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Scattering of light by a large, densely-packed agglomerate of small silica spheres

We model the measured phase function and degree of linear polarization of a macroscopic agglomerate made of micron-scale silica spheres using the methodology of multiple scattering. In the laboratory work, the agglomerate is produced ballistically, characterized by scanning electron microscopy, and measured with the PROGRA 2 instrument to obtain the light scattering properties. The model phase function and degree of polarization are in satisfactory agreement with the experimental data. To our best knowledge, this is the first time the degree of linear polarization has been modeled well for a large, densely-packed agglomerate composed of small particles with known sizes and shapes. The study emphasizes the relevance of the degree of linear polarization and gives insights into the effects of particle aggregation on the scattering characteristics.

Scattering and absorption of light by a particulate medium provides information about the physical properties of the medium and its particles. Computing scattering by a medium with millions of particles is a challenging problem due to the computational complexity. Numerical methods that solve Maxwell's equations exactly in the asymptotic sense, e.g., the fast superposition T-matrix method (FaSTMM, [1]), are limited to media typically smaller than some tens of wavelengths. Thus, approximations have been formulated to simulate scattering by dense particulate media such as snow (Dense Media Radiative Transfer, DMRT) [2] and planetary regoliths [3,4]. One of the most recent approximations is Radiative Transfer with Reciprocal Transactions (R 2 T 2 ). It has been shown to extend the applicability of radiative transfer to the dense medium [5][6][7] by comparing the R 2 T 2 computations to the computations with the FaSTMM and Radiative Transfer with Coherent Backscattering methods (RT-CB). In comparison, the FaSTMM required around 600 days in serial CPU time to compute ensemble-averaged light scattering characteristics from a dense random medium made of around 31000 particles, whereas the entire R 2 T 2 procedure took only 7 days [5].

The R 2 T 2 has been used to model the nucleus and dust particles in the coma of Comet 67P/Churyumov-Gerasimenko [8,9], as well as a levitating analog sample [10]. Here, we use the R 2 T 2 to reproduce computationally the light scattering from a centimeter-sized silica sample, measured with the PROGRA 2 instrument [11][12][13]. The sample had controlled physical parameters, such as the particle size distribution, shape, and total volume fraction of v=0.15 [14]. From scanning electron microscope (SEM) images (Fig. 1), the particles were verified to be mostly spherical, and their radii were found to follow a Gaussian size distribution N (0.725 [µm], 0.03 [µm]) [11]. In addition, the light scattering characteristics of the powder that was used to prepare the agglomerate were measured for levitating particles with the PROGRA 2 instrument. The refractive index of the material was then derived by fitting Lorenz-Mie light scattering characteristics to the measured characteristics [11]. In order to computationally model the light scattering characteristics of the sample, we start by examining the determination of the refractive index from the same measurements.

First, volume elements of radius R = 1.0 µm are generated using spherical particles so that the centers of the spheres are within the volume elements. The volume elements are culled from large periodic boxes packed to the volume fraction of 55% with the spheres whose size distribution obeys N (0.725 [µm], 0.03 [µm]). The small volume elements mimic small clusters of levitating particles because some of the particles are clustered or even sintered together (see Fig. 2 in [11]). The ensembleaveraged light scattering characteristics of the volume elements are then solved by using the FaSTMM by varying the complex refractive index. The results and the measurements are com-Fig. 1. Scanning electron microscope image of the SiO 2 agglomerate sample. More images, including those of the entire cm-scale sample, are available in [11,12,14]. pared in Fig. 2 that shows the phase function (scattering matrix element S 11 ; [15]) normalized at 90 • scattering angle (spherical polar angle measured from the forward direction) and the degree of linear polarization (scattering matrix element ratio -S 12 /S 11 ; [15]). The determination of the refractive index is difficult because most of the features are hard to match, especially with the phase functions. By comparing the degree of linear polarization near the forward and backward scattering directions, the simulated values are seen to be closer to the measured values near the forward direction. The most notable feature is the missing positive polarization near 150 • . The refractive index m=1.48+i10 -5 is chosen because it produces a match with the distinctive feature found near 20 • in the measurements of the polarization. In [11], the refractive index was determined to be m=1.48+i10 -4 for the wavelength of λ = 632.8 nm with Lorenz-Mie theory, and the results are similar to those in Fig. 2 (see Fig. 10 in [11]). In comparison, the manufacturer of the silica spheres reported the refractive index of m=1.5. In different measurements made for larger spheres of the same material, the refractive index of 1.30+i0.08 was determined for the material, attributed to the porosities reported by the manufacturer [12]. Fig. 2 and the work in [11] are also consistent with the work in [16], in which agglomerates of different sizes, consisting of the silica spheres with m=1.48 and radius r=750 nm, were measured and simulated with λ=680 nm. In [16], they also reported the missing positive polarization near 150 • in their simulations, although the measurements showed a strong positive polarization signature there. They attributed the difference to particle inhomogeneities [17].

The agglomerate can now be modeled with the R 2 T 2 . The R 2 T 2 is a radiative transfer method that is extended to work with dense random particulate media by incorporating so-called incoherent scattering in the frequency domain [18][19][20][21][22]. The incoherent electric field E sca,ic can be extracted by subtracting the ensemble-averaged total scattered field or coherent field E sca,c from the scattered field E sca . In the R 2 T 2 , the single particles are replaced with the incoherent volume elements [7]. The volume elements are generated in the same way as mentioned above, but, in order to utilize larger numbers of particles, the size of the volume element is chosen to be R=3 µm. Two different volume fractions are treated here, i.e., v=0.15 and v=0.55. The scattered incoherent electric fields of the volume elements are then solved using semi-analytical methods such as the FaSTMM, which can be used to generate the input (extinction mean free path length, Here, we follow the procedure from [8] in which the R 2 T 2 is approximated with the ray tracer SIRIS [7,23,24] which has geometric optics capabilities. SIRIS can be used to model differently shaped diffusely scattering media, but does not have the coherent backscattering capability. In order to create a planar agglomerate for the simulation, the diffuse geometries in SIRIS are approximated by large sphere-like meshes (mean radius R ≈ 2 mm) that are illuminated by a narrow beam (R beam =0.2 mm) constrained into the center of the medium. Thereby, the global scale structure of the mesh will not affect the simulation, but still, the simulation continues to take into account the local scale surface structures. The final output is smoothened by ensemble-averaging using the simulation data from multiple runs of SIRIS that had different geometries as input. Three completely different geometries are used: a sphere, a Gaussian random sphere (GRS) [25], and a sphere with the inner structure of the Gaussian random field (GRFS, Fig. 3). The GRFS is obtained by carving a spherical volume from a sample of Gaussian field [26] and converting the field data to a triangulated mesh with the marching cubes algorithm [27]. The inner parts of the GRFS (R inner =1 mm) is converted to a solid sphere in favor of reducing the triangle count and speeding up the computation. The Gaussian random field has been applied to the light scattering problems before, e.g., in [28,29]. The longest task would take around 3.5+27 days (4 million rays) to create input and finish the ray-tracing with a single core. The computations and measurements are shown in Fig. 4 that contains the phase function (normalized in terms of integrated area) and the degree of linear polarization as a function of the scattering angle. Due to the fact that the measured data range from 100 • to 175 • , thus not reaching the angles near backscattering, the coherent backscattering modeling is omitted.

By only looking at the overall phase function in Fig. 4, we could argue that the v=0.15 volume element produces a good match with the measurement. The phase function has a distinctive bump at 155 • , which in the measurement is near 160 • . The level of backscattering is slightly lower than that in the measurements, but this can be mitigated with the increase of the shadowing effect [4]. It is the degree of linear polarization that reveals a difference between the simulation and the measurement. The polarization shows the same 5 • shift as the phase function (Fig. 2 shows the same shift), and there is a uniform difference of around 2-4 percentage points. The match in the degree of linear polarization is improved by using the v=0.55 volume element and the difference is only 1-3 percentage points. However, the 5 • shift to the left is still present. For the v=0.55 volume element, the phase function is also flatter than that for the v=0.15 volume element. This is seen in the loss of the distinctive bump near θ ≈160 • that is more prominent with the GRFS samples. In general, similar results are obtained with the GRS and GRFS models which shows that small changes in the geometry do not impact the results substantially. Thus, the focus can be on the properties of the particles. For changes due to the overall shape of the finite medium, compare "Sphere, v=0.55" with "GRS, v=0.55" in Fig. 4.

The use of the v = 0.55 volume element improves the modeling. The dense volume element does not contradict the measured volume fraction of v=0.15 because the SEM image (see Fig. 1 or Fig. 4 in [11]) shows that the spheres have formed threads of clumps that are closely connected probably by sintering, forming high-density localities separated by empty spaces. Moreover, the particles in the v=0.15 volume elements were uniformly placed, whereas Fig. 1 shows aggregated structures. Modeling the aggregated structures can introduce the bump near θ ≈160 • due to the introduction of the sparse regions to the dense volume element, but can lower the negative polarization at θ ≈165 • . The dense volume element is still insufficient as is seen in Fig. 2 where prominent positive polarization is again missing.

It is interesting to notice that most of the features seen in the scattering characteristics of the agglomerate are also visible for the levitating sample (cf. measurements in Figs. 2 and4). The same can be concluded in the case of the computations: the features are aligned. This means that the features are consis- tent between the measurements and the computation, and by achieving a better match with the scattering characteristics of the levitating sample, the results for the agglomerate should improve. In order to test this, we generated an empirical volume element using the measured scattering matrix elements of the levitating sample M l 11 and -M l 12 /M l 11 and using the computed matrix elements for the v=0. 55 ). The empirical scattering matrix is then used as input for R 2 T 2 , by keeping the rest of the volume element parameters unchanged. The results in Fig. 5 show that the empirical volume element removes the differences due to the original simulation, such as the 5 • shift and the missing positive polarization. The results indicate that, once correct modeling is obtained for the levitating sample (Fig. 2), the agglomerate scattering characteristics will also be modeled correctly.

Even though there are differences between the measurements and the computational results, the examination of the input and the results show that the modeling and the measurements are consistent. By improving the characterization of the levitating particles, a better match would be obtained with the R 2 T 2 for the agglomerate. In a future study, improved modeling for the levitating particles could involve sintered particles, small aggregates, or particles with other kinds of deformations, and a distribution of the refractive indices. Simulating the entire volume element for the R 2 T 2 with irregular particles is computationally challenging but not impossible, especially when modeling the scattering by the levitating particles at the same time. The present results are promising. With the empirical volume element (Fig. 5), the normalized root-mean-square error in modeling the agglomerate phase function is less than 7%, and the degree of linear polarization is within 1.5 percentage point of the measurements. With the simulated volume element, the respective numbers are 2.5% and 3 percentage points. The study stresses the importance of sample characterization in light scattering measurements. Finally, the study emphasizes the importance of polarization: the physical characteristics are hard to retrieve from the phase function only.
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 2 Fig. 2.Comparison of normalized phase function (at 90 • ) and the degree of linear polarization for levitating particles (measurements, bullets) and small clusters of spherical particles with varying refractive indices (computations, solid lines). Empirical phase function and degree of polarization are also depicted (dashed line).
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 3 Fig. 3. Samples of Gaussian random field (left) and Gaussian random sphere geometries (right). Their surface elements are invoked as models for the measurement sample in Fig. 4.
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 4 Fig. 4. The measured and modeled light scattering characteristics of the agglomerate. The refractive index is m=1.48+i10 -5, while the volume fraction and the shape of the media are varied. The measurements include the error bars.
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 5 Fig. 5. The measured and modelled light scattering characteristics of the agglomerate with different volume elements. The result with the simulated volume element is the "v=0.55, GRS" case from Fig. 4.
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	11 11 . First, the empirical volume element phase func-12 /S v and -S v tion S ve 11 is obtained by scaling M l 11 with the coefficient S v 11 /S s 11 , where S s 11 refers to the average phase function of simulated levitating particles: S ve 11 ∝ M l 11 S v 11 /S s 11 . Then, a scaling factor β ≈ 0.32 for -M l 12 /M l 11 is found by minimizing the root-mean-square difference between -βS s 12 /S s 11 and -S v 12 /S v 11 . The re-sulting degree of linear polarization for the empirical volume
	element is then -S ve 12 /S ve 11 = -βM l 12 /M l 11 . The other matrix elements are assumed to be zero except for S ve 21 = S ve 12 , S ve 22 = S ve 11 ,
	and S ve 33 = S ve 44 = ±S ve 11 1 -[S ve 12 /S ve 11 ] 2 (positive sign for scat-tering angles < 90 •
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