenschist facies Morcles nappe (Swiss Alps), Geological society of America bulletin, 107, 1145–1156, 1995.

Kirschner, D. L., Cosca, M. A., Masson, H., and Hunziker, J. C.: Staircase 40/Ar39Ar spectra of fine-grained white mica: Timing and duration15

of deformation and empirical constraints on argon diffusion, Geology, 24, 747–750, 1996.

Kiss, D., Podladchikov, Y., Duretz, T., and Schmalholz, S. M.: Spontaneous generation of ductile shear zones by thermal softening: Local-

ization criterion, 1D to 3D modelling and application to the lithosphere, Earth and Planetary Science Letters, 519, 284–296, 2019.

Kronenberg, A. K., Kirby, S. H., and Pinkston, J.: Basal slip and mechanical anisotropy of biotite, Journal of Geophysical Research: Solid

Earth, 95, 19 257–19 278, 1990.20

Lafosse, M., Boutoux, A., Bellahsen, N., and Le Pourhiet, L.: Role of tectonic burial and temperature on the inversion of inherited extensional

basins during collision, Geological Magazine, 153, 811–826, 2016.

Lugeon, M.: Les grandes nappes de recouvrement des Alpes du Chablais et de la Suisse., Bull. Soc. geol. France., 4, 723, 1902.

Mase, G. E. and Mase, G.: Continuum mechanics, vol. 970, McGraw-Hill New York, 1970.

Masson, H.: Un siècle de géologie des Préalpes: de la découverte des nappes à la recherche de leur dynamique, Eclogae geologicae Helvetiae,25

69, 527–575, 1976.

Masson, H., helvétique des sciences naturelles. Commission géologique, S., Herb, R., Steck, A., and Ayrton, S. N.: Helvetic Alps of Western

Switzerland, Wepf and Company, 1980.

Merle, O.: Strain models within spreading nappes, Tectonophysics, 165, 57–71, 1989.

Merle, O.: Emplacement mechanisms of nappes and thrust sheets, vol. 9, Springer Science & Business Media, 1998.30

Merle, O. and Guillier, B.: The building of the Central Swiss Alps: an experimental approach, Tectonophysics, 165, 41–56, 1989.

Montési, L. G. and Zuber, M. T.: A unified description of localization for application to large-scale tectonics, Journal of Geophysical Re-

search: Solid Earth, 107, 2002.

Murchison, R. I.: On the Geological Structure of the Alps, Apennines and Carpathians, more especially to prove a transition from Secondary

to Tertiary rocks, and the development of Eocene deposits in Southern Europe, Quarterly Journal of the Geological Society, 5, 157–312,35

1849.

Pfiffner, O. A.: The structure of the Helvetic nappes and its relation to the mechanical stratigraphy, Journal of structural Geology, 15, 511–521,

1993.

19

https://doi.org/10.1130/0016-7606(1959)70[115:ROFPIM]2.0.CO;2


Pfiffner, O. A.: Geology of the Alps, John Wiley & Sons, 2014.

Pfiffner, O.-A. and Ramsay, J.: Constraints on geological strain rates: arguments from finite strain states of naturally deformed rocks, Journal

of Geophysical Research: Solid Earth, 87, 311–321, 1982.

Pfiffner, O.-A., Burkhard, M., Hänni, R., Kammer, A., Kligfield, R., Mancktelow, N., Menkveld, J., Ramsay, J., Schmid, S., and Zurbriggen,

R.: Structural map of the Helvetic zone of the Swiss Alps, including Vorarlberg (Austria) and Haute Savoie (France), 2011.5

Poirier, J.: Shear localization and shear instability in materials in the ductile field, Journal of Structural Geology, 2, 135–142, 1980.

Poulet, T., Veveakis, M., Herwegh, M., Buckingham, T., and Regenauer-Lieb, K.: Modeling episodic fluid-release events in the ductile

carbonates of the Glarus thrust, Geophysical Research Letters, 41, 7121–7128, 2014.

Price, N. J. and McClay, K. R.: Thrust and nappe tectonics, Geological Society of London, 1981.

Ramsay, J. G., Casey, M., and Kligfield, R.: Role of shear in development of the Helvetic fold-thrust belt of Switzerland, Geology, 11,10

439–442, 1983.

Rubey, W. W. and King Hubbert, M.: Role of fluid pressure in mechanics of overthrust faulting: II. Overthrust belt in geosynclinal area of

western Wyoming in light of fluid-pressure hypothesis, Geological Society of America Bulletin, 70, 167–206, 1959.

Ruh, J. B., Kaus, B. J., and Burg, J.-P.: Numerical investigation of deformation mechanics in fold-and-thrust belts: Influence of rheology of

single and multiple décollements, Tectonics, 31, 2012.15

Ruh, J. B., Gerya, T., and Burg, J.-P.: 3D effects of strain vs. velocity weakening on deformation patterns in accretionary wedges, Tectono-

physics, 615, 122–141, 2014.

Schaer, J.-P.: Swiss and Alpine geologists between two tectonic revolutions. Part 1: from the discovery of nappes to the hypothesis of

continental drift, Swiss Journal of Geosciences, 103, 503–522, 2010.

Schardt, H.: Sur l’origine des Préalpes romandes Zone du Chablais et du Stockhorn, Verlag nicht ermittelbar, 1893.20

Schmalholz, S. M. and Duretz, T.: Impact of grain size evolution on necking in calcite layers deforming by combined diffusion and dislocation

creep, Journal of Structural Geology, 103, 37–56, 2017.

Schmalholz, S. M. and Mancktelow, N. S.: Folding and necking across the scales: a review of theoretical and experimental results and their

applications., Solid Earth, 7, 2016.

Schmalholz, S. M., Duretz, T., Hetényi, G., and Medvedev, S.: Distribution and magnitude of stress due to lateral variation of gravitational25

potential energy between Indian lowland and Tibetan plateau, Geophysical Journal International, 216, 1313–1333, 2019.

Schmid, S., Boland, J., and Paterson, M.: Superplastic flow in finegrained limestone, Tectonophysics, 43, 257–291, 1977.

Schmid, S. M., Pfiffner, O.-A., Froitzheim, N., Schönborn, G., and Kissling, E.: Geophysical-geological transect and tectonic evolution of

the Swiss-Italian Alps, Tectonics, 15, 1036–1064, 1996.

Smoluchowski, M.: II.—Some Remarks on the Mechanics of Overthrusts, Geological Magazine, 6, 204–205, 1909.30

Steck, A.: Carte tectonique des Alpes de Suisse occidentale et des régions avoisinantes, Service hydrologique et géologique national, 1999.

Termier, P.: La synthèse géologique des Alpes, 1906.

Termier, P.: A la glorie de la terre: souvenirs d’un geologue, 1922.

Tollmann, A.: Grundprinzipien der alpinen Deckentektonik, Deuticke, 1973.

Trümpy, R.: Geology of Switzerland: An outline of the geology of Switzerland, Interbook, 1980.35

Trümpy, R.: The Glarus nappes: A controversy of a century ago: in Modern Controversies in Geology (Proceedings of the Hsu Symposium

edited by DW Muller, JA McKenzie, and H, Weissert: Academic Press, London, pp. 385–404, 1991.

Turcotte, D. and Schubert, G.: Geodynamics, Cambridge university press, 2014.

20



Voight, B.: Mechanics of thrust faults and decollement, vol. 32, Halsted Press, 1976.

Wissing, S. and Pfiffner, O.-A.: Numerical models for the control of inherited basin geometries on structures and emplacement of the Klippen

nappe (Swiss Prealps), Journal of structural geology, 25, 1213–1227, 2003.

Yamato, P., Duretz, T., and Angiboust, S.: Brittle/ductile deformation of eclogites: insights from numerical models, Geochemistry, Geo-

physics, Geosystems, 2019.5

Yuen, D., Fleitout, L., Schubert, G., and Froidevaux, C.: Shear deformation zones along major transform faults and subducting slabs, Geo-

physical Journal International, 54, 93–119, 1978.

21



Figure 1. a) Simplified geological reconstruction of the Mesozoic, pre-Alpine European passive margin. b) Simplified geological recon-

struction of the Alpine orogenic wedge, after emplacement of the Penninic and Ultrahelvetic units and before the Helvetic nappe stacking.

The black rectangle represents the model domain of the numerical simulations. c) Simplified geological reconstruction of the present day

structure of the Helvetic Nappe System. d) The location of the study area (red ellipse) and the cross section (red line) are indicated on the

map of Switzerland.
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Figure 2. Reference model configuration. The white contours show isotherms and the labels are the corresponding temperatures in oC.
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Figure 3. Structural and thermal evolution of the reference model for different times, t, and bulk shortening, γb. The white contours show

isotherms and the labels are the corresponding temperatures in oC. An animation, showing the full time evolution of the reference model,

can be found as a supplementary material.
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Figure 4. Evolution of the strain rate (left column) and deviatoric stress (right column) fields of the reference model for different times, t,

and bulk shortening, γb. Strain rate and deviatoric stress are quantified with the square root of the second invariant of the strain rate, ε̇II, and

deviatoric stress, τII, tensor, respectively. Magnitudes of ε̇II and τII are displayed with logarithmic colorscale. Colormaps are from Crameri

(2018).
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Figure 5. Enlargement of different stages of the detachment of the strong layer from the basement horst for different times, t, and bulk

shortening, γb (see figure 4 for entire model domain). Colorplots of viscous strain rates (a-d), elastic strain rates (e-h), plastic strain rates

(i-l), deviatoric stresses (m-p) and effective viscosities (q-t) are displayed. For all strain rate and stress tensor quantities we display their

corresponding square root of the second invariants.
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Figure 6. The final geometry, temperature and viscosity fields of three simulations with different f factor for certain model units (see figure

titles).
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Figure 7. Effective viscosity for four simulations with different f factor for certain model units after a bulk shortening of ca. 5.4%. Below

the brittle-ductile transition the effective viscosity (i.e. ratio of stress and visco-elastic strain rate) essentially equals the viscosity calculated

from the dislocation creep flow law (eq. 1). Panel a) displays the reference simulation and panels b) to d) displays the three simulations

shown in figure 6.
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Figure 8. The final geometry and temperature fields of three simulations with different Von Mises yield criteria (see figure titles). The

simulation withC = 25 MPa has been terminated earlier, as the results (the sedimentary units are bulldozing off huge pieces of the crystalline

basement) are totally different from geological observations.
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Figure 9. The final geometry of three simulations with two strong layers with the isotherms of the corresponding temperature field. The initial

model stratigraphy around the upper region of the half-graben and basin is displayed on the right of each panel. The model stratigraphy is

laterally homogenous, so the overall initial configuration is similar to that in Figure (2).
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Figure 10. The geometry and the strain-rate field of three simulations after ca. 30% bulk shortening, with various softening mechanisms.

Panels a) and b) show results of a simulation with a convergence rate of 5 cm.yr−1, in which thermal softening has a significant impact.

Panels c) and d) show results of a simulation with strain softening that reduces friction angle from the initial 30 degrees to 5 degrees. Panels

e) and f) show results of a simulation with strain softening that reduces friction angle from the initial 15 degrees to 5 degrees.
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Figure 11. The geometry and the strain-rate field of three simulations after ca. 38% bulk shortening for different numerical resolutions.
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Table 1. The list of the reference model parameters, where f is a custom pre-factor, A is the pre-exponential factor, n is the power-law

exponent, Q is the activation energy, λ is the thermal conductivity, ρref is the density at reference pressure (Pref = 0 Pa) and temperature

(Tref = 0 oC), Qr is the radioactive heat production, C is the cohesion and φ is the friction angle. Some parameters have constant values:

Cp = 1050 J.K−1 is the heat capacity, G= 1010 Pa is the shear modulus, α= 3× 105 K−1 is the thermal expansion coefficient, β =

10−11 Pa−1 is the compressibility and F = 2(1−n)/n3−(n+1)/(2n) is a geometry factor (needed to convert flow law parameters from axial

compression experiments into an invariant form). The creep flow law parameters (A, n and Q) are: 1Westerly granite (Hansen et al., 1983),
2calcite (Schmid et al., 1977) and 3mica. (Kronenberg et al., 1990).

Lithology f A [Pa−ns−1] n Q [J.mol−1] λ [W.m−1K−1] ρref [kg.m
−3] Qr [W.m−3] C [Pa] φ [o]

Basement1 1.0 3.16× 10−26 3.3 1.87× 105 3.0 2800 2.5× 10−6 107 30

Cover2 0.1 1.58× 10−25 4.2 4.45× 105 2.5 2700 5× 10−7 107 30

Strong layer2 1.0 1.58× 10−25 4.2 4.45× 105 2.5 2750 5× 10−7 107 30

Weak units3 1.0 1.00× 10−138 18.0 5.10× 104 2.0 2700 1× 10−6 106 5
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