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Abstract

In order to study the mutual effect of deformatard mineral reactions, we have conducted
shear experiments on fine-grained plagioclase-mmexassemblages in a Griggs-type solid-
medium deformation apparatus. Experiments wereopadd at a constant shear strain rate of
10° s, a confining pressure of 1 GPa and temperatur&90f 850 and 900 °C. While the
peak stress of plagioclase + orthopyroxene assgedleaches values between those of the
end-member phases, the strength of polymineralitemads strongly decreases after peak
stress and reaches flow stresses that stabilizebééww those of the weaker phase
(plagioclase). This weakening correlates with tbeval development of high-strain shear
zones where new phases are preferentially prodingdding new pyroxene, plagioclase and
amphibole. The reaction products mostly occur dsnately mixed phases within fine-
grained and interconnected shear bands, togethierdifferent compositions with respect to
the starting material. This indicates that deforomatignificantly enhances the kinetics of
mineral reactions, which in turn strongly weakea tteforming sample, here attributed to a
switch to grain-size-sensitive diffusion creep tigh phase nucleation and grain size
reduction. Such an interplay between deformatiod amneral reactions may have strong
implications for the initiation, development, anarability of shear zones in the lower crust.
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1. Introduction

Strain localization and resulting shear zones aresidered to be fundamental features of
plate tectonics on Earth (e.g. Tackley, 1998; Bam@nd Ricard, 2012). They accommodate
a large amount of strain and have a direct commotock rheology, so their development is
critical to understanding the dynamics of the lgploere. The formation of viscous shear
zones has been considered to result from one oeraeprocesses of strain-induced
weakening, which expresses as a stress drop diaobisgrain rate or an increase of strain rate
at constant stress (e.g. Paterson, 2013). PossiblEkening mechanisms include: (1)
Geometric and/or fabric softening, (2) a changddaformation mechanism, commonly due to
grain size reduction, (3) fracturing, (4) metamacptmineral reactions, (5) shear heating (6)
water- or (7) melt-induced weakening (e.g. Poire980; White et al. 1980; Burlini and
Bruhn, 2005). While some of these mechanisms ajgpymonophase rocks, others are more

typical of polyphase materials.

As a starting point, laboratory-derived flow lawsave been determined for the
deformation of monophase materials to understardriieology of important rock-forming
minerals in the viscous regime of the lithosphamgluding olivine (e.g., Chopra and
Paterson, 1981), quartz (Paterson and Luan, 1@®)ioclase (Rybacki and Dresen, 2000;
Dimanov et al., 1999) and pyroxene (Bystricky an@ckivell, 2001). For instance, the
experiments of, e.g., Rybacki and Dresen, (200d) @hen et al., (2006), have shown that
water may considerably reduce the strength of peldand pyroxene aggregates. Plastic flow
and grain size reduction by dynamic recrystallaatare also best described in deformation
experiments of monophase materials, giving risgtdte-of-the-art flow laws (e.g. White et al.
1980, Schmid 1982, Rutter and Brodie, 1988). Theggeriments highlighted a potential
source of weakening induced by a transition froairgsize-insensitive to grain-size sensitive
creep, but this transition is not expected to caleswy-term weakening in monophase
aggregates, because the efficient grain growth letated temperature is expected to
counteract the weakening effect of grain size rédnc(e.g. Rutter and Brodie, 1988, De
Bresser et al., 2001).

Except for rare cases, the lithosphere consisfmobyjphase rocks. Thus, a growing body
of literature has also addressed the rheology bfphase material, given the fact that such a
rheology is likely to be different from that of mmphase ones (e.g. Birgmann and Dresen,
2008). For instance, the presence of additionatghan polyphase aggregates inhibits grain

growth and controls microstructures through pinr(eg. Olgaard and Evans, 1986; Herwegh
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et al., 2011). The dominant deformation mechanism thus be expected to differ as a

consequence of phase interactions.

In this context, the rheology of polyphase aggregdbr gabbroic composition has a
fundamental importance for understanding the machbbehaviour of the oceanic and lower
crusts; mafics are the most abundant rock typethaese crustal layers (e.g. Weaver and
Tarney, 1984; Christensen and Mooney, 1995). Howesrperimental studies of high-
temperature deformation of gabbroic compositionsdile comparatively rare (e.g. Dimanov
et al., 2003, 2007; Dimanov and Dresen, 2005),these studies have not considered mineral
reactions. They focused indeed on the role of sgngnphases, grain size, water content,
stress and spatial distribution of grains to actdon changing flow stress and dominant
deformation mechanism in polyphase feldspar-pyrexaggregates. Yet, other studies
suggest that the occurrence of mineral reactionsglyiscous flow may have the potential to
weaken rocks and consequently localize strain @&ignitz and Tullis, 2001; De Ronde et al.,
2004, 2005; Getsinger and Hirth, 2014; Marti et2017, 2018).

Strain localization and weakening in viscous steares as a result of mineral reactions
are mostly achieved through changes in P-T conditi@.g. Gapais, 1989; Newman et al.,
1999) or through fluid-rock interactions (e.g. Atstim, 1987; Menegon et al., 2015).
Changes in P-T conditions commonly occur duringaote and continental subduction and
exhumation along crustal-scale shear zones, whieee thermodynamic disequilibrium
promotes the growth of new stable minerals (e.gy&et al., 2002; Jamtveit et al., 2016). In
addition, shear zones represent permeable pathfeayiuids that enhance diffusion and
strongly catalyse mineral reactions under both, (@w. Fitz Gerald and Stunitz, 1993;
Newman and Mitra, 1993; Mansard et al., 2018) agth metamorphic grades (e.g. Brodie,
1980; Boundy et al., 1992; Glodny et al., 2003)e Timportance of mineral reactions lies in
the possible grain size reduction and change iordeftion mechanism leading to a switch
from grain-size-insensitive to grain-size sensitiveep, giving rise to substantial weakening
(e.g. Etheridge and Wilkie, 1979; Olgaard, 199@in&z and Fitz Gerald, 1993; Fliervoet et
al., 1997; De Bresser et al.,, 1998; Kruse and $t(irii999; De Bresser et al., 2001,
Kenkmann and Dresen, 2002; Precigout et al., 2B@imbourg et al., 2008; Linckens et al.,
2011; Kilian et al., 2011; Viegas et al., 2016).nktal reactions also contribute to form
mixing zones that play an important role of weahkgnibecause the pinning of grain
boundaries impedes grain growth and keep the gias small (e.g. Etheridge and Wilkie,
1979; Herwegh et al., 2011).
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In this contribution, rock deformation experimentn HO-added plagioclase-
orthopyroxene samples were performed to investighte rheology and evolution of
microstructures with increasing strain. The expents provide insight into weakening
mechanisms and localization of deformation durilgas zone development. This study
presents a simplified model example of how defoiomatcan facilitate metamorphic
reactions, heterogeneous nucleation, formation iré-dgrained phase mixtures, and how
conversely such an evolution in microstructuresnavaly results in strain localization and
weakening of polyphase aggregates. The study atsmodstrates the importance of
interaction of individual phases in polymineralicssamblages when dealing with the

behaviour of the lithosphere.

2. Methods
2.1 Experimental procedure

The shear deformation experiments were carriedirotvo Tullis-modified Griggs-
type deformation apparatus at the University ofniisg (Norway) and in a new generation
Griggs rig at the University of Orléans (FranceeTollowing sections briefly describe the

preparation of the sample assembly and experimprdaédure.

2.1.1 Starting material and sample preparation

Experiments were performed on two-phase plagioatad®pyroxene assemblages
and, for comparison, pure plagioclase and pureopytioxene (Opx) material. The starting
material was prepared from gem-quality Sonora dmige (Ansg), and Damaping opx from
peridotite (Opx: We-Engs-Fsi). The initial mineral compositions are presentedrable 1.
The rocks were crushed using a hammer and sievsidds grains diameter between 100 to
200 um. Minerals were pre-separated with a Framgnatic separator and hand-picked. They
were subsequently crushed into an alumina mortal tlaen a powder ranging from 10 to 20
Km grain size was extracted by settling in a déstilwater column. Opx and plagioclase
powders were mixed at a ratio of 50 : 50% (by valims a slurry in acetone using an
ultrasonic stirrer to avoid density/grain size saian (De Ronde et al., 2004, 2005hsert
Table J.
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The mixed powder was placed between 45° pre-cumiak forcing blocks (Fig. 1).
An amount of ~0.12 g powder for 6.33 mm diameten@as (at Tromsg University) or 0.25
g for 8 mm diameter samples (at Orléans Universitgie used with 0.1 wt. %0 added to
all samples, resulting in a shear zone of ~1 mekttgss. A nickel foil of 0.025 mm thickness
was wrapped around the pistons and all insertedanweld-sealed platinum jacket. NaCl was
used as solid confining medium and the temperaua® controlled by a S-type (Pt/Pt-Rh)
thermocouple. Detailed descriptions of the sampbkeibly in the Griggs-type deformation
apparatus are given in Pec et al., 2012, Marti.eR@17 and Précigout et al., 2018sert
Fig. 1).

2.1.2 Deformation experiments

Samples were deformed at constant shear straimfate0° s* to varying amounts of
shear strain (see Table 2 for a summary of expataheconditions). Pressures and
temperatures were increased alternatingly overraeweurs to achieve the target values of
800, 850, and 900°C and confining pressures ofGR@& (Précigout et al., 2018). At the
desired P-T conditions, a period of hydrostaticr@ssing was applied. The deformation part
of the experiment was started by advancing therdeftion piston first through the lead piece
and then touching the upper forcing block (hit ppimdicating the starting point of sample
deformation. The displacement of the deformatiorstgn within the lead piece is
characterized by a slow increase of differentisdsd (‘run-in’ curve; Précigout et al., 2018),
the duration of which may vary depending on the eexpent. We thus separated the
experiments with a relatively short (< 70h) andddr 70h) “run-in” period. Following this
period, samples were deformed to shear straing ¢dy = 8 (high shear strain experiments).
Several experiments were also carried out withefibrehation (hot-pressing experiments) or
with deformation only up to the peak stresg atl (peak stress experiments) in order to study
the early stages of deformation. The longer rupanods cause reaction products to nucleate
before deformation starts, whereas shorter rurenogs cause reaction products to form only
during deformation, allowing to study the relatibips between the amount of reaction
products over time and the effect of deformatiorpdtiments reaching similar shear strain
with different total durations can be comparegért Table 2

When deformation was stopped, samples were quenich@®0°C within minutes
(temperature drop of ~150 to 300 °C/min) to presetiwe deformation microstructures.
Subsequently, the force and confining pressure vadEereased simultaneously to room
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pressure and room temperature conditions. Duriitgalirstages of the decompression, the
differential stress is kept above the confiningsptee (~ 100 to 200 MPa) to prevent the
formation of unloading cracks. After the experimetiite samples were impregnated with
epoxy resin and sectioned along the piston axispamndllel to the shear direction to produce

thin sections.

Experimental data were digitally recorded using tatman Easy data acquisition
system and processed using a MATLAB-based progrepired from the “rig” program of
Matej Pec (Pec et al., 2016) and available at
https://sites.google.com/site/jacquesprecigoutitedegements-downloads. The hit point was
defined by curve fitting and the stress-strain esnof the deformed samples were then
generated by applying corrections on the displacéraad force curves considering the rig
stiffness and friction of the apparatus, respebtiieurthermore, the sample compaction and
surface change (pistons overlap) were correctedealisplacement over the whole period of
sample deformation. The stress correction of Hady@nd Kronenberg (2010) was not

applied.

2.2 Analytical procedure

After the experiment, samples were cut along tlseopiaxis in the plane of maximum
displacement and vacuum-impregnated with low visgapoxy to prepare thin sections for
microstructural analysis. The samples were mainblysed using light and scanning electron
microscopy (SEM — TESCAN MIRA 3 XMU) at the ISTO-BR1 (Orléans, France).
Starting mineral compositions were determined ustegtron microprobe CAMECA SX
Five (EPMA) at the ISTO-BRGM (Orléans, France) anbon-coated (20 nm thickness) thin
sections at 12 or 15 kV and a beam size of ca. 1\¥m have analysed the core and rim
composition of plagioclase and pyroxene grains efomed assemblages by EDR. the
mixed zones, the plagioclase-pyroxene compositiegre also analysed if the grain size was
sufficiently large. The amphibole composition iséd on composition of large grains in low-
strain zones, because in high-strain zones, indaligrains are typically too small to be
analysed. Representative analyses of these chetoicgdositions are given in Table gidert
Table 3
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2.3 Microstructural analysis

Different mineral grains were identified in backi$era electron (BSE) images. Grain
shape preferred orientations (SPO) were analysed fnanually produced bitmap images
using the autocorrelation function (ACF; Panozze83; Heilbronner, 2002). The ACF was
calculated for both, all combined phases (bulk A@RJl each individual phase (local ACF).
Because individual grain boundaries are difficudt distinguish (different from phase
boundaries which are obvious in BSE images), thé A& Cused because it does not require
segmentation of the individual grains. This methiogls avoids errors and biases caused by
the identification of individual grains. For furthdetails about equations related to the ACF,
the reader is invited to consult the original stodlydeilbronner (1992).

Scanning electron microscope/backscattered ele¢8&M/BSE) images were used to
produce manually digitized phase maps, which altbttee analysis of grain size. The grain

area

size was defined as the equivalent circular arameler (gy= 2 x ) (Heilbronner and

T

Barrett, 2014), and measured using the public doemasoftware ImageJ
(http://rsb.info.nih.gov/ij/).

3. Results
3.1. Mechanical data

The terminology used to describe stress-strainesuiy explained in Fig. 2a. While the
same colour code is used for different temperaiusgesross on the stress-strain-curve

indicates when the forcing blocks started to slifha sample interface.

3.1.1 Pure plagioclase and pyroxene samples

The pure plagioclase experiments at 800 °C and°@$how similar types of stress-
strain curves. At 800 °C the sample shows more #@hMPa higher flow stress than the
sample deformed at 900 °C (Fig. 2b), and both sasngéform at stresses below the Goetze
criterion. The Goetze criteriol\§ < P.ong) IS used as an empirical criterion to delineatesst
conditions where rocks deform plastically (Kohlgtetl al., 1995). In both experiments, the

differential stress slightly decreases after raagla peak stress at< 1 (Fig. 2b). The pure
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pyroxene experiment was performed on a largeraingiain size fraction (powder sieved to
extract a grain fraction < 40 um) than that of tiieer experiments (10 to 20 um). The pure
orthopyroxene is very strong at 900 °C, reachimpak stress of ~1600 MPayat-0.6, well
above the Goetze criterion (Fig. 2b). The experinvess stopped during the stress drop as

only brittle deformation was expected to occuhase high differential stresses.

3.1.2 Plagioclase -orthopyroxene mixtures

The experiments on phase mixtures can be dividediwo different series depending
on the time spent at P-T conditions before theairetween the; piston and top alumina
piston (hit point). After a short “run-in” period (70h at temperature and pressure conditions
before hit point), the orthopyroxene + plagiocléd&px + Plag) mixtures are very strong at
800 °C (559NM) and 850 °C (557NM), reaching a psta&ss of ~ 1100 MPa at~ 0.3 (Fig.
2c). Slip at one of the sample/forcing block indeds causesc to drop far below the Goetze
criterion. The samples deformed at 900°C show s#iass values close to those at 800 and
850 °C, but at higher shear strain«1.5). At 900 °C, there is a gradual and pronodnce
weakening after peak stress. In one case, slipretat the forcing block interface (Fig. 2c),
and the differential stress decreases below théz@aeiterion before stabilizing around 800
MPa (OR49NM). In the other case, the sample weakensinuously with a reduction of
~50% in differential stress (Fig. 2c), until reatia quasi-steady-state shear stress around
550 MPa neay ~ 6.5 (OR41NM).ifisert Fig. 3.

After a longer “run-in” period at 800 °C (Fig. 2d;70h at temperature and pressure
conditions before the hit point), a stress dropucg@t a peak stress value nea0.7 (above
the Goetze criterion at1250 MPa; Fig. 2d), probably caused by slip at sa@ple-forcing
block interface (OR24NM). In contrast, the othempées at 850 °C (OR38NM) and 900 °C
(OR34NM) weaken continuously after peak stress, #ueth approach a quasi-steady-state
shear stress at ~7.8 andy ~6, respectively (Fig. 2d). In these last two ekpents, the
weakening is very pronounced with ~64 % of weakegror the 850 °C sample and ~78 %
for the 900 °C sample compared to peak stress vallize Opx + Plag mixtures show a

slightly less steep loading curve compared to shamn-in period experiments (Fig. 2d),
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indicating a lower strength of the samples (thelilmg curve in the solid-medium apparatus at
high temperatures is not a purely elastic, but Ive® a component of permanent sample
strain; Richter et al. 2018).

These sets of experiments (Fig. 2) demonstrateptivat phase samples are either very
strong and deform only in the brittle field (Opxy, relatively weak and deform plastically
(Plag) at a moderate to low flow stress withounsgigant weakening after peak stress. The
initial strength of mixed phase samples (peak sjriéss between the two extreme values of
the pure phase samples, but the mixed phase samgdd®n after peak stress and give rise to
a final strength far weaker than the weakest of mono-phase samples (i.e., pure

plagioclase).
3.2 Microfabrics and composition
3.2.1 Pure end-member experiments

The pure Plag samples deformed at 800 °C and 9GH€ Gicrostructurally similar to
one another and show homogeneous deformation. dgthat is difficult to distinguish all
individual plagioclase grains in BSE images, thera clear plagioclase grain size refinement
locally (Fig. 3a). Recrystallized grains do not whdifferent chemical composition with
respect to the relict grains. While our experimests stronger than those carried out by
Stunitz and Tullis (2001)~550 MPa compared t6360 MPa, but the grain size ranges
between 6 and 10m in Stinitz and Tullis (2001); it was between D 2Qum in this study),
the microstructures are similar and no reactiordpets are formed at the P-T conditions

imposed.

The pure Opx sample with larger initial grain sfge40 pm compared to 10-20n of
all other samples) deformed at 900 °C shows exten8iacturing, indicative of brittle
deformation (Fig. 3b). The pervasive fractures ltesu a locally dramatically reduced
pyroxene grain size (down to <iim; Fig. 3c). No indication for plastic deformatiovas
detected.ifisert Fig. 3.

3.2.2 Mixed phase samples
3.2.2.1 High shear strain samples

3.2.2.1.1 General features

10
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At 850 °C, the high-strain sample is characteribgda single high-strain zone that
traverses the sample through the centre from omeface of the forcing block to the other
(Fig. 4). The reaction products appear pervasiwelthe whole sample, but the high-strain
zone contains considerably more reaction produe®9%) than the low-strain one (~28%)
(determined from BSE images). The grain size of ibaction products is substantially
reduced in the high-strain zone with respect to ldve-strain regions, where the reaction
products develop as coronas at the ZIplag boundaries or as monophase aggregates
without the development of mixed phase zones @ag. The reaction products are identified
as newly-formed pyroxene (Opx plagioclase (Play) and amphibole (Amph); all of which
were absent from the starting material. The origidpx; clasts are locally cut by brittle
fractures, reducing the grain size slightly (Fi¢p),5and the fractures are filled with Qpx
reaction products. The transition between low- high-strain zones can locally be gradual
and shows the incipient mixing of phases at theesdgf original Opx (Fig. 5c-d). The
reaction progressively consumes the pre-existing@pd induces the developmentooefails
parallel to the shear directiomhese tails locally coalesce and fointerconnected shear
bands of fine-grained reaction products compose®mf,, Plag and locally subordinate

Amph, which usually have rounded grain shapes Gted). (nsert Fig. 4.

3.2.2.1.2 High-strain zones

Reactions in high-strain zones result in intenseéngsize reduction and in coalescence
of foliation-forming aggregates of fine grains intoxed phase shear bands, usually laterally
connected (Fig. 5e-f, 6). Some of the shear baade h synthetic orientation with respect to
the bulk shear zone (C’-type orientation in theseeaf Berthé et al., 1979), many of them are
parallel to the shear direction (C-type orientatigkt 850 °C, the majority of shear bands are
organized within high-strain zones of ~250-300 pmtk (Fig. 6a-b). Similar features are
shared at 900 °C, although deformation is moreidiged (Fig. 6¢-d-e).igsert Fig. 5.

The modal proportion of the reaction products readocally 80% in the high-strain
zones, as these products replace most of the [BBrgxlarge grains, including the original
Plag (Fig. 7a). Thus, most of the fine-grained mixedg# shear bands are composed of
reaction products (OpxPlag and Amph with minor amount of quartz (Qtz)). Thghastrain
zones still comprise some original Qmtasts that are embedded in the fine-grained imract

products (Fig. 5e), but these clasts are reducedize (from reaction) and appear less
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elongated compared to those of the low-strain zdRigs 7b). The Opxappears therefore as
a mechanically rigid clast within weaker mixed zemé reaction products, the grain size of
which is typically below one microningert Fig. §.

The strain is semi-quantitatively estimated frore @spect ratio of the bulk fabric
determined by the ACF and angle of the long axithefbulk ACF with respect to the shear
plane (Fig. 7). It should be noted that this metlhddtrain estimate is not an exact strain
analysis, given the absence of passive markersgar particles with a known orientation
before deformation (see also discussion in De Ratdd. 2004). There is a gradient in the
aspect ratio and the orientation of reaction préglbetween low- and high-strain zones. The
bulk aspect ratio is higher in the high-strain Znghere the amount of reaction products is
the most abundant (Fig. 7). Moreover, the bulk espa&tio is around one and a half times
higher in the high-strain zones compared to thedtwain ones. The reaction products in the
high strain zones are strongly oriented subpartdlehe shear plane (piston interface) (Fig.
7d; o between ~ 3° and 5°). In the low strain zones,ahgle between the long axis of the
fabric of reaction products and the shear planegber (Fig. 7d;a ~ 9°). By applying the
equation that relates the preferred orientatiopassive lines with respect to the shear plane
(y = 2/ tan ®; Ramsay, 1980), we can estimate that local shtesingeaches ~11 to 16 in
the high-strain zones and- 6 in the low-strain onesngert Fig. 7.

3.2.1.2.3 Mineral chemistry

Overall, major compositional changes in plagioclasé opx occur together with grain
size reduction in the shear zones (Fig. 8a-b). dlmmical composition of new grains of
plagioclase and opx distinctly differs from that oflict clasts. While the chemical
composition of clasts is mostly An59, the new rieerctim (Plag) is more albitic (An52; Fig.
8a). The reaction also results in almost complesappearance of Plagn the high-strain
zones (Fig. 7a), and within mixed phase zones &pdrsbands, the anorthite component of

fine-grained Plagis slightly lower than that of new rims (An49).

The chemical composition of clasts (Qpxaries from En(86) to En(90), while the
rim composition (Op® shows a decreasing enstatite content down toZr{(8g. 8b). The
composition of fine-grained new Opin the high-strain zone decreases even more té%En(
The reaction products are thus characterized bgnaichment in iron content, together with

the formation of new amphibole grains enriched ig &hd depleted in Fe. New amphibole
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grains appears in both, more and less deformedszdng they are more abundant in fine-
grained shear bands and in the sample deforme®@Gt’@ (OR38NM - strain is highly
localized in this sample). Based on the compositbtarger reaction products in the low-
strain zones — the grain size is too small in sbaads of the high-strain zones to measure the
composition of individual grains — amphiboles atassified as magnesio-hornblende and
tschermakite (Fig. 8c)irnsert Fig. §.

3.2.2 Hot-pressing and peak stress experiments

For comparisons with deformed samples, some samipe® been hot-pressed
(without deformation) as long as the experimenttan of the high shear strain samples. At
900 °C, hot-pressing samples of Opx + Plag showdéwelopment of reaction products (Fig.
9a-b) with the same composition of Qp®lag and Amph as the deformed samples. The
reaction products occur as thin coronas at the;®ag phase boundaries or in cracks. The
volume of reaction products reaches about 3% irsémeple held for 100h and about 10% in
the one held at the same pressure and temperatud©3h. The rims grow concentrically
around old grain relicts in hot-pressed samples thedefore do not nucleate in specific
locations at plagioclase-pyroxene phase boundéfigs 9a). However, in the sample held at
pressure and temperature for 193h, the rims agbthblithicker and locally some aggregates
of original Opx are replaced by OpXFig. 9c).

In samples where the deformation was stopped ak st@ess (OR47NM and
OR51NM), the microstructures differ slightly in tleenount of reaction products and their
arrangement with respect to the microstructureghefhot-pressing experiments (Fig. 9d-e).
Indeed, the amount of reaction products slighttyease in peak stress experiments compared
to the hot-pressing ones. The reaction productgedatively homogeneously distributed in
the samples, although they start to coalesce iptallform partially connected aggregates
(Fig. 9e). The original Opxand Plag grains are also slightly elongated in the flowedtron.
When these experiments reach relatively high carditof differential stress, close to the
Goetze criterion, fractures locally affect the pygone and cause a slight reduction in grain

size. (nsert Fig. 9.

3.2.3 Intermediate shear strain experiment
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One sample was taken to a lower strain and isidered as a sample of intermediate
strain between peak stress and high shear strgn4&; OR49NM,; the distance between the
cross and the second cusp in the curve repredgntsghe interface and thus a sample strain
of y~5 is achieved). This sample is characterized bydénelopment of subparallel fine-
grained polyphase shear bands (Fig. 10a), both esetpof an intimate mixture of fine-
grained Opy, Plag and Amph (grain size <<ym; Fig. 10b). The shear bands originate from
tails that extend from the edges of original Qiig. 10c), and progressively coalesce to
form an interconnected network (Fig. 10&)sért Fig. 10.

3.3 Grain size

The overall grain size for both plagioclase and gpains is strongly reduced with
increasing strain. Most of the opx grain size réducoccurs after the peak stress, and hence,
during the weakening and development of fine-giimexed phase zones (Fig. 11). While
the original opx grain size remains almost unchdrajgeak stress with respect to the starting
material (cracking refines the grain size to a mofi@5.6 pum), the size of opx grains in the
reaction products strongly decreases in mixed plzases at high shear strain (mode of
distribution = 0.2 um). To ensure accurate graire Siletermination, we have excluded
plagioclase from the measurements because of fiitty to distinguish individual grains in
plagioclase aggregates. Despite this issue, visgpection suggests that the plagioclase grain
size in stable fine-grained mixtures is similattat of opx. ihsert Fig. 1).

3.4 Reaction progress

The set of experiments performed at different tioina and 900 °C is used to illustrate
the relation between the volume fraction of reactmoducts with time and the effect of
deformation on reaction (Fig. 12). The volume fiactof reaction products increases from
~3% for 100h to ~10% at 193h if deformation is applied (OR55NM and OR43NM) (Fig.
12a). In contrast, even after a short period obaeétion to small strain at peak stress, the
volume fraction of reaction products increases 14% (OR47NM) and ~18% (OR51NM)
(Fig. 12a). This amount of reaction products ishbigthan the amount documented for the

hot-pressing experiment with equivalent durationithiMncreasing strain, the amount of
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reaction products also increases and reaches 26R49MM), 35% (OR41NM) and 43%
(OR34NM) (Fig. 12a).i(isert Fig. 13.

4. Discussion
4.1 Mechanical data — strength of single- and tvwaged assemblages

The mechanical data of our experiments show a mydie difference in the
rheological evolution between monomineralic samp&sx or Plag) and phase mixtures (Fig.
2). The monomineralic samples either deform bytlbrimechanisms only (Opx; the
experiment was stopped before failing completeady)they deform viscously at steady state
stresses following a weakening of less than 150 NH®ag). The deformation of pure Opx
also gives rise to high differential stress at 900(Ac ~1600 MPa; Fig. 2b). Advances in
rock deformation studies provided detailed docuweugmm about the creep behaviour of
pyroxene (e.g. Bystricky and Mackwell, 2001; Dimard al., 2003, 2005; Chen et al., 2006),
but mostly for Cpx; the mechanical data for Opxndeed limited and restricted to dry Opx
only (Bruijn and Skemer, 2014; Bystricky et al., 1B). Nevertheless, based on deformation
mechanism maps (Fig. 13), our deformation conditimvolve a far higher strain rate — of
several orders of magnitude — than the one pratlictethe dislocation creep flow law of
Bystricky et al. (2016). Even the weaker wet Cpwfllaw of Dimanov and Dresen (2005)
still indicates strain rates that are one ordemafjnitude lower than our applied strain rates
(Fig. 13b). Thus, dislocation creep deformatiorOgfx is not expected to accommodate the
applied strain rates in our samples, in agreemaéttt tlve observed brittle behaviour of the
pure Opx sample (Fig. 3b). For pure Plag, our fitngsses at the given strain rateyfer2 (=
steady state conditions) are in good agreement {Big) with the flow law from Rybacki and
Dresen (2000) using the conversion between sinfiglarsand coaxial strain ratessof v / \3
(Gerya, 2010; Tokle et al., 2019). Our resultspgore phase Plag and Opx are thus consistent
with previous results found in the literaturesert Fig. 13.

The mixed Opx + Plag samples deform under contisweeakening after attaining a
peak stress, the value of which is intermediatevden the end-member strengths of Opx and
Plag, in agreement with a Reuss-Voigt- or Taylocki8amodel of phase mixture (e.g.,
Dimanov and Dresen, 2005). However, the Opx inaage is stronger than Cpx and deforms
only by brittle processes, so that the peak sthemdtthe 2-phase composite sample is

between the two end-members and near the Goetimiami (Fig. 2). In addition, the
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pronounced weakening after peak stress producakflow stresses up to 800 MPa that are
far below the Goetze criteriong < P.on), and below the end-member strength of the weaker
phase, i.e., plag. This suggests that the defoomatiechanism of the phase mixture differs
from those of the end-members, because the strefgile composite should lie between the
end-member strengths of a Reuss-Voigt or TaylohS&codel. As discussed below, such a
different rheological evolution may be explainedtbg progressive modification of the phase
assemblage and microstructure through chemicakictiens, i.e., mineral reactions.

4.2. Nucleation and grain size reduction

From figures 4 to 7, the local zones of reactiondpcts accommodate far more strain
than the relict phases Opx and Plag, so that thetiom products are responsible for the
mechanical weakening of the samples. In addititve microstructures at peak stress
conditions mainly consist of coronas with only vditite mixed phase material (Fig. 9d-e).
Hence, most of the phase mixing starts after pgaks Reaction products have a very small
grain size of~0.2 um (Fig. 11). As the intense grain size reductiod phase mixing both
start to appear after peak stress (Fig. 14), streakening and strain partitioning into the

high-strain zones (Fig. 6) likely commence as asegnence of these two processes.

There is no flow law for Plag + Opx mixtures, ammanposite flow laws only exist for
Cpx + Plag (Dimanov and Dresen, 2005). We thuggdothe grain size modes and means of
the fine-grained reaction products (Opx + Plag)irsgathe bulk stresses of the related
experiment into the existing dry Opx, wet Cpx anet Wlag deformation mechanisms maps
for a semi-quantitative comparison. The grain siaed stresses of Opxn the high-strain
zones plot in the diffusion creep field (Fig. 13a-Bccording to the Bruijn and Skemer
(2014) data, pure Opx would still deform at oneeproff magnitude lower strain rates than our
applied strain rates (~0s?) in the diffusion creep regime (Fig. 13a). ThegP# the same
grain size and stresses plots at an order of magmitigher strain rates than those applied in
our experiments (Fig. 13c). Because of strain pamning, the expected strain rates in the
high-strain zones are higher than the bulk onesabiactor of 2 to 3. From the semi-
guantitative estimate of the deformation mechanmaps, the observed strain rates in the
diffusion creep field for the fine grained Plag pXOphase mixtures are compatible with those
of the existing Cpx data and even slower than tiios@lag from existing experimental data
(Fig. 13). Thus, accommodation of deformation bfjudion creep in fine grained reaction

16



492
493

494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514

515

516

517
518
519
520
521
522
523

products is roughly consistent with available rlogadal data for pyroxene and plagioclase for

this deformation mechanism.

Several processes are generally invoked to acdouphase transformations that may
reduce grain size and promote phase mixing, indungnthe rock strength. Some workers
proposed that melt reactions may strongly influetheemechanical behaviour of rocks of the
lower crust by inducing phase mixing and introdgcanlow viscosity melt in the system (e.qg.
Rosenberg and Handy, 2005). In our case, the Prllitons are definitely outside of the
melt-forming field, in agreement with the lack oklnin our samples. Another weakening
process may involve dynamic recrystallization ia tegime 1 of Hirth and Tullis (1992), i.e.,
where dynamic recrystallization mostly occurs by Ilgmg. However, dynamic
recrystallization does not produce phase mixing] tre pyroxene grain size in zones of
mixed phase reaction products falls far below thmthapyroxene piezometer (Fig. 13;
Linckens et al., 2014). Furthermore, the new £grains have a different chemical
composition compared to the starting material (Bjgwhich excludes fracturing as a source
of extensive grain size comminution (e.g. Ree gt28l05; Park et al., 2006; Pec et al., 2012,
2016). In low-strain zones of samples that reag liifferential stress conditions, discrete
fractures segment Opglasts, but the fragments have a much larger guiam than the fine
grains in high-strain zones. In contrast, phaséeation as comminution process and a switch
to grain size sensitive diffusion creep has beeatmlaed in previous studies (e.g. Kilian et al.,
2011; Herwegh et al., 2011; Wassmann and Stoeckk@1tB; Hidas et al., 2016; Précigout
and Stunitz, 2016; Marti et al., 2018; Prigentlet2018). Such a phase nucleation accounts
for changing chemistry, phase mixing, and extengnan size reduction in our experiments.
(insert Fig. 14.

4.3 Mineral reaction and diffusion creep

While the development of reaction coronas indueeied grain size reduction and
no phase mixing in low-strain zones (Fig. 5a-b,, 14¢ grain size reduction is much more
intense in high-strain zones, combined with phasengp (Fig. 5e-f, 6, 14). At the margin of
high-strain zones, the early stages of phase maiagreserved (Fig. 5¢-d, 14). Fine-grained
shear bands composed of QpRlag and subordinate Amph extend at the edges of; Opx
clasts and progressively replace the original Rlaig. 5c-d). The phase mixing starts at the

edges of the original Opxthat is gradually consumed by the reaction aseswddd by
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irregular Opx boundaries, where new grains nucleate along logsstsites (Fig. 5¢). These

microstructures suggest that diffusive mass trarmsiaixes place as part of the reaction.
Nucleation of new grains of strongly reduced siaeilitate diffusion creep. Phase mixing

may stabilize the grain size by impeding grain growPrevious studies also showed that
phase nucleation forming tails at the expense adtslmay increase the degree of mixing in
natural shear zones and experimental samplesKrige and Stinitz, 1999; De Ronde et al.,
2004; 2005; Holyoke and Tullis, 2006a, 2006b, Kiliat al., 2011, Tasaka et al. 2017,
Mansard et al., 2018).

In our experiments, no grain growth is observetina-grained shear zones, even for
longer experiments. This indicates that the ocoweeof phase mixing has probably caused
pinning of grain boundaries, impeding grain growathd preserving a fine grain size (e.g.
Fliervoet et al., 1997; Herwegh et al., 2011; Kiliat al., 2011, Platt, 2015; Tasaka et al.
2017). Together with our predictions based on ae&tion maps, these features suggest that
high-strain shear bands mostly deformed by diffusiceep. One important accommodation
process to consider in this regime is grain boundading (GBS; e.g, Langdon, 2006). In a
reacting and simultaneously deforming mineral asdege, GBS has a two-fold effect: (a) it
creates new contact surfaces for reaction and (irpduces potential cavitation sites, where
new phases can nucleate (e.g., Kilian et al., 20ddnegon et al., 2015, Précigout and
Stlnitz, 2016; Précigout et al., 2017; 2019). lis thvay, phase mixing is promoted in
agreement with 1) the nucleation of fine graingg(Ail), 2) an intimate mixing of phases in
high-strain zones (Fig. 5e-f, 6), and 3) the faett the grain size of pyroxene and plagioclase
falls within the diffusion creep field (Fig. 13). Awitch of deformation mechanism to
diffusion creep accounts here for a significant keeeng and related strain localization into
fine-grained high-strain zones, which hence camstithe weakest parts of the sample (e.g.
Schmid et al., 1980, Rutter and Brodie, 1988; Msint2007; Precigout et al., 2007;
Raimbourg et al., 2008; Gueydan et al., 2014).

4.4 Geometrical aspects: connectivity of shear g@mel weakening processes

Previous works have shown that the rheological ebna of rocks and strain
localization can be highly dependent on strengthirast between phases, spatial geometry
and amount of mineral reactions (e.g., Handy, 1@88'Angelo and Tullis, 1996; Holyoke
and Tullis, 2006a; Hansen et al., 2012). Holyokel drullis (2006a) found in high-
temperature experiments a strong relation betweennterconnection of weaker phases and
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strain localization. It has also been shown by &ea., (2016) and Palazzin et al., (2018) that
the bulk strength of a given sample remains higinef weak shear bands are not, or poorly
connected. Numerical studies also support the tldeaphase arrangement can dramatically
affect the bulk strength (e.g. Montési, 2007, Ment2013; Gerbi et al., 2016). In our study,
the fine-grained shear bands are highly conneatddaented sub-parallel to the shear plane,
suggesting that the reaction products connect neetldimensions and therefore control the
bulk strength of the sample. This arrangement isiciered as a type of geometric weakening
(e.g. Handy, 1994; Dell’Angelo and Tullis, 1996; lifuke and Tullis, 2006a; Gerbi et al.,
2016). In addition, reaction progress will introdumore of the weak fine-grained material,
increasing the probability of reaction productsctnnect after peak stress, and hence to
promote further weakening. Previous shear defoonadtudies also described the formation
of shear bands after peak stress (e.g. HolyokeTati$, 2006a; Pec et al., 2016; Marti et al.,
2018). However, unlike our study, they do not alsvahow the coalescence of shear bands
into a connected high-strain zone that runs througlhe shear zone in high shear strain
experiments (Fig. 4).

To summarize, our results support the idea thas#neple weakening is dependent on
two processes: (1) the introduction of fine-graineshction products, and (2) their
connectivity, which increases with an increasingoam of reaction products. The
connectivity is nevertheless a complex variableciwhiesults from the interrelationship of
strain partitioning and reaction progress. In aase; the proportion and arrangement of weak
material with increasing strain first evolve intort and polyphase shear bands, and then into
connected broader high-strain zones (Fig. 14). éeefore conclude that the weakening of
the samples is caused by the connectivity of tlaeti@n products, giving rise to a bulk

weakening that only achieves when the weak sheatshare interconnected.

4.5 Influence of deformation on reactions

One effect of deformation to solid-state chemiealctions is that deformation may
enhance the kinetics of mineral reactions (e.g.dvand Tullis, 1991; Wintsch et al., 1995;
Baxter and De Paolo, 2004; Imon et al., 2002; Yendieal., 2003; Holyoke and Tullis, 2006;
De Ronde and Stunitz, 2007, Richter et al., 20P8)the same time, mineral reactions
enhance the nucleation rate, giving rise to verglsgrain sizes that favour the dominance of

grain-size-sensitive creep (e.g. Rutter and Brotié88; De Ronde et al., 2005; Marti et al.,
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2018). In our high-strain samples, we documentrangt partitioning of deformation into
high-strain zones (Fig. 4). The fact that the amooinreaction products increases with
increasing strain at 850 and 900°C (Fig. 7a) sisorsyiggests that reaction kinetics are
enhanced by deformation. Moreover, a higher amotisiyn-kinematic amphiboles in high-
strain zones indicates that the deformation-reactedback is pronounced, particularly in
our “850 °C” sample. A similar feedback was found sheared plagioclase-olivine
experiments at 900°C (De Ronde and Stinitz, 20007Y and they showed that the local
strain is highly correlated with reaction progreRscently, Marti et al., (2018) also described
the positive feedback between deformation and imagirogress in experimentally deformed
plagioclase-pyroxene mixtures, but in these exasyfiewer reaction products have been
described, probably due to the lower temperatufeth@ir experiments. In addition, the
greater reaction progress and larger amount ofgmaged mixed phase zones in our samples
may be attributed to the small grain size of oartstg material in otherwise very similar
experimental procedures to Marti et al., (2018) Pphrtially smaller grain size in our samples
provides indeed a greater surface area of phaselagas as sites of potential reactions.

Evidence of mineral reactions enhanced by defoonatiso arises from comparison
between our hot-pressing, peak stress, and higmsamples (Fig. 12a). The main difference
between these samples is the bulk amount of reaptieducts. While hot-pressing and peak-
stress samples both reveal a slight increase iartiwunt of reaction products with time (Fig.
12b), the high-strain samples produced far moretisaproducts for equivalent duration of
experiment (Fig. 12b). Although two data points fmt-pressing samples are probably not
enough to provide robust quantitative constrairites reveals the strong influence of

deformation on the amount of reaction products.(E&ip).

Similar results have been documented in experinigrdaformed fine-grained gneiss
(Holyoke and Tullis, 2006a; 2006b) and plagioclas#ivine samples (De Ronde and Stunitz,
2007). The main reason for the faster reaction nessgin deformed samples is probably the
introduction of defects into the reactants, i.e thcrease of the activation energy for the
reaction at otherwise identical pressure and/orpeature overstepping conditions (De
Ronde and Stunitz, 2007). Furthermore, the exposfiraew reaction surfaces by grain

boundary sliding can be another potentially imparfactor.

4.6 Geological implications — shear localizationnature
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Several workers have pointed out that strain Ieagbn may control the degree of
weakening in polyphase rocks (e.g. White et al8019Handy, 1989), which is of great
importance for the rheological behaviour of the éowrust. A large amount of fine-grained
weak zones indeed allows to preserve the weak temg-behaviour of deep crustal rocks. It
is also well established that the lower crusttisologically heterogeneous, mainly consisting
of mafic rocks dominated by feldspar and pyroxeee.(Kirby and Kronenberg, 1987;
Christensen and Mooney, 1995; Rudnick and Founi&f5). However, current lithospheric
models do not take into account the complex intemadetween plagioclase and pyroxene on
lower crust rheology. They do not either considezchanical polyphase shear bands to
describe the lower crust, yet observed in natunebs zones (e.g. Kanagawa et al., 2008;
Kruse and Stinitz, 1999).

Mineral reaction and its interplay with deformati@nof great importance for strain
localization (e.g. Kerrich et al., 1980; Brodie aRdtter, 1985; Handy and Stlnitz, 2002;
Keller et al., 2004; Mansard et al., 2018). On bard, cases of preserved metastable mineral
assemblages in undeformed rocks are well documenteite deformed equivalents of the
same rock body have significantly reacted (e.g.thesm and Griffin, 1985, Koons et al.,
1987, Fruh-Green, 1994). On the other hand, thenexf metamorphic reactions is greater in
shear zones, as reaction may cause strain logahzhy producing a mechanically weak
aggregate (Keller et al., 2004). In our experimetite starting material made of Opx + Plag
was deliberately chosen to be out of equilibriunthatexperimental pressure and temperature
conditions. Although large overstepping of reactoimundary probably occurred with respect
to far slower changes of P-T conditions in nattine,experimental deformation of polyphase
mixtures is here a good analogue to natural she@eszinvolving strain-enhanced chemical

reactions and reaction-enhanced strain weakening.

In agreement with previous experiments (e.g. Rybaoki Dresen, 2000; Bystricky
and Mackwell, 2001; Dimanov et al., 2003), our filgs confirms that Opx + Plag
assemblages are very strong, but as soon as tbes@lalages react, the material is viscously
deformed and substantially weakened. The deformatio Opx + Plag assemblages also
promoted diffusion-controlled chemical reactionsyirgg rise to the nucleation of new
intrinsically strong phases, i.e., plagioclase aydoxene (Fig. 2a). However, these strong
phases nucleated as very fine grains within weatedhphase zones (Fig. 6, 11), causing a
switch in deformation mechanism, and thereby extenthe range of conditions where fine-
grained mixed zones are weaker than the unreacsendlages. In addition, a critical
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parameter for the weakening to be effective isdbenectivity of small weak zones at large
scale. Our experiments demonstrate that the comitgcof weak material arises from
feedbacks between deformation and phase reactioagsing a significant drop of the bulk
sample strength, i.e., strain-induced weakening. Sdme effect may be therefore expected on

a larger scale of the lower crust if small shearezohighly connect each other.

5. Conclusions

In this study, we have performed rock deformatiopegiments on plagioclase +
pyroxene and pure end-member assemblages usisgltienedium Griggs-type apparatus at
a pressure of 1 GPa and temperatures of 800, 88M@H°C. The analysis of pure end-
member assemblages reveals that 1) pure Opx defontgsby brittle mechanisms and 2)
pure Plag deforms plastically at steady-state sti@owing a limited weakening after peak
stress. In contrast, plagioclase + pyroxene assayabl show extensive strain-related
weakening caused by mineral reactions. At the oofsdeformation, new phases nucleate in
aggregates as mixed phase tails and shear bantlse atxpense of original opx and
plagioclase. The change of phase composition tege&itih phase mixing indicates that grain
size reduction originates from the consumptioneafctants and nucleation of new phases. As
deformation and reaction progress, the thin sheard® then coalesce to form highly
connected material in the high-strain zones. Tagettith the occurrence of a significant
weakening coeval with grain size reduction and phasing, our predictions suggest that
shear bands deformed by grain-size-sensitive crébp. degree of connectivity, i.e. the
formation of connected reacted material to a laegéent, also played a major role in
controlling the bulk sample strength. This hightgthe importance of strain partitioning and
shear bands connection to weaken shear zonesdPgwanalogue documentation of natural
shear zones, our findings therefore emphasize riteractions between deformation and

reaction to localize strain in ductile shear zompasticularly in mafic rocks.
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Figure Captions

Fig. 1. Sample assembly of the shear experiments usingoggsatype apparatus) Schematic cross-
section of the assembliyn a new generation Griggs rig at the University@féans (France)h)
Schematic drawing of sample geometry in a 3D viégample powder is inserted between 45° pre-cut
alumina forcing blocks. Modified after Tarantolaat, 2010.c) Sample geometry at the end of the

experiment: th= initial thickness, th= final thickness.

Fig. 2. Differential stress (MPa) versus shear strainplots. a) Set of terms used to describe the
mechanical datah) Stress-strain curves showing the mechanical bebawf two pure plagioclase

samples deformed at 800 and 900 °C. The mecharuce¢ of a pure pyroxene sample deformed at
900 °C with an initial coarser grain sige 40 um) is also plotted-d) Set of experiments deforming

an Opx + Plag mixture at different temperatures0(8860 and 900°C), and at constant confining
pressure, strain rate and water content. Theseaimgugs are separated in two graphs accordingeto th
different duration of the “run-in” section. The oal coding refers to the temperature of the

experiments.

Fig. 3. SEM-BSE images representative of microstructuesuchented in pure plagioclasa) @nd
pyroxene -c) experiments.a) Plagioclase grain size refinement (blue arrowsg) dynamic
recrystallization.b) Fractures in pyroxene graing. Close-up of the pyroxene grains showing local

extensive grain size refinement in cracks (oramgenss). pl = plagioclase.
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Fig. 4. SEM-BSE images across of the high-shear-strairpka@) and related phase map digitized
manually b), showing the overall strain gradient in the shaare from top to bottom. This transect is
characterized by a heterogeneity in the amouneaétron and deformation. rp = reaction products,
opx = orthopyroxene, cpx = clinopyroxene, pl = patpase, amph = amphibole, alumina FB =

alumina forcing block.

Fig. 5. SEM-BSE images representative of microstructurésewved in the high-shear-strain
experimentsa-b) The reaction products appear as coronas aro@ndrijinal Opx and as aggregates

in low-strain zones. Pyroxene is locally fractueed filled with reaction products (white arrowsx)

The transition zone shows the development of firsepgd tails and shear bands extending at the
edges of Opx These tails form fine-grained mixed zones ricljx, PL and Amphe-f) High-strain
zones textures are made of intercalated fine-gdaipelyphase shear bands. In these zones, an
extensive phase mixing between @@RL and Amph is observed. The original BImost completely
disappears, while some Opglasts, which are reduced in size, remains withise fine-grained
mixed zones. opx = orthopyroxene, cpx = clinopyrexepl = plagioclase, amph = amphibole, qtz =

quartz.

Fig. 6. SEM-BSE images representative of microstructuleserved in the high-strain zones. Three
samples deformed to high shear strain are docunheotee deformed at 850°@-p) and two others
deformed at 900°Cc{d-€). In each case, the high-strain zones are madmefrained polyphase
shear bands, mainly composed of @@L and Amph. However, the volume fraction of reaction
products is larger at 850°C and the deformatiomase localized compared to samples deformed at
900°C, which show more distributed deformation bovder amounts of amphiboles at the scale of the
shear zone. Opx = orthopyroxene, cpx = clinopyrexgi = plagioclase, amph = amphibole, qtz =

quartz.
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Fig. 7. Analysis of the phase content (a), aspect ratio) @nd shape preferred orientation (d) across
the high-shear-strain sample shown in Figure 4.r&f@rence, paneg) shows the evolution of phases
as volume fraction through the transect. ©ard Amph as reaction products are grouped together
Panel b) displays the bulk aspect ratio R*, while the gaf@ displays the aspect ratio R* for
individual phases. Panal)(shows the preferred orientation of angteof the bulk fabric with respect

to the piston interfaces. While the amount of reactproducts is higher in the high-strain zone
compared to low-strain ones, the ACF analysis levadigher aspect ratio of the fabric in the high-
strain zones, essentially of the reaction produetdch are preferentially oriented subparallel e t

piston interfaces. Opx = orthopyroxene, cpx = g@yraoxene, pl = plagioclase, amph = amphibole.

Fig. 8. Chemical composition of plagioclase),( pyroxene If), and amphiboled]. The chemical
compositions of plagioclase and pyroxene are ddvidéo three subsets: clast-core, clast-rim and fin

grains. The frequency corresponds to the numbgraohs analysed considering one point per grain.

Fig. 9. SEM-BSE images representative of microstructuteseved in the hot-pressing experiments
(a-b-c) and peak stress experimerdssj. a-b) Thin reaction coronas that start forming at thex&Pl;
interphase boundaries. This consists essentiallpmt and Plag c) Aggregate of original Opx
replaced by Opx d) Representative microstructures observed at pealssswhere the reaction
products start to form aggregates that are parttalhnected in the direction of extensieplrregular
grain boundaries composed of small grains of ndadmed reaction products. Opx = orthopyroxene,

cpx = clinopyroxene, pl = plagioclase, amph = arbpla.

Fig. 10. SEM-BSE images showing characteristic microstmgstwf the nascent mixing of phasaks.
Incipient interconnection of thin shear bands dilieith fine-grained polyphase mixture (yellow datte

outline) subparallel to the shear plane (horizodiadction).b) Close-up of shear bands showing fine-
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grained mixture of Opx PL and Amph.c) Close-up of incipient mixing forming tails at teelges of

original Opx. Opx = orthopyroxene, cpx = clinopyroxene, pl agiclase, amph = amphibole.

Fig. 11. Grain size evolution of pyroxene between peaksstexperiment (mode: 15.6 um; mean: 15.3
pm) and the newly formed Opin fine-grained mixed zones in high-shear-straipegiments (mode:
0.2 um; mean: 0.4 um). The black curve represertiesifit to the log-normal distribution. The

average value for the aspect ratio of new Opx graa/b = 1.23.

Fig. 12. Evolution of the amount of reaction products darection of time in plagioclase — pyroxene
experiments at 900°C. Symbols denote types of @rpets performed, which include hot-pressing,
peak-stress, intermediate and high-shear-straiarempnts. The graph i) shows the different types
of experiments, strain rate and associated mechlai&ta in stress-strain gragd). Evolution of the
volume fraction of reaction products (RP) with tiraed effect of deformation on reaction and sample
strength. Avrami curve fitting for hot-pressed @fa@med samples are colour coded. One curve for
deformed samples is fitted for peak-stress samplbde the other is fitted for higher-shear-strain

samples. The duration of the deformed experimeartzkien from the hit-point.

Fig. 13. Deformation mechanism map for dry orthopyroxeak (vet clinopyroxenel)) and wet
plagioclase ) at 900°C and 1 GPa. On these maps, we plot fferatitial stress and grain size of
Opx at peak-stress conditions and in mixed zonésgbf-shear-strain experiments in both cases, as we
consider that the grain size of plagioclase andxsme is similar. The deformation conditions of the
pure Plag sample is also plotted. The grain sizeegesented in box-and-whisker diagram that
includes the median (white lines), mean (greers)iraad mode (blue lines). The flow laws are from

Bruijn and Skemer, 2014 and Bystricky et al., 2@dredry orthopyroxene, from Dimanov and Dresen
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(2005) for wet clinopyroxene and from Rybacki ane$§en (2000) for wet plagioclase. The grain size

piezometer for Opx (yellow line) is taken from ttedy of Linckens et al. (2014).

Fig. 14. Schematic textural and microstructural evolutidrplagioclase-pyroxene mixture from hot-
pressing conditionsA) through peak-stress conditiom®) ¢o strongly deformed shear zon€y.(This

figure illustrates the different stages of straicdlization and weakening during deformation.

Tables

Table. 1. Composition of plagioclase (Plag) and orthopyrex@px) as starting material.

Table. 2. Summary of experimental conditions. Type: HP -pi@tssing, PS: peak stress, D: deformed
samples to varying amounts of shear strain. A cnosks is added to the type of deformation when

the forcing blocks started to slip at the sampterface;tpeqk differential stress at peakjon: steady-
state differential stresseng differential stress at end of experiment,shear strain, g thickness

initial of the shear zone, thf: final shear zonekhess.

Table. 3. Representative chemical composition of plagioclag&opyroxene and amphibole.
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Table. 1.

Sonora labradorite

Damaping Mg-Opx

Wit. % Atoms per 8 Wt. % Atoms per 6
oxides oxygen oxides oxygen
SiO, 53,87 2,434 55,71 1,929
Al,O3 29,41 1,566 3,81 0,155
CaO 11,68 0,565 0,42 0,016
Na,O 4,06 0,356 0,07 0,005
K20 0,46 0,027 0,02 0,001
MgO 0,09 0,006 32,51 1,678
TIiO, 0,08 0,003 0,07 0,002
FeO 0,38 0,014 7,21 0,209
MnO 0,05 0,002 0,18 0,005
Total 100,08 4,972 100,01 4,000
An60 Wol
Ab38 En88
Or2 Fsl1ll




Table. 2.

Exp. Nr Material Type T P H20  Tpeak  Thow  Tend Y thO  thf
[°’C] [GPaq] pL [MPa] [MPa] [MPa] [mm] [mm]
535NM Plag D 900 1 0,12 620 524 524 29 0,75 0,57
537NM Opx PS 900 1 0,12 1600 - 1546 09 0,75 0,69
557NM Opx + Plag PS* 850 1 0,12 1067 - 577 04 075 0,59
559NM Opx + Plag PS* 800 1 0,12 1111 - 350 05 0,75 0,67
OR24NM  Opx + Plag D* 800 1 0,25 1280 - 866 31 1,1 0,87
OR34NM  Opx + Plag D 900 1 0,25 781 114 126 7,6 1,1 0,68
OR38NM  Opx + Plag D 850 1 0,25 1038 339 339 8,0 1,1 0,63
OR41INM  Opx + Plag D 900 1 0,25 1094 542 542 7,0 1,1 0,72
OR43NM  Opx + Plag HP 900 1 0,25 - - - - 11 11
OR47NM  Opx + Plag PS 900 1 0,25 989 - 989 0,6 1,1 091
OR49NM  Opx + Plag D* 900 1 0,25 1111 800 800 6,0 1,1 0,73
OR5INM  Opx + Plag PS 900 1 0,25 901 - 901 0,8 1,1 1
OR53NM Plag D 800 1 0,25 904 746 746 4,7 1,1 1
OR55NM  Opx + Plag HP 900 1 0,25 - - - - 1,1 1,1




Table. 3.

Plagioclase Orthopyroxene Amphibole
Core Rim Fine-grains Core Rim Fine-grains
SiO, 54,70 55,35 55,10 55,48 55,57 55,77 49,82
Al,O3 30,89 28,99 29,50 3,91 4,62 5,63 10,62
CaO 10,24 9,90 9,65 1,03 1,14 1,13 12,50
Na,O 3,87 4,97 5,51 0,24 0,01 0,10 2,10
K20 0,14 0,28 0,25 0,03 0,02 0,03 0,00
MgO 0,07 0,22 0,04 32,04 30,29 27,90 19,22
TiO; 0,13 0,04 0,00 0,06 0,07 0,08 0,21
FeO 0,13 0,16 0,04 7,17 8,40 9,75 3,61
MnO 0,00 0,02 0,05 0,07 0,03 0,05 0,00
Total 100,17 99,93 100,14 100,03 100,14 100,43 98,08
An59 Anb52 An49 Wo2 Wo2 Wo2
Ab40 Ab47 Ab50 Eng7 Eng4 Ensl Magnesio-
Orl Orl Orl Fsil Fs13 Fs16 hornblende
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Deformation considerably enhances the kinetics of mineral reactions.
Diffusion creep is dominant in fine grained aggregates.
Strain localization is due to the interplay between deformation and reaction.

The degree of connectivity of the reacted materia controls the bulk rheology.
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