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The realism of Discrete Fracture Network (DFN) models relies on the spatial organization
of fractures, which is not issued by purely stochastic DFN models. In this study, we
introduce correlations between fractures by enhancing thegenetic model (UFM) of
Davy et al. [1] based on simpli�ed concepts of nucleation, growth and arrest with
hierarchical rules. To do so, the nucleation of new fractures is correlated with the
elastic strain energy of distortion stored in the matrix, which is a function of preexisting
fractures. Discrete Fracture Networks so generated show multi-scale clustering effects
with fractal dimensions below the topological dimension over a broad range of scales.
The fractal dimension depends on the way one correlates the nucleation occurrence to
the strain energy. Fracture clustering entails a spatial variability of the fracture density,
which increases with the intensity of the coupling between stress and nucleation. The
analysis of connected clusters density and of fracture intersections also highlights the
differences between the UFM models and its equivalent Poisson model. We show that
our stress-dependent nucleation model introduces some newfracture size-positions
correlations, with small fractures tending to connect to the largest ones.

Keywords: discrete fracture networks (DFNs), nucleation, c lustering, connectivity, topology

INTRODUCTION

Fractures are ubiquitous structures controlling both �owsand rock mechanical strength in
geological environments. Modeling the fracture network is thus a key prerequisite of forecasting
modeling in many industrial applications such as managing groundwater/petroleum resources,
assessing risks associated with geotechnical constructions or deep waste disposal, among others.
In most of the cases, fractures cannot be modeled deterministically, because they cannot be
observed in three-dimensions with su�cient resolution at all scales. Hence, the modeling must be
stochastic, which consists of generating a 3D fractured medium statistically equivalent to measures
and observations. Discrete Fracture Network modeling is oneof the most convenient and used
of the stochastic methods; it describes fractured rocks as apopulation of individual fractures,
whose parameters (size, shape, orientation, aperture, and position) are drawn from statistical
probability distributions derived from observation maps (mainly 2D outcrop and tunnels, 1D
fracture intensity along wells, or 3D geophysics imagery) and models [see [2, 3] for reviews]. In its
simplest form, the model (which we will refer as the Poisson model) consists of positioning fractures
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at random in the generation volume with a given density,
and of assigning other fracture parameters independently by
bootstrapping the parameter distributions of observations [4–
9]. The method is easy to implement, but it neglects most of
the complexity of the underlying fracturing process, in particular
the correlations induced by fracture-to-fracture mechanical
interaction [10–12]. This so-called Poisson model is thus a
crude representation of geological fractures that can lead to
large discrepancy between modeled and natural network in
terms of network topology [13, 14], having dramatical impact
on the estimated hydrological and mechanical behavior of the
fractured rock mass [15–17]. A way to improve the realism
of DFN models is the use of genetic models, in which
the fracture hierarchy reproduce correlations between their
di�erent geometrical attributes. Nevertheless, a full mechanical
description of the fracturing process [18–20] is not feasible when
dealing with dense networks made of fractures having sizes from
centimeter to tens of kilometers. The broad range of natural
fracture size distributions and their power-law nature [11, 21–
23] suggest that all scales matters. This is even more important
for industries such as nuclear deep waste disposal where small
fractures may have an important role at the near�eld of the
repository, whose footprint extends to several kilometers. Recent
papers [1, 24] have proposed a genetic model of DFN, called
“Universal Fracture Model” (UFM model), using simpli�ed
fracturing-relevant rules for nucleation, growth and arrest of
fractures to draw complex and dense networks. With simple
kinematic rules that mimic the main mechanical processes,
the model produces fracture size distributions and fracture
intersections that are consistent with observations [24]. It results
in less connected networks than the Poisson model and changes
in the network topology [25], which has been proven to have
an impact on �ow properties, particularly decreasing e�ective
permeability and increasing �ow channeling [26]. Nonetheless,
the random positioning of new fractures (nuclei) in this model is
still too simpli�ed to reproduce spatial variability and clustering
e�ect observed in natural fracture network patterns [11, 23].
Indeed, nucleation is a complex process both controlled by the
repartition of �aws in the rock matrix such as grain boundaries,
pores or cleavage plans [27–29] and the stress distributions that
make nuclei active or not [30–32]. This problem can be addressed
as a quenched disordered process where �aws are initially present
in the system and activate as the system evolves [33, 34], or as an
annealed disorder where nuclei positioning is directly a function
of the system evolution [35]. In this paper, we aim to improve the
UFM model by better reproducing the complex feedback-loop
process between the propagation of fractures and the emergence
of new ones. Our model is also based on the nucleation, growth,
and arrest scheme, but we propose to condition the positioning
of new nuclei to the mechanical perturbation induced by existing
fractures in a timewise manner. This perturbation is modeled
as the superposition of stress redistributions induced by each
fracture loaded by an allegedly known remote stress �eld. Such
a pseudo-mechanical model does not aim to catch all the
complexity of fracture mechanical processes, but this �rst order
approximation of fracture interactions at the network scale may
already change dramatically the topology and connectivity of

the DFN models. Since larger stress perturbations are expected
in the vicinity of fractures, with an intensity that depends
on fracture size, we expect the stress-driven nucleation in the
timewise process of the UFM model to increase fracture spatial
correlations. In order to highlight spatial correlations ofthe
DFNs so generated, we compute fracture positions correlation
dimension, fracture density variability, and fractures intersection
matrix, and compare results with equivalent Poisson model.

THE MODEL

The Discrete Fracture Network approach for modeling fractured
rock masses refers to numerical models explicitly representing
the geometry of each fractures forming the network. Generally,
this geometry (positions, orientations, size. . . ) is generated
stochastically from data statistics. The simplest model considers
fractures independent of each other; it will be referred to asthe
Poisson DFN model. The DFN model developed by Davy et al.
[1] is based on basic mechanical concepts described in Davy
et al. [24]. The fracturing process is divided in three main stages
in a time-wise approach: nucleation, propagation and arrest of
fractures. We �rst develop the model and how in its simplest
form—i.e., with a Poisson distribution of nuclei—it controls the
network size and intersection distributions. Then, we introduce a
more complex nucleation model based on the stress perturbation
of pre-existing fractures.

The Stress-Independent UFM Model
Nucleation is the fracture birth process, which is here de�ned
by a nuclei size distributionpN

�
l
�

(that can be a power-law,
exponential, etc. . . ) and a ratePnN D dnN=dt (with nN the number
of nuclei introduced in the system). Nuclei positions are assumed
to be uniformly distributed in space here, we will refer to this
model as the stress-independent UFM model.

Once created, fractures grow following a power law
relationship to describe the crack tip velocity in the subcritical
regime [36]:

v
�
l
�

D Cla

with l the fracture length,C the growth rate anda the growth
exponent. If not arrested, nuclei size increases non-linearly with
time and becomes in�nite for a �nite timet1 dependent on
the initial nuclei size and the parametersC and a. For constant
nucleation rate and no fracture arrest, even if fractures grow,
there is a stationary solution for the fracture size distribution [1]:

nG
�
l
�

D
PnN

C
l� a

The arrest rule is assumed to re�ect the mechanical interaction
between fractures. In this model, we consider these interactions
as a binary law where fractures can only abut on larger ones, but
the reverse is not likely to occur. It results in a large proportion of
T-shape intersections that are consistent with �eld observation,
and in a quasi-universal self-similar fracture size distribution:

nA
�
l
�

D D Dl� DC1
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with D the topological dimension associated to fracture
centers, and a geometrical parameter dependent on fracture
orientations. Small fractures are statistically freely growing with
the size distributionnG

�
l
�
, while large fractures are statistically

arrested and described bynA(l). The model thus results in a two-
power-law size distribution, where the transition size betweennG
andnA is both the scale at which the network is connected and the
average size of fracture blocks. The two power-law distribution
is obtained for modeling timet1 , when �rst fractures become
in�nite. For larger times, the number of arrested fractures
increases, and the transition size decreases. We refer the reader
to Davy et al. [1] for further information.

Stress-Driven Nucleation
In this section, we further develop the stress-independent UFM
model by making nucleation dependent on stress redistributions
caused by existing fractures. For this, we introduce a stress
�eld based probabilistic sampling of nuclei locations. The stress
�eld evolves over the whole domain as the fracturing process.
Considering the system to be linear elastic, which may not
be the case for highly damaged materials, we de�ne the stress
�eld � .x, t/ at any position x in the domain at timet as

the superposition of the remote stress �eld� 1 (t) plus the
contribution of every fracture� f .x, t / :

� .x, t/ D � 1 . t/ C
X

f

� f .x, t/

New nuclei are progressively introduced in the system following
a probability �eldP.x, t/ derived of this stress �eld:

P.x, t/ � [� VM .x, t/ ]m

where� VM .x, t/ is the Von Mises stress [37] and m a parameter
that quanti�es the coupling between nucleation occurrence and
stress (thereafter called the selectivity parameter). The Von
Mises stress is a scalar invariant measure of the deviatoric
stress intensity and a measure of the elastic strain energy of
distortion stored in the matrix. We then generate a scalar stress-
intensity �eld that will serve as a basis to construct a discrete
probability distribution for nuclei position sampling, without
using any strength criteria. This stress-driven nucleation process
is thus de�ned as an annealed disorder process [35] where nuclei
positioning is directly a function of the system evolution. The
model then needs two more parameters: the remote stress �eld
tensor� 1 and the selectivity parameterm. The latter quanti�es
the in�uence of the stress �eld heterogeneity on nucleation.
For largem, nuclei tend to concentrate in regions with high
stress intensity. In the following, we will refer to this model
as the stress-driven UFM model. The casem D 0, where the
nucleation is uniformly distributed in space, corresponds tothe
stress-independent UFM model.

For numerical implementation of the model, we use the same
basic assumptions as Davy et al. [1]: fractures are modeled as
interacting growing disks in a time-wise process. At each time
step1 t, PnN1 t nuclei are introduced in the cubic system. Those

who are not intersecting any existing fractures are kept in the
system and grow following equation [1], until they cross a larger
fracture or reach an in�nite size, that we set to be twice the system
size. Nuclei are not allowed to intersect pre-existing fractures so
that the available space for new nuclei and the e�ective nucleation
rate decrease with simulation time. The stress perturbation
associated to each fracture can be approximated using the 3D
tensorial analytical solutions of Fabrikant [38] for uniformly
loaded freely-slipping penny-shaped cracks, considering traction
and/or shearing. If the system is under compression, then only
the shearing part is considered. Each fracture is assumed to be
uniformly loaded by the remote stress �eld and generate a stress
perturbation that depends on the fracture size, the input remote
stress �eld intensity, and their relative orientations. To fasten
calculations, we do not calculate the interaction terms between
fractures and set them to zero. Although these terms may be
non-negligible when fractures get close with each other [39–
41], in particular when the fracture density increases, we have
estimated that this approximation is consistent with the degreeof
simpli�cation used for the di�erent stages of the model. A more
elaborate version is under development.

The stress �eld is computed over the whole domain, on a
regular cartesian stress gridSg of resolutionrstress. In order to
obtain a dimensionless stress-intensity scalar �eld (Figure 1),
each cell value is divided by the remote stress Von Mises value.

For each nucleation step, a cell is chosen from a discrete
probability sampling over the whole stress gridSg, where the
probability for each cellc is de�ned by:

P.xc/ D
[� VM .xc/ ]m

P
c02Sg

[� VM
�
xc0

�
]m

Once the nucleus cell has been determined, the nucleus center
position is randomly taken inside this cell. The number of

FIGURE 1 | Stress-intensity �eld generated on a regular grid of sizeL D 1 and
resolutionr D 0.01.

Frontiers in Physics | www.frontiersin.org 3 January 2020 | Volume 8 | Article 9

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Lavoine et al. Stress-Driven DFN Model

computations is directly related to the nucleation rate, thestress
grid resolution, and the increasing number of fractures already
present in the medium, which can be large. Since the addition
of a single small nucleus does not a�ect the stress �eld at
the system size, a single stress grid can be used for several
nucleation stepsnstep in order to accelerate computations. This
heterogeneous probabilistic point process of nuclei positions
constitutes an improvement of the stress-independent UFM
model, while keeping constant nucleation rate.

RESULTS

In this section, we focus on the spatial and topological analysis
of fracture networks generated by this stress-driven UFM model.
We analyze the evolution of the pattern complexity of this model
with the selectivity parameterm, and compare the results with
the stress-independent UFM (m D 0) and equivalent Poisson

model (i.e., same population of fractures with random positions
in the domain).

Numerical Simulations
For all models, we seed and let fractures grow in a domain of size
L D 1 with a growth exponenta D 3, so that the power-law
exponent of the dilute regime is� 3, which is consistent with �eld
data [24]. Nuclei appears in the system with a constant nucleation
rate Pn D 20, growth rateC D 1, and a size drawn from a
narrow-ranged power-law distribution:

pN
�
l
�

D

�
b � 1

�

lN

�
l

lN

� � 5

lN is the minimum nuclei size; its value has been set at 0.01 in
order to cover two orders of magnitude in the resulting fracture
size distribution. For each timestep1 t, we introducenstepD 200

FIGURE 2 | 2D slices of three-dimensional(A) Poisson, (B) stress-independent UFM (m D 0), and (C) stress-driven UFM (m D 3) models, and(D) associated size
distributions (m 2 [ 0, 5]).
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new nuclei. Nuclei intersecting existing fractures are rejected,
the e�ective nucleation rate is thus decreasing with time, since
the available space for new fractures to form is also decreasing.
We stop simulations when the time is close to thet1

�
lN

�
, i.e.,

the time necessary for the smallest nuclei to become in�nite
[1]. Networks are generated for di�erent values of selectivity
parametersm D f0, 1, 2, 3, 4, 5g in order to quantify its impact
on fracture clustering. The equivalent Poisson model is obtained
by moving the fracture centers randomly in space, so that the
size distribution remain identical but the correlations between
fracture size and position are destroyed. We only show the
Poisson model derived from the stress-independent UFM (m D
0). All stress-driven UFM are generated from the same constant
and compressive remote stress �eld� 1 , so that� 1 D � xx D � 4,
� 2 D � yy D � 2, � 3 D � zz D � 1, and� xy D � xz D � yz D 0.
The intensity and orientations of the principal stress components
do not matter in this set of simulations since we consider that,
for all generated DFNs, the orientation distribution is stress-
decorrelated and is assumed uniform in order to minimize
asymmetry due to the remote stress �eld. By doing so, we aim
at focusing on the consequences of the stress �eld heterogeneity
on spatial correlations only, but not on its spatialization. For this
set of parameters, the simulation time for a stress-driven UFM
model is about 60 times larger than for the stress-independent
UFM model for which there is no stress. For all the models, we
perform 50 realizations of each model for statistical analysis.

Figures 2A–Cshow 2D slices of generated three-dimensional
Poisson, stress-independent UFM and stress-driven UFM (m D
3), respectively. Visually, the stress-driven nucleation process
seems to increase the clustering e�ect of fractures positions.
Simulations are stopped whent D t1 (lN), so that both the
dilute and dense regime can be observed on the fracture size
distribution (Figure 2D) and are consistent with equations [2]
and [3], with a transitional lengthlc D 0.15:

n
�
l
�

D
�

20.l� 3 if l < lc
3.l� 4 if l > lc

For all models, fracture size distributions are almost the same.
When increasing the selectivity parameter, new nuclei to

form should be attracted to the tip of the largest existing
fractures since the stress is high here, increasing the probability
of rejection. Hence, for the same simulation time, the fracture
density should decrease when increasing selectivity parameter
m. We consider three-dimensional fracture densities here, such
as de�ned by Dershowitz and Herda [42]: fracture number
density p30 (number of fractures per unit volume), fracture
intensity p32 (total fracture surface per unit volume), and
percolation parameterp (total excluded volume around fractures
per unit volume) that quanti�es the network connectivity [43].
Considering the disk-shape assumption we made in our DFN
models, we de�ne these densities as:

p30 D
Z

n
�
l
�

5
�
l,L

�
dl

p32 D
�
4

Z
n

�
l
�

5
�
l,L

�
l2dl

FIGURE 3 | Fracture density statistics of generated networks in cubicsystems
of volumeV D 1.

p D
� 2

8

Z
n

�
l
�

5
�
l,L

�
l3dl

5 (l,L) is surface ratio of the fracturel included in the domain
of size L. Figure 3 summarize the density statistics of the
generated networks.

One can notice a decreasing of bothp30, p32, and p with
selectivity parameterm due the increasing number of rejected
nuclei. Moreover, the fracture density of the stress-independent
UFM model is slightly slower than its equivalent Poisson model,
because both models are subjected to di�erent �nite size e�ects.

Impact on Clustering
The spatial organization and topology of fractures in a
network may have dramatical impact on its connectivity and
hydraulic behavior. Quantifying the fractures organization in
DFN models and comparing with natural networks is a
key challenge to qualify the relevance of simpli�ed models.
Natural fracture networks have shown complex clustered
patterns [11, 44] that has consequences on connectivity
[21, 45, 46].

Considering the multiscale nature of fractures, and thus ofthe
subsequent stress �uctuations, we expect fractal correlations to
develop in our model. The full multifractal spectrum of fracture
organization may be quanti�ed using the box-counting method
[47], computing the number of boxes to cover the network
at di�erent scales. Nevertheless, this technique has be shown
to be strongly a�ected by �nite size e�ects [11, 23, 48]. We
then compute the 2-point correlation integral (or correlation
pair function) to describe the spatial correlations of fractures
positions. This method gives the probability for two fractures to
belong to the same cluster. For a population ofNf fractures, the
associated correlation pair function is de�ned by:

C2 . r/ D
2.N(r)

Nf .(Nf � 1)

with N(r) the number of points whose mutual distance is less
than r [47]. For a large population of points, this quantity
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tends to scale a power-lawrD2, where D2 is the correlation
dimension of fracture centers. The correlation dimension can
thus be obtained by computing the slope of the correlation
pair function in a log-log plot.Figure 4A shows the evolution
of the correlation pair function and its derivative with scale
r. This function is a�ected by �nite-size and resolution e�ects
when the mutual distance r tends to domain �nite size and
nuclei size, respectively. We calculate a correlation dimension
D2 in the interval [0.03, 0.08] that is not a�ected by size e�ects.
Indeed, below the lower bound, the derivative of the correlation
pair function increases dramatically because few fracturesare
so close to each other. This resolution e�ect is related to the
no-intersecting assumption when introducing new nuclei in the
UFM model. On the other hand, �nite size e�ect due to the
system size are already dramatic below the upper bound, as
we should obtain a correlation dimensionD2 D 3, for the
Poisson model. As expected, the correlation dimension of the3D
Poisson and stress-independent UFM models isD2 � 3, which is
consistent with a uniform distribution of fracture centersin space
for both models.D2 is smaller than 3 for the stress-driven UFM
model and decreases when increasing the selectivity parameter
m. For large values ofm, nuclei concentrate in zones of high
stress, mainly near the tips of the largest fractures, leading to a
clustering of fractures.Figure 4B shows that correlations exist
even at early simulation times. For largem values, the correlation
dimension increases slightly with time, as the available space
around fractures tips decreases.

The correlation dimension of fracture centers indicates how
much a fracture network occupies its underlying metric space.
Nevertheless, two networks can have the same correlation
dimension but very di�erent patterns. In order to describe
the texture associated to a network, we use the concept of
lacunarity [49]. Fundamentally, lacunarity is a dimensionless
representation of the variance to mean ratio [50] de�ned
here as:

� M .s/ D
�

� M .s/
� M .s/

� 2

with � M .s/ and � M .s/ the standard deviation and mean of a
measureM at scales. For any density measureM, if � M (s) !
0, the pattern is perfectly homogeneous at scales. Lacunarity
is a scale dependent measure, whose analysis quantify the
degree of clustering and anti-clustering [51], and potentially
on di�erent regimes [50, 52, 53], when analyzing lacunarity
curves, showing� M .s/ evolution with scales. Lacunarity analysis
can then be used to analyze textural heterogeneity of fracture
densities [54]. For three-dimensional fracture networks, we
can de�ne various measuresM quantifying fracture density
as de�ned by Dershowitz and Herda [42], or in section
Numerical Simulations.

Figure 5shows the lacunarity curves of the three-dimensional
fracture densities de�ned in section Numerical Simulations.
As expected, thep30 lacunarity curve is the same for the
stress-independent UFM model and its equivalent Poisson

FIGURE 4 | (A) Correlation pair function, and(B) correlation dimension analysis for the Poisson, stress-independent UFM, and stress-driven UFM models.

FIGURE 5 | Fracture density lacunarity curves for(A) p30, (B) p32, and (C) percolation parameters.

Frontiers in Physics | www.frontiersin.org 6 January 2020 | Volume 8 | Article 9

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Lavoine et al. Stress-Driven DFN Model

model (because both follow a homogeneous Poisson point
process) and scales� s� 3. The p30 lacunarity of the stress-
driven UFM models are much larger and evolves di�erently
with scale, which emphasizes that fracture center positions
are correlated. They all follow a scalingAs� � , with A and
� constant factors increasing withm. For fracture intensity
p32, the lacunarity of the stress-independent UFM model is
smaller at all scales than that of the Poisson model. Thep32
lacunarity decreases faster with scale for the stress-independent
UFM model than for Poisson model. This re�ects a fracture
density much more homogeneous in space at all scales for
the stress-independent UFM than for the Poisson case. Indeed,
the UFM rule (a fracture cannot cross a larger one) tends
to produce an interconnected network of blocks of size of
the order the transition scalelc [1]. The p32 lacunarity here
quanti�es the fracture position-size correlation induced by the
UFM rule. The p32 lacunarity increases at all scales with the
selectivity parameterm for the stress-driven UFM models,.
Even for small values ofm, the shift in lacunarity with
the stress-independent UFM case is important, which points
out the impact of the clustering of fracture positions on
density variability. The lacunarity associated to the percolation
parameter is smaller for all UFM models than for Poisson
model, meaning that the connectivity of the network is more
homogeneous for UFM models. All percolation lacunarity curves
are similar whatever the value ofm, suggesting that the
percolation parameter is more sensitive to the fracture position-
size correlations induced by the UFM rule, than the fracture
centers correlations.

Consequences on Connectivity and
Topology
Fracture correlation is likely changing the connectivity of the
overall network. Maillot et al. [26] show that stress-independent
UFM networks (which they refer as a “kinematic” model)
have permeabilities 1.5–10 times smaller than the equivalent
Poisson model, and a higher channeling (a higher portion of
the total fracture surface where the �ow is signi�cant). Some
studies [46, 55] show that, for networks with a power-law size
distribution, the evolution of connectivity with scale is strongly
dependent on the power-law exponenta and on the fractal
dimension of fracture centersD2. In our case, because fracture
centers tend to concentrate in clusters around large fracture
tips, the fracture interconnectivity may also increase. Increasing
the connectivity between fractures should increase the backbone
density, de�ned as the structure carrying �ow in the network
[56]. We here de�ne the backbone by removing iteratively
fractures having only one connection with the network or the
boundary, keeping only the connected clusters without �ow
dead-ends.Figure 6 shows that the percentage of fractures in
number and in total area (p30 andp32) involved in the backbone
is smaller for any kind of UFM model (stress-independent or
stress-driven) than for corresponding Poisson model. Moreover,
for the UFM models, even if< 25% of fractures are part of
the backbone, this represents more than 65% of the backbone
surface, which shows that connectivity is mostly ensured by

FIGURE 6 | Evolution of backbone percentage with selectivity parameter m
(m D Poisson refers to Poisson model).

large structures [21, 45]. Finally, as the number of fractures
involved in the backbone structure increases more than the
total area withm, we can conclude that we tend to connect
mostly small fractures to the backbone with this stress-driven
nucleation process.

The number of intersections per fracture is a good indicator
of fracture connectivity. Maillot et al. [26] showed that the
number of intersections per fracture is a function of fracture
size for both Poisson and UFM models. Moreover, they showed
that whatever the fracture size, the number of intersections is
about two times lower for UFM model than for equivalent
Poisson model. We here push further this topological analysis
computing the fracture intersection matrixPI so that for ni
and nj fractures of sizeli and lj , respectively,PI [i, j] gives the
number of fractures of sizeli intersecting fractures of sizelj ,
divided byninj .Figures 7A–Cshow the mean intersection matrix
for all generated Poisson, stress-independent UFM (m D 0),
and stress-driven UFM (m D 5) models, respectively. As
expected, in any case, the probability of intersection increases
with fractures sizes.Figures 7D,Eshow the mean intersection
matrix for stress-independent UFM (m D 0), and stress-
driven UFM (m D 5) models, normalized by the mean
equivalent Poisson's model intersection matrix, in order to
highlight di�erences between UFM and Poisson models. Our
analysis shows that the number of fractures intersections is
smaller for UFM models than their equivalent Poisson. We can
also notice that this number is much smaller for fractures ofthe
same size, which is a consequence of the UFM rule assuming
that a fracture cannot cross a larger one. Finally,Figure 7Fshows
the stress-dependent UFM (m D 5) model intersection matrix,
normalized by the one of the stress-independent UFM (m D 0)
model, showing that our stress-driven nucleation process tend
to increase the connectivity of small fractures with the smallest
and the largest fractures. Indeed, new fractures tend to develop
at the tip of the largest existing fractures, increasing connectivity
between both.
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FIGURE 7 | Intersection matrix for(A) Poisson, (B) stress-independent UFM, and(C) stress-driven UFM models.(D) Normalized intersection matrix PI .mD0/
PI (Poisson ) for the

stress-independent UFM models,(E) Normalized intersection matrix PI .mD5/
PI (Poisson ) for the stress-driven UFM (m D 5) models, (F) Intersection matrix ratio PI .mD5/

PI .mD0 / .

CONCLUSION

The genetic UFM model developed by Davy et al. [1], describing
the fracturing process as a combination of simpli�ed nucleation,
growth and arrest laws, introduces a fracture size-position
correlation in DFN modeling, that does not exist in equivalent
Poisson model. It results in two distinct power-law fracture size
distributions and a number of T-intersections that are consistent
with �eld data [24]. Nevertheless, the model does not take into
account the mechanical feedback loop between fracture growth
and birth, therefore neglecting fracture-to-fracture positioning
correlations. In this paper, we pushed further the model by
improving the nucleation process, conditioning the position of
newly created fractures by the stress perturbation induced by
preexisting ones, in a timewise process. This stress perturbation
is a function of fractures geometry (size and orientation),and
the applied remote stress (orientation and intensity). This results
in more correlated networks, showing fractal positioning, and a
higher variability of fracture densities. We introduce a selectivity
parameterm that quanti�es the dependency of nucleation with
the stress �eld. When nucleation is stress-independent (m D
0, uniform positions), we show that fracture density variability
associated to UFM networks is much smaller than equivalent
Poisson model. This means that the UFM rule, imposing that a
fracture cannot cross a larger one, tends to organize networks into
more homogeneous patterns than if fractures were positioned at
random. Nonetheless, when nucleation is stress-driven (m 6D0),
the higherm, the lower the correlation dimension of fracture

positions, and the higher the spatial variability of fracture
densities. This e�ect is dependent on the density measure, i.e., on
the dependency of the density with fracture size. It is higherfor
the number of fractures per unit volume than for the percolation
parameter. Moreover, our connectivity analysis brings up that the
UFM rule tends to create a hierarchy between fractures, so that
fractures of the same size order are less likely to cross one each
other. The stress-driven nucleation process we propose tends to
connect small fractures all together with the largest ones,that are
responsible for the main stress perturbations. We also show that
UFM models have lower percentage of fractures involved in the
backbone than their equivalent Poisson model [26], whatever the
selectivity parameter.

Finally, constraining fractures orientation according tothe
computed local stress �eld, in order to account for fracture
position-orientation correlations, would constitute a huge
improvement of the model. Once a full simpli�ed mechanical
description of the fracturing process is performed, this would
allow us to perform real case studies, and compare our analysis
results (clustering, connectivity. . . ) between 2D numerical
outcrops from generated DFNs, with real ones.
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