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The realism of Discrete Fracture Network (DFN) models redien the spatial organization
of fractures, which is not issued by purely stochastic DFN maels. In this study, we
introduce correlations between fractures by enhancing thegenetic model (UFM) of
Davy et al. ] based on simplied concepts of nucleation, growth and arret with

hierarchical rules. To do so, the nucleation of new fractugeis correlated with the
elastic strain energy of distortion stored in the matrix, wich is a function of preexisting
fractures. Discrete Fracture Networks so generated show miti-scale clustering effects
with fractal dimensions below the topological dimension oer a broad range of scales.
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The fractal dimension depends on the way one correlates theutleation occurrence to
the strain energy. Fracture clustering entails a spatial viability of the fracture density,
which increases with the intensity of the coupling betweentsess and nucleation. The
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analysis of connected clusters density and of fracture intsections also highlights the
differences between the UFM models and its equivalent Poiss model. We show that
our stress-dependent nucleation model introduces some newfracture size-positions

correlations, with small fractures tending to connect to tk largest ones.
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Fractures are ubiquitous structures controlling both ovesid rock mechanical strength in
geological environments. Modeling the fracture networkhag a key prerequisite of forecasting
modeling in many industrial applications such as managingugdwater/petroleum resources,
assessing risks associated with geotechnical constnsatiodeep waste disposal, among others.
In most of the cases, fractures cannot be modeled deterrigalbt, because they cannot be
observed in three-dimensions with su cient resolution dt sacales. Hence, the modeling must be
stochastic, which consists of generating a 3D fracturediomdtatistically equivalent to measures
and observations. Discrete Fracture Network modeling is ohthe most convenient and used
of the stochastic methods; it describes fractured rocks pspaulation of individual fractures,
whose parameters (size, shape, orientation, aperture, andiquysiére drawn from statistical
probability distributions derived from observation maps (img 2D outcrop and tunnels, 1D
fracture intensity along wells, or 3D geophysics imagery) models [seeZ, 3] for reviews]. In its
simplest form, the model (which we will refer as the Poisson etpcbnsists of positioning fractures
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at random in the generation volume with a given density,the DFN models. Since larger stress perturbations are expected
and of assigning other fracture parameters independently b the vicinity of fractures, with an intensity that depends
bootstrapping the parameter distributions of observatiods [ on fracture size, we expect the stress-driven nucleatiorhé t
9]. The method is easy to implement, but it neglects most ofimewise process of the UFM model to increase fracture spatial
the complexity of the underlying fracturing process, in pautar ~ correlations. In order to highlight spatial correlations tfe
the correlations induced by fracture-to-fracture mect@i DFNs so generated, we compute fracture positions correlation
interaction [L0-1Z]. This so-called Poisson model is thus adimension, fracture density variability, and fractureteirsection
crude representation of geological fractures that can lead tmatrix, and compare results with equivalent Poisson model.
large discrepancy between modeled and natural network in
terms of network topology 13, 14, having dramatical impact THE MODEL
on the estimated hydrological and mechanical behavior ef th
fractured rock massi>-17]. A way to improve the realism The Discrete Fracture Network approach for modeling fracture
of DFN models is the use of genetic models, in whichrock masses refers to numerical models explicitly represgnti
the fracture hierarchy reproduce correlations between rtheithe geometry of each fractures forming the network. Gemgral
di erent geometrical attributes. Nevertheless, a full magical this geometry (positions, orientations, size...) is getesra
description of the fracturing proces$§-20 is not feasible when stochastically from data statistics. The simplest model ciamsi
dealing with dense networks made of fractures having sibes f fractures independent of each other; it will be referred tdhas
centimeter to tens of kilometers. The broad range of naturaPoisson DFN model. The DFN model developed by Davy et al.
fracture size distributions and their power-law naturgl[ 21—  [1] is based on basic mechanical concepts described in Davy
23 suggest that all scales matters. This is even more importaet al. 24]. The fracturing process is divided in three main stages
for industries such as nuclear deep waste disposal wherd smial a time-wise approach: nucleation, propagation and arrest of
fractures may have an important role at the near eld of thefractures. We rst develop the model and how in its simplest
repository, whose footprint extends to several kilometerseRe  form—i.e., with a Poisson distribution of nuclei—it contsahe
papers [, 24 have proposed a genetic model of DFN, callechetwork size and intersection distributions. Then, we inluce a
“Universal Fracture Model” (UFM model), using simplied more complex nucleation model based on the stress perturbation
fracturing-relevant rules for nucleation, growth and asteof of pre-existing fractures.
fractures to draw complex and dense networks. With simple
kinematic rules that mimic the main mechanical processesl h€ Stress-Independent UFM Model
the model produces fracture size distributions and fracturdNucleation is the fracture birth process, which is here deine
intersections that are consistent with observatiohg.[It results by @ nuclei size distributiopy | (that can be a power-law,
in less connected networks than the Poisson model and clsangéxponential, etc...)and arafy D dny=dt (with ny the number
in the network topology 25, which has been proven to have of nucleiintroduced in the system). Nuclei positions are assd
an impact on ow properties' particu|ar|y decreasing e ectiveto be Uniform'y distributed in space here, we will refer to this
permeability and increasing ow channeling]. Nonetheless, Mmodel as the stress-independent UFM model.
the random positioning of new fractures (nuclei) in this mdée Once created, fractures grow following a power law
still too simpli ed to reproduce spatial variability and clestng ~ relationship to describe the crack tip velocity in the sutical
e ect observed in natural fracture network patternsl] 23.  regime p:
Indeed, nucleation is a complex process both controlled by the
repartition of aws in the rock matrix such as grain boundasije vIiDCF

ores or cleavage plan8429 and the stress distributions that |
Enake nuclei acti?/e grnot;[{{(_)—??]Z]. This problem can be addressed with | the fracture lengthC the grqwth rate anch the grov_vth
as a quenched disordered process where aws are initiallyeptes gxponent. If not arre;teq, nuclei SIz€ Increases non-ligesith
in the system and activate as the system evolR@&sfl], or as an tlmg gpd becomgs in nite for a nite timet dependent on
annealed disorder where nuclei positioning is directly action the |n|t|§I huclei size and the parametepsand a For constant
of the system evolutiordH. In this paper, we aim to improve the nuclez_;ltlon ra_te and no f_racture arrest, even if fr_ac?ureGV\gr
UFM model by better reproducing the complex feedback-looﬁhere is a stationary solution for the fracture size disttiba [1]:
process between the propagation of fractures and the emergence Y
of new ones. Our model is also based on the nucleation, growth nc | D <
and arrest scheme, but we propose to condition the positioning
of new nuclei to the mechanical perturbation induced by éxist The arrest rule is assumed to re ect the mechanical intéoact
fractures in a timewise manner. This perturbation is modelethetween fractures. In this model, we consider these intenast
as the superposition of stress redistributions induced byheacas a binary law where fractures can only abut on larger ongs, b
fracture loaded by an allegedly known remote stress eldhSucthe reverse is not likely to occur. It results in a large projmrof
a pseudo-mechanical model does not aim to catch all th&-shape intersections that are consistent with eld obseorati
complexity of fracture mechanical processes, but this rstesr and in a quasi-universal self-similar fracture size disttit:
approximation of fracture interactions at the network scalaym
already change dramatically the topology and connectivity o na |

| a
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with D the topological dimension associated to fracturewho are not intersecting any existing fractures are kept in the
centers, and a geometrical parameter dependent on fracturesystem and grow following equatiof][ until they cross a larger

orientations. Small fractures are statistically freelgvgng with
the size distributiomg | , while large fractures are statistically
arrested and described Iy (1). The model thus results in a two-
power-law size distribution, where the transition size betwng

fracture or reach an in nite size, that we set to be twice th&tem
size. Nuclei are not allowed to intersect pre-existing freestso
that the available space for new nuclei and the e ective nuicdea
rate decrease with simulation time. The stress perturbation

andnp is both the scale at which the network is connected and thassociated to each fracture can be approximated using the 3D

average size of fracture blocks. The two power-law distrilputi
is obtained for modeling time; , when rst fractures become
in nite. For larger times, the number of arrested fractures
increases, and the transition size decreases. We refepéuer
to Davy et al. {] for further information.

Stress-Driven Nucleation
In this section, we further develop the stress-independentiUF
model by making nucleation dependent on stress redistrinsi

tensorial analytical solutions of Fabrikan8d for uniformly
loaded freely-slipping penny-shaped cracks, consideringitmact
and/or shearing. If the system is under compression, thery onl
the shearing part is considered. Each fracture is assumee to b
uniformly loaded by the remote stress eld and generate asstre
perturbation that depends on the fracture size, the input reenot
stress eld intensity, and their relative orientations. Tasfen
calculations, we do not calculate the interaction termsnesn
fractures and set them to zero. Although these terms may be

caused by existing fractures. For this, we introduce a stredon-negligible when fractures get close with each otH-[

eld based probabilistic sampling of nuclei locations. Theess

41], in particular when the fracture density increases, we have

eld evolves over the whole domain as the fracturing processstimated that this approximation is consistent with the dearfee
Considering the system to be linear elastic, which may nogimpli cation used for the di erent stages of the model. A more
be the case for highly damaged materials, we de ne the stresfaborate version is under development.

eld —.X,t/ at any positionX in the domain at timet as

the superposition of the remote stress eﬁ(t) plus the
contribution of every fracturey . X, t /:

_ — X _
—xt/D T .t/C TF.xt

New nuclei are progressively introduced in the system folhgwi
a probability eldP.X,t/ derived of this stress eld:

P.Xt/ [ ym.Xt/]™
where vy .X,t/ is the Von Mises stres8f] and m a parameter

that quanti es the coupling between nucleation occurrenoe a
stress (thereafter called the selectivity parameter). Tloa V

Mises stress is a scalar invariant measure of the deviatori

stress intensity and a measure of the elastic strain enefgy
distortion stored in the matrix. We then generate a scalegsst-
intensity eld that will serve as a basis to construct a diter
probability distribution for nuclei position sampling, withdu
using any strength criteria. This stress-driven nucleafoocess
is thus de ned as an annealed disorder process vhere nuclei
positioning is directly a function of the system evolutiorhéel
model then needs two more parameters: the remote stress e

tensor I and the selectivity parameten. The latter quanti es
the inuence of the stress eld heterogeneity on nucleation
For largem, nuclei tend to concentrate in regions with high
stress intensity. In the following, we will refer to this neld
as the stress-driven UFM model. The caseD 0, where the
nucleation is uniformly distributed in space, correspondgte
stress-independent UFM model.

For numerical implementation of the model, we use the sam
basic assumptions as Davy et dl}: [fractures are modeled as
interacting growing disks in a time-wise process. At eachetim
steplt, NR1t nuclei are introduced in the cubic system. Thos

The stress eld is computed over the whole domain, on a
regular cartesian stress grig} of resolutionrsyess In order to
obtain a dimensionless stress-intensity scalar ekig@re 1),
each cell value is divided by the remote stress Von Mises value

For each nucleation step, a cell is chosen from a discrete
probability sampling over the whole stress gg, where the
probability for each celtis de ned by:

Once the nucleus cell has been determined, the nucleusrcente
position is randomly taken inside this cell. The number of

Normalized
Von Mises
stress

-1.000e+01
[5

-0.5

?‘ Fo.z
: ~1.000e-01

-

s At

FIGURE 1 | Stress-intensity eld generated on a regular grid of sizé& D 1 and
resolutionr D 0.01.

Frontiers in Physics | www.frontiersin.org

January 2020 | Volume 8 | Article 9


https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

Lavoine et al. Stress-Driven DFN Model

computations is directly related to the nucleation rate, $itieess  model (i.e., same population of fractures with random positions

grid resolution, and the increasing number of fracturesalbly in the domain).

present in the medium, which can be large. Since the addition ) ) )

of a single small nucleus does not aect the stress eld alNumerical Simulations

the system size, a single stress grid can be used for sevdrar all models, we seed and let fractures grow in a domain ef siz

nucleation stepSistepin order to accelerate computations. ThisL D 1 with a growth exponena D 3, so that the power-law

heterogeneous probabilistic point process of nuclei positiongxponent of the dilute regime is3, which is consistent with eld

constitutes an improvement of the stress-independent UFMlata 24]. Nuclei appears in the system with a constant nucleation

model, while keeping constant nucleation rate. rate ® D 20, growth rateC D 1, and a size drawn from a
narrow-ranged power-law distribution:

RESULTS
b 1 | °

In this section, we focus on the spatial and topological anslysi PN
of fracture networks generated by this stress-driven UFM eiod

We analyze the evolution of the pattern complexity of this modely is the minimum nuclei size; its value has been set at 0.01 in
with the selectivity parametan, and compare the results with order to cover two orders of magnitude in the resulting fraet

the stress-independent UFM( D 0) and equivalent Poisson size distribution. For each timestdpt, we introducenstep D 200
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FIGURE 2 | 2D slices of three-dimensionalA) Poisson, (B) stress-independent UFM n D 0), and (C) stress-driven UFM fn D 3) models, and(D) associated size
distributions fn 2 [ 0, 5]).
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new nuclei. Nuclei intersecting existing fractures arecegd, [ ™ o %
the e ective nucleation rate is thus decreasing with timecsi
the available space for new fractures to form is also decrgasi 92 | g
We stop simulations when the time is close to the Iy , i.e., 70000 4 | 50
the time necessary for the smallest nuclei to become in nite L [2
[1]. Networks are generated for di erent values of selectivity
parametersn D f0,1,2, 3, 4,&in order to quantify its impact | 60000+ 40 |15
on fracture clustering. The equivalent Poisson model isoted sz
by moving the fracture centers randomly in space, so that the Tk
size distribution remain identical but the correlationstiveen | **°7_—, i
fracture size and position are destroyed. We only show the — Dy Las [°
Poisson model derived from the stress-independent URMO ool — 2 . . ‘ . Loy L
0). All stress-driven UFM are generated from the same constan s & o «? @ « «®
and compressive remote stress eld ,sothat 1D D 4, BT T @ e @ e

2b D 2,5D 2z D 1 and .xy.D x2 D yzDO. FIGURE 3 | Fracture density statistics of generated networks in cubisystems
The intensity and orientations of the principal stress compuse | ot youmev D 1.

do not matter in this set of simulations since we considerttha

for all generated DFNs, the orientation distribution is ests-

decorrelated and is assumed uniform in order to minimize 2Z

asymmetry due to the remote stress eld. By doing so, we aim pD — n 15 LL I3
i . 8

at focusing on the consequences of the stress eld heterdiyene

on spatial correlations only, but not on its spatializatioor his g (I,L) is surface ratio of the fracturkincluded in the domain

set of parameters, the simulation time for a stress-driven UFMy¢ size L. Figure 3 summarize the density statistics of the
model is about 60 times larger than for the stress-indepehder@enerated networks.

UFM model for which there is no stress. For all the models, we  one can notice a decreasing of bopo, psz, and p with

perfgrm 50 realizations of egch model for statistical a.nalysi. selectivity parametem due the increasing number of rejected
Figures 2A-Cshow 2D slices of generated three-dimensionahclei. Moreover, the fracture density of the stress-indegend
Poisson, stress-independent UFM and stress-driven URMX  yEM model is slightly slower than its equivalent Poisson nipde

3), respectively. Visually, the stress-driven nucleationcpss pecause both models are subjected to di erent nite size e ects
seems to increase the clustering e ect of fractures positions

Simulations are stopped when D t1 (In), so that both the Impact on Clustering
dilute and dense regime can be observed on the fracture siZéie spatial organization and topology of fractures in a
distribution (Figure 2D) and are consistent with equation8][ network may have dramatical impact on its connectivity and

and [3], with a transitional length; D 0.15: hydraulic behavior. Quantifying the fractures organizatim
DFN models and comparing with natural networks is a
nl D 201 3 ifl< g key challenge to qualify the relevance of simplied models.
314 ifl> e Natural fracture networks have shown complex clustered
patterns [L1, 44 that has consequences on connectivity
For all models, fracture size distributions are almost thes. [21, 45, 46].

When increasing the selectivity parameter, new nuclei to Considering the multiscale nature of fractures, and thuthef
form should be attracted to the tip of the largest existingsubsequent stress uctuations, we expect fractal cormaiatio
fractures since the stress is high here, increasing the pititya develop in our model. The full multifractal spectrum of fractu
of rejection. Hence, for the same simulation time, the fuset organization may be quanti ed using the box-counting method
density should decrease when increasing selectivity paeame[47], computing the number of boxes to cover the network
m. We consider three-dimensional fracture densities hemehs at di erent scales. Nevertheless, this technique has be ishow
as de ned by Dershowitz and Herdadf]: fracture number to be strongly aected by nite size e ectsl]l, 23 4§. We
density pso (number of fractures per unit volume), fracture then compute the 2-point correlation integral (or correlatio
intensity ps2 (total fracture surface per unit volume), and pair function) to describe the spatial correlations of fraets
percolation parametep (total excluded volume around fractures positions. This method gives the probability for two fractsite
per unit volume) that quanti es the network connectivityl.  belong to the same cluster. For a populatioi\yffractures, the
Considering the disk-shape assumption we made in our DFNissociated correlation pair function is de ned by:
models, we de ne these densities as:

Z C2 _r/ D L(r)
poD nl5 L dl Ne.(Ne 1)
z

b 5 L Pl with N(r) the number of points whose mutual distance is less
— n ,
P32 2

than r [47]. For a large population of points, this quantity
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tends to scale a power-law’2, where D, is the correlation The correlation dimension of fracture centers indicatesvho
dimension of fracture centers. The correlation dimensianc much a fracture network occupies its underlying metric space.
thus be obtained by computing the slope of the correlatiorNevertheless, two networks can have the same correlation
pair function in a log-log plot.Figure 4A shows the evolution dimension but very dierent patterns. In order to describe
of the correlation pair function and its derivative with seal the texture associated to a network, we use the concept of
r. This function is a ected by nite-size and resolution e ext lacunarity 9. Fundamentally, lacunarity is a dimensionless
when the mutual distance r tends to domain nite size andrepresentation of the variance to mean ratié(] de ned
nuclei size, respectively. We calculate a correlation dsizen here as:
D, in the interval [0.03, 0.08] that is not a ected by size e ects. g 2
Indeed, below the lower bound, the derivative of the cotiefa m.9 D M-

pair function increases dramatically because few fractares m-5

so close to each other. This resolution e ect is related to thgyith ,,.9 and .9 the standard deviation and mean of a
no-intersecting assumption when introducing new nucleiflet  neasureM at scales For any density measutd, if w (9 !

UFM model. On the other hand, nite size e ect due to the g, the pattern is perfectly homogeneous at saleacunarity
system size are already dramatic below the upper bound, & 5 scale dependent measure, whose analysis quantify the
we should obtain a correlation dimensioB, D 3, for the  gegree of clustering and anti-clustering1], and potentially
Poisson model. As expected, the correlation dimension o8e 5 di erent regimes B0, 52, 53, when analyzing lacunarity
Poisson and stress-independent UFM mode3ds 3, whichis  cyryes, showingy . ¢ evolution with scala Lacunarity analysis
consistent with a uniform distribution of fracture centérsspace can then be used to analyze textural heterogeneity of fractur
for both models D5 is smaller than 3 for the stress-driven UFM gensities $4. For three-dimensional fracture networks, we
model and decreases when increasing the SeleCtiVity paﬂameban de ne various measurell quantifying fracture density

m. For large values af, nuclei concentrate in zones of high a5 de ned by Dershowitz and Herda4f], or in section
stress, mainly near the tips of the largest fractures, lepthra  Numerical Simulations.

clustering of fractureskigure 4B shows that correlations exist  Figure 5shows the lacunarity curves of the three-dimensional
even at early simulation times. For langevalues, the correlation fracture densities de ned in section Numerical Simulason
dimension increases slightly with time, as the availablespaAs expected, thepsp lacunarity curve is the same for the

around fractures tips decreases. stress-independent UFM model and its equivalent Poisson
0
A e ll—C;.(r)Povsson 7 = 35 B 32
{8 Cyfr) UF.M m=5|
2 ' el el
< § & | 5 H :
B L R - i r308 & I I I I
° - g 228y T b b = =
=] £ g | A
g 1074 E «2 T f T i T
5 1044 F257g E 1 = —— m=0
[ 8 8 ! —+— m=1
3 2.4 - m=2
10° 5 —= m=3
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10° T 2.0 22— - v - v . v .
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FIGURE 4 | (A) Correlation pair function, and(B) correlation dimension analysis for the Poisson, stress-itependent UFM, and stress-driven UFM models.
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model (because both follow a homogeneous Poisson point
process) and scales s 3. The pso lacunarity of the stress- 100 I p30
driven UFM models are much larger and evolves di erently I p32
with scale, which emphasizes that fracture center positions g
are correlated. They all follow a scaligs , with A and x
constant factors increasing witm. For fracture intensity
p32, the lacunarity of the stress-independent UFM model i
smaller at all scales than that of the Poisson model. pe
lacunarity decreases faster with scale for the strespamttent
UFM model than for Poisson model. This re ects a fracture
density much more homogeneous in space at all scales f
the stress-independent UFM than for the Poisson case. Indee
the UFM rule (a fracture cannot cross a larger one) tend
to produce an interconnected network of blocks of size o
the order the transition scal& [1]. The p32 lacunarity here ol . . .
quanti es the fracture position-size correlation inducegt the poisson 0 o2 3 4 >
UFM rule. Thepsz lacunarity increases at all scales with the Selectivity parameter m
SeIeCtiVity parametem for the stress-driven UFM models,. FIGURE 6 | Evolution of backbone percentage with selectivity paramer m
Even for small values ofm, the shift in lacunarity with | @ D Poisson refers to Poisson model).
the stress-independent UFM case is important, which points
out the impact of the clustering of fracture positions on
density variability. The lacunarity associated to the perton  large structures 41, 49. Finally, as the number of fractures
parameter is smaller for all UFM models than for Poissorinvolved in the backbone structure increases more than the
model, meaning that the connectivity of the network is moretotal area withm, we can conclude that we tend to connect
homogeneous for UFM models. All percolation lacunarity cisrve mostly small fractures to the backbone with this stress«iti
are similar whatever the value af, suggesting that the nucleation process.

60 -

40 1

(@]
Backbone percentage

201 x x

- A

percolation parameter is more sensitive to the fracture positi The number of intersections per fracture is a good indicator
size correlations induced by the UFM rule, than the fracturedf fracture connectivity. Maillot et al.2f] showed that the
centers correlations. number of intersections per fracture is a function of fracur

size for both Poisson and UFM models. Moreover, they showed

. that whatever the fracture size, the number of intersedio
Consequences on Connectivity and about two times lower for UFM model than for equivalent
Topology Poisson model. We here push further this topological analysis
Fracture correlation is likely changing the connectivititbe = computing the fracture intersection matri®, so that for n;
overall network. Maillot et al.Zq show that stress-independent and n; fractures of sizdj and |j, respectivelyP,[i,j] gives the
UFM networks (which they refer as a “kinematic” model) number of fractures of siz& intersecting fractures of size,
have permeabilities 1.5-10 times smaller than the equivaledivided bynin;. Figures 7A—Cshow the mean intersection matrix
Poisson model, and a higher channeling (a higher portion ofor all generated Poisson, stress-independent URM D 0),
the total fracture surface where the ow is signi cant). Sem and stress-driven UFMnd D 5) models, respectively. As
studies {16, 55 show that, for networks with a power-law size expected, in any case, the probability of intersection insesa
distribution, the evolution of connectivity with scale isagly  with fractures sizesrigures 7D,Eshow the mean intersection
dependent on the power-law exponeatand on the fractal matrix for stress-independent UFMn{ D 0), and stress-
dimension of fracture center®,. In our case, because fracturedriven UFM (m D 5) models, normalized by the mean
centers tend to concentrate in clusters around large frn&ctu equivalent Poisson's model intersection matrix, in order t
tips, the fracture interconnectivity may also increaseréasing highlight di erences between UFM and Poisson models. Our
the connectivity between fractures should increase th&limme analysis shows that the number of fractures intersections is
density, de ned as the structure carrying ow in the network smaller for UFM models than their equivalent Poisson. We can
[56]. We here de ne the backbone by removing iterativelyalso notice that this number is much smaller for fractureshef
fractures having only one connection with the network or thesame size, which is a consequence of the UFM rule assuming
boundary, keeping only the connected clusters without owthat a fracture cannot cross a larger one. Finddlgure 7Fshows
dead-endsFigure 6 shows that the percentage of fractures inthe stress-dependent UFMn(D 5) model intersection matrix,
number and in total areapgp and ps2) involved in the backbone normalized by the one of the stress-independent URMD 0)
is smaller for any kind of UFM model (stress-independent ormodel, showing that our stress-driven nucleation processl ten
stress-driven) than for corresponding Poisson model. Moreoveto increase the connectivity of small fractures with the Besa
for the UFM models, even ik 25% of fractures are part of and the largest fractures. Indeed, new fractures tend t@ldgv
the backbone, this represents more than 65% of the backbor the tip of the largest existing fractures, increasingramiivity
surface, which shows that connectivity is mostly ensured bipetween both.
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FIGURE 7 | Intersection matrix for(A) Poisson, (B) stress-independent UFM, and(C) stress-driven UFM models.(D) Normalized intersection matrixPP"mDO’ for the

| (Poisson )
stress-independent UFM models,(E) Normalized intersection matrixz-510%

P,.mD5/
| (Poisson ) P;.mDO / *

for the stress-driven UFM ifh D 5) models, (F) Intersection matrix ratio

CONCLUSION positions, and the higher the spatial variability of fracture
densities. This e ect is dependent on the density measureone.
The genetic UFM model developed by Davy et d. flescribing  the dependency of the density with fracture size. It is higloer
the fracturing process as a combination of simpli ed nucleati  the number of fractures per unit volume than for the percolatio
growth and arrest laws, introduces a fracture Size-pOSitiOTﬂ)arameter. Moreover, our Connectivity ana]ysis brings u[])tha
correlation in DFN modeling, that does not exist in equivele UFM rule tends to create a hierarchy between fractures, sb tha
Poisson model. It results in two distinct power-law fractuiges  fractures of the same size order are less likely to cross arte ea
distributions and a number of T-intersections that are cistsnt other. The stress-driven nucleation process we propose tends t
with eld data [24]. Nevertheless, the model does not take intoconnect small fractures all together with the largest otrest,are
account the mechanical feedback loop between fracture throwresponsible for the main stress perturbations. We also shotv tha
and birth, therefore neglecting fracture-to-fracture @@sing  YFM models have lower percentage of fractures involved in the
correlations. In this paper, we pushed further the model by,cxpone than their equivalent Poisson modi[ whatever the
improving the nucleation process, conditioning the positioh o selectivity parameter.
newly created fractures by the stress perturbation induced b Finally, constraining fractures orientation according tlee
preexisting ones, in a timewise process. This stress pertarbat .o mpyted local stress eld, in order to account for fracture
is a function of fractures geometry (size and orientaticmd  osition-orientation correlations, would constitute a huge
the applied remote stress (orientation and intensity). Tkisults i nrovement of the model. Once a full simpli ed mechanical
in more cqrrglgted networks, shqumg fragtal posrtlor"ngdj'Ja description of the fracturing process is performed, this would
higher variability of fracture densities. We introduce &sévity 410w us to perform real case studies, and compare our analysis

parametem that quanti es the dependency of nucleation with reqits (clustering, connectivity...) between 2D numaric
the stress eld. When nucleation is stress-independent D outcrops from generated DFNSs, with real ones.

0, uniform positions), we show that fracture density varidpi

associated to UFM networks is much smaller than equivalent

Poisson model. This means that the UFM rule, imposing that D ATA AVAILABILITY STATEMENT

fracture cannot cross a larger one, tends to organize nédsiato

more homogeneous patterns than if fractures were positiortied ahe raw data supporting the conclusions of this article will be
random. Nonetheless, when nucleation is stress-drivei600), made available by the authors, without undue reservatioasty
the higherm, the lower the correlation dimension of fracture quali ed researcher.
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