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Abstract: This work investigates the impact of carbon black (CB) as a porogenic agent and conductive
additive in the preparation of electrically conductive nanoporous carbon gels. For this, a series
of materials were prepared by the polycondensation of resorcinol/formaldehyde mixtures in the
presence of increasing amounts of carbon black. The conductivity of the carbon gel/CB composites
increased considerably with the amount of CB, indicating a good dispersion of the additive within
the carbon matrix. A percolation threshold of ca. 8 wt.% of conductive additive was found to achieve
an adequate “point to point” conductive network. This value is higher than that reported for other
additives, owing to the synthetic route chosen, as the additive was incorporated in the reactant’s
mixture (pre-synthesis) rather than in the formulation of the electrodes ink (post-synthesis). The CB
strongly influenced the development of the porous architecture of the gels that exhibited a multimodal
mesopore structure comprised of two distinct pore networks. The microporosity and the primary
mesopore structure remained rather unchanged. On the contrary, a secondary network of mesopores
was formed in the presence of the additive. Furthermore, the average mesopore size and the volume
of the secondary network increased with the amount of CB.

Keywords: nanoporous carbon gels; conductive additives; carbon black; electrical conductivity;
percolation; mesoporosity; rule of mixtures

1. Introduction

Nanoporous carbons are key materials in many electrochemical applications over a wide variety of
competitors (such as noble metals, non-noble metals, and metal oxides) due to the diversity of carbons
with controlled pore architectures combined with adequate bulk and surface properties; particularly,
chemical and mechanical stability, biocompatibility, rich surface chemistry, and, most importantly,
relatively high electronic conductivity [1,2].

Although some carbons (e.g., graphite, graphene and its derivatives, carbon nanotubes) present
electronic properties close to those of metallic electrodes, this feature depends strongly on the spatial
arrangement of the carbon atoms. Indeed, most nanoporous carbons are non-polycrystalline materials
with a low degree of structural order, as a result of a high density of defects introduced in the
twisted graphitic layers upon the development of a nanopore network. As a result, the electron
mobility pathway characteristic of the graphenic sheets is greatly reduced, limiting the conductivity of
nanoporous carbons (typically 4–5 orders of magnitude lower than that of graphite or graphene) [2,3].
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To increase the conductivity of nanoporous carbon electrodes without compromising the nanoporosity,
several strategies have been explored, such as: (i) doping the carbon material with heteroatoms [4];
(ii) coating with a conductive phase, such as metallic nanoparticles, metals, or other conductive
carbon nanostructures [5,6]; (iii) synthesizing 3D nanoporous graphene-like architectures [7]; and
(iv) incorporating a conductive additive in the formulation of carbon electrodes inks [1,3,8]. The
latter is the common practice for the manufacturing of the electrodes on a commercial scale in most
electrochemical applications, carbon black (CB) being the most popular conductive additive due to its
low cost, and reasonably high chemical stability and electrical conductivity.

However, the optimum content of a conductive filler needed to achieve an increase in the electrical
conductivity (known as the percolation threshold) through an adequate “point to point” conductive
network [9] is quite high for CB. This is due to the morphology of the CB nanoparticles (typically
globular aggregates with diameters of a few tens of nanometers). Indeed, the development of a
uniform conducting architecture is essential to enhance the conductivity of the final composite, and the
characteristics of the additive (type, particle size and shape, orientation in the matrix) play a key
role in revealing percolation properties. As a result, the electrochemical response of the electrodes
prepared with CB-based ink formulations is limited [8–10]. Aiming at lowering the percolation
thresholds with a minimal impact on the electrochemical response of the carbon electrodes, some other
carbon nanostructures with high electrical conductivities and aspect ratios (such as carbon nanotubes,
carbon nanofibers, and graphene derivatives) have been considered to replace CB as the conductive
additive [11–14]. Despite the promising decrease in percolation threshold, the cost of these carbon
materials is still too high to make them competitive with carbon black as conductive additives in large
scale applications.

In a previous study we explored a different approach, consisting of incorporating the carbon black
additive during the synthesis of the nanoporous carbon material itself, as opposed to its incorporation
in the electrode ink formulation [15]. The choice of the carbon electrode was thus dictated by a
synthesis route allowing the incorporation of the additive in a pre-synthesis step; within this context we
selected carbon aerogels prepared by the polycondensation of resorcinol and formaldehyde mixtures,
since it is possible to obtain highly porous materials with tunable properties while modifying the
synthesis process to incorporate the conductive additive [15,16]. Indeed, after the early works of Pekala
and co-workers reporting their preparation [17], nanoporous carbons gels have become interesting
materials with an outstanding performance in various fields as adsorbents, catalyst supports, energy
storage devices, and electrochemistry [18–20]. Our studies showed that the incorporation of low
amounts of carbon black during the polycondensation of the reactants allowed their polymerization and
cross-linking, leading to the preparation of highly nanoporous carbon gels with improved conductivity,
and thus electrochemical performance.

In view of the above, the present study aimed to evaluate the percolation threshold of carbon
black as the conductive additive incorporated during the synthesis of nanoporous organic and
carbon gels. These materials were prepared following the sol-gel polycondensation reaction
of resorcinol/formaldehyde mixtures in the presence of increasing amounts of carbon black.
The characteristics of the resulting carbon materials were evaluated upon the amount of conductive
additive. The percolation threshold of the carbon black additive on the structure, porosity, and electrical
conductivity of the nanoporous carbon gels was analyzed based on experimental measurements and
analytical models.

2. Materials and Methods

2.1. Synthesis of Materials

Hydrogels were synthesized by the polycondensation of resorcinol (R, 99% purity, Sigma Aldrich,
St. Louis, MO, USA) and formaldehyde (F, 37 wt.% in water, stabilized by 10%–15 wt.% of methanol)
in water (W) using sodium carbonate as catalyst (C, 99% purity, Sigma Aldrich, St. Louis, MO, USA),
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carbon black (CB, Superior Graphite Co., Chicago, Illinois, USA) as conductive additive, as indicated
elsewhere [15,16]. In a typical synthesis, the precursors (molar ratio R/F 0.5, R/C 200 and R/W, 0.06)
were mixed and transferred to airtight sealed glass vessels for gelation/aging at 70 ◦C for 4 h using an
oil bath, followed by drying at 150 ◦C for 12 h in an oven without solvent removal. The carbon black
additive was incorporated to the resorcinol solution and sonicated (ca. 15–30 min, FisherBrand 112,
Thermo Electron SAS, Villebon Courtaboeuf, France). The ratios of carbon black varied between 0 and
40 wt.% expressed as grams of CB per grams of reactants (R + F). Subsequently, the formaldehyde
solution was added to the resorcinol/carbon black dispersion, and a mechanical stirring (ca. 500 rpm)
was maintained during the gelation step at 70 ◦C. When the gel started to be formed (ca. after 2 h
of gelation), and thus the density of the precursor’s mixture increased, the stirring was naturally
stopped. The organic gels were labeled as PG-CBZ, where Z accounts for the amount of carbon black
additive. After drying at 150 ◦C, the gels were grinded in a ball milling (PM 100 Retsh, Haan, Germany)
and carbonized at 800 ◦C under a nitrogen flow of 120 mL/min in a horizontal tubular furnace (HST,
Carbolite Gero, Hope Valley, UK) (heating rate of 2 ◦C/min with 3 dwelling steps of 60 min at 200, 400,
and 800 ◦C). The nomenclature of the carbonized gels is CPG-CBZ.

2.2. Characterization Techniques

The porosity of the materials was evaluated by gas adsorption isotherms (e.g., N2 and CO2 at
−196 and 0 ◦C, respectively) in automatic volumetric analyzers (Micromeritics, Norcross, GA, USA).
The samples were initially degassed under vacuum at 120 ◦C for 17 h. The nitrogen adsorption
isotherms were used to calculate the specific surface area (SBET), total pore volume (VPORES), micropore
volume (W0, using the Dubinin–Radushkevich (DR) equation) [21], and pore size distribution (PSD)
using the 2D-NLDFT-HS model for carbons with surface heterogeneity [22]. The narrow microporosity
was further assessed from the CO2 adsorption isotherms using the Dubinin–Radushkevich equation.
Each isotherm was recorded in duplicate on fresh sample aliquots, to guarantee the accuracy and
reproducibility of the experiments (error was below 2%). The nanostructures of the materials were
characterized by transmission electron microscopy (TEM) using a microscope (Philips CM20, Philips
Co. Ltd., Amsterdam, Holland) operating at 200 kV. Powder samples were dispersed in ethanol and
deposited on a holey carbon film supported by a copper grid. Powder X-ray diffractograms were
recorded in a Bruker diffractometer (D8 Advance, Manning Park, Billerica, MA, USA) operating at
30 kV and 40 mA and using CuKα (0.15406 nm) radiation. Data were collected between 5◦ and 90◦

with a 0.08◦ step size. Fourier-transform infrared (FTIR) spectroscopy studies were carried out with
a Bruker Vertex 80 v (Billerica, MA, USA) using materials dispersed in and pressed with dry KBr,
keeping a 1:100 ratio (w/w). Transmission spectra were carried out between 4000–350 cm−1 (64 scans
collected, resolution 4 cm−1).

Raman spectra (Renishaw InVia Qontor, Renishaw SAS, Marne la Vallée, France) were recorded in
ambient conditions in a spectrometer equipped with 514.5 nm laser. The spectra were collected under a
Leica DM2500 optical microscope with a×50 long working distance objective (ca. 10 mm). The scattered
Raman light was dispersed by a holographic grating of 600 grooves/mm, in order to acquire the whole
range of interest for carbons (500–5000 cm−1). Each spectrum was recorded with an integration time of
5 s; data presented represent the averages of three measurements. Raman imaging was performed
using the fast Streamline mode of the spectrometer setup. A zone of ca. 180 × 115 µm2 on the samples
was scanned with a step of 1.3 µm in two dimensions (accounting for the spatial resolution), resulting
in 12,000 acquired spectra recorded over 19.5 h of experimentation. The LiveTrackTM mode was used,
allowing us to maintain the focus automatically during the measurements whatever the surface state,
which becomes essential when recording powders. WireTM software (v4, Renishaw SAS, Marne la
Vallée, France) was used to remove cosmic rays, and to perform the spectral curve fitting (line positions
are obtained by a classical Gaussian/Lorentzian fitting process).

The electrical conductivity of the samples was measured using a four-point probe method
following the general principles of ASTM standard methods D4496-87 [23]. Briefly, pellets of the
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samples (ca. 90 wt.% of carbon powders, 10 wt.% polyvinylidene fluoride binder) were prepared by
compaction of the powders under 5 tons pressure. The diameter of each pellet was ca. 10 mm and
their thicknesses varied between 0.10 and 0.16 mm (total weights between 8–12 mg). Resistance of the
pellets was measured at room temperature and atmospheric pressure using a Lucas Labs four-point
probe stand (S-302-6) with a Signatone four point probe head (SP4-62-045-TBY) to make electrical
contact. A constant current (between 0.1 and 10 mA) was applied to the surface of the pellets through
the probes, and the voltage drop was recorded. The bulk resistivity of the samples (ρ, Ω·m), reciprocal
of conductivity (σ) was calculated according to

ρ =
U
I

π

ln 2
t (1)

where U is the voltage drop (V), I is the current intensity (A), and t is the thickness of the pellets
(m) [24].

3. Results and Discussion

3.1. Synthesis of the Materials

In a previous study, we reported the successful polycondensation of resorcinol-formaldehyde
mixtures in the presence of low amounts of additives (e.g., diatomite, carbon black), to render carbon
gel/CB composites with enhanced electrical conductivity and mechanical features [25,26]. Aiming to
evaluate the percolation threshold of carbon black in its role as conductive additive, we prepared a
series of organic and carbon gels with a fixed molar ratio of reactants (R/F, R/C and R/W) and increasing
amounts of CB additive.

Due to its hydrophobic nature, the CB was initially dispersed in the resorcinol solution by
sonication 15–30 min before adding the formaldehyde and the catalyst. The suspension with all the
reactants was maintained under mechanical stirring to avoid the sedimentation of the CB nanoparticles
during the different steps of the synthesis (e.g., polycondensation and gelation). This step became
critical for those materials prepared with high amounts of carbon black (ca. above 16 wt.%) so as to
assure a homogeneous distribution of the CB nanoparticles in the resulting gels.

It is important to mention that the gelation of the reactants occurred within a similar timescale for
all the samples, regardless the presence of the CB additive and upon mechanical stirring. This indicates
that neither the CB additive nor the stirring affect the stiffing of the sol-gel characteristic of the
polymerization of R/F mixtures [18,20]. Indeed, a heterogeneous distribution of the CB in the gels
was obtained when the dispersions were not stirred before the gelation step, as a consequence of the
sedimentation and accumulation of CB nanoparticles in the bottom of the reaction vessel (Figure S1 in
the Supplementary Materials). It should also be pointed out that the mechanical stirring alone did not
affect the porosity of the gel, as corroborated by gas adsorption analysis (Figure S1).

Figure 1 shows the TEM images of the gels and the carbons prepared in the absence and the
presence of the different amounts of CB additive. Images of the carbon black are also included as
references, showing the spherical-shaped nanometric aggregates (low aspect ratio, ca. 20 nm diameter)
with the characteristic graphitic domains of conductive carbon black. For the samples prepared in the
absence of CB—samples PG and CPG—the wormhole-like characteristic fingerprint of a disorganized
matrix was observed. In the presence of CB, the spherical-shaped nanometric aggregates of the
conductive additive were clearly distinguished within the matrix of the organic and the carbon gels.
Even those materials prepared with high CB content displayed a continuous conductive network of
the CB aggregates. This was expected to have a beneficial impact in the electronic conductivity of the
samples (see discussion below).
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(arrows) confirmed the structural order provided by the CB, with the appearance of the characteristic 
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Figure 1. Selected TEM images of the carbon black additive, and the organic (series PG) and carbon
gels (series CPG) prepared with different amounts of carbon black. For clarity, images are shown at
various magnifications.

As mentioned above, the uniform distribution was guaranteed by the mechanical stirring in the
initial steps of the synthesis that prevented the sedimentation of the conductive additive (Figure S1).
No significant differences were observed in the distribution and/or length of the conductive networks
of the organic gels (series PG, before pyrolysis) compared to those in the corresponding carbon gels
(series CPG, after carbonization). This is interesting, since during carbonization a large fraction of
volatiles is removed (around 40–50 wt.%), and indicates that there are not structural rearrangements
between the organic matrix of the gel and the CB additive during carbonization, that might otherwise
favor the aggregation of the CB in the carbon gels.

3.2. Structural Characterization

The occurrence of structural modifications in the carbon gels upon the incorporation of the
conductive additive, and the spatial arrangement of the carbon black within the carbon gel matrix
were investigated by Raman spectroscopy and Confocal Raman imaging [27]. The Raman spectra
of the pristine carbon gel and the CB are shown in Figure 2. As seen, both samples displayed the
characteristic broad D and G bands of carbon materials between 1000 and 2000 cm−1, with the intensity
of the G band (assigned to ordered graphitic domains) and the contributions of the bands in the
second order range of the spectrum more pronounced for the CB. This is in agreement with the
disordered structure of the matrix of the carbon gels [15,20,28], compared to the order domains in
the carbon black. A better indication of the spatial arrangement and distribution of the CB within
the carbon gel matrix can be observed in Figure 2 for sample CPG–CB16, showing a reconstructed
image corresponding to the variation of the fitted ID/IG ratio in the scanned area. The image was
reconstructed from over 300 Raman spectra in different points of the scanned area (spatial resolution of
ca. 1.3 µm). For comparison, the individual Raman spectra recorded at two different points of the
image (corresponding to well-differentiated zones) are presented in Figure 2 (locations are indicated
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with arrows). The coexistence of CB aggregates and a carbon gel matrix in the sample was observed by
the color gradation. The dark zones in the reconstructed Raman map correspond to areas with low
ID/IG ratios, similar to that in the pristine CB additive. Local Raman spectrum of these dark areas
(arrows) confirmed the structural order provided by the CB, with the appearance of the characteristic
peak in the second order range of the spectrum. On the other hand, the light (yellow) areas represent
high ID/IG ratios, characteristic of the carbon gel matrix, as also confirmed by the local Raman spectrum.
The structural order increased in the areas with a higher density of CB, with no apparent changes in
the structure of the carbon/gel composites, compared to the structure of the individual components in
the materials at this length scale. Similar observations were gathered by XRD patterns (Figure S2);
the organic gels (before carbonization) display a broad peak between 10◦ and 34◦, which is indicative
of a completely amorphous structure in the non-carbonized gels. The sharp peaks at ca. 25◦ and 43◦

associated with the ordered graphitic structure of the carbon black are evident in the samples prepared
with the additive, and their intensity increased with the amount of CB. The (002) broad reflection
at ca. 22◦ corresponding to disordered carbons also present in the carbonized samples—due to the
aromatization of the carbon network during pyrolysis.
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Figure 2. (a) Raman image reconstruction showing the ID/IG ratios for samples CPG–CB16; (b) Raman
spectra of CB, CPG, and two different positions in the reconstructed Raman mapping for sample
CPG–CB16 corresponding to dark and light areas (see arrows in plot a).

Infrared spectroscopy analysis of the materials suggested that the CB is not chemically bounded
to the gels, since the FTIR spectra of the gels before carbonization are similar regardless the amount of
CB incorporated in the synthesis (Figure S3). The characteristic bands reported for these materials
were obtained: C–O–C stretching of methylene ether bridges formed during the polycondensation
of R/F (1213, 1092 cm−1); broad band between 3000–3500 cm−1 attributed to O-H stretching; a peak
at 1720 cm−1 assigned to carboxylic acids, lactones, and anhydrides; the bands at 1650–1600 cm−1

corresponding to conjugated C=O and aromatic ring stretching; the band at 1470 cm−1 associated to
CH2 bending; and a band at 880 cm−1 corresponding to the CH out of plane deformation in aromatic
rings [17,29]. A similar conclusion about the absence of chemical bonds between the CB and the
gel can be withdrawn from the carbonization yields (Table 1), which increased with the amount
of CB additive in the samples. This is expected considering that the fraction of volatiles released
upon carbonization—linked to the fraction of gel in the samples—is lower as the amount of CB
additive increases.
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Table 1. Carbonization yield and main textural parameters obtained from the N2 adsorption isotherms
for the materials synthesized with different amounts of CB additive.

Sample SBET (m2/g)
VPORES

a

(cm3/g) W0
b (cm3/g)

VMICRO
c

(cm3/g)
VMESO

c

(cm3/g)
Carbonization

Yield (%)

CB 40 0.161 0.016 − 0.060 97 *
PG 384 0.377 0.120 0.091 0.266 −

PG-CB4 359 0.358 0.107 0.084 0.255 −

PG-CB8 372 0.421 0.101 0.085 0.318 −

PG-CB12 333 0.456 0.089 0.070 0.370 −

PG-CB16 339 0.441 0.087 0.074 0.350 −

PG-CB24 317 0.476 0.088 0.066 0.393 −

PG-CB40 299 0.597 0.084 0.058 0.522 −

CPG 829 0.488 0.306 0.289 0.19 51
CPG-CB4 780 0.484 0.284 0.272 0.210 52
CPG-CB8 820 0.592 0.296 0.368 0.324 53

CPG-CB12 726 0.636 0.253 0.229 0.395 55
CPG-CB16 695 0.607 0.247 0.223 0.371 56
CPG-CB24 601 0.658 0.217 0.183 0.468 60
CPG-CB40 482 0.796 0.176 0.133 0.689 67

a Evaluated at p/p0 ~ 0.99; b evaluated by the DR method; c evaluated by the 2D-NLDFT-HS method; * yield
corresponding to the carbonization of the carbon black under similar conditions, for comparative purposes.

3.3. Textural Characterization

Figure 3 shows the equilibrium nitrogen adsorption/desorption isotherms at −196 ◦C of all the
prepared materials, including the CB additive. Important changes in the shape of the isotherms and in
the amount of gas adsorbed are observed after the incorporation of the CB additive, both for the organic
and the carbon gels. For the organic gels (series PG), all the isotherms displayed a type IVa character
according to IUPAC (International Union of Pure and Applied Chemistry) classification [30], with a
marked hysteresis loop in the desorption branch at relative pressures above 0.4. This is characteristic
of materials with a well-developed microporosity and a large contribution of mesopores.

As seen in Figure 3, the volume of nitrogen adsorbed increased with the amount of CB, being the
effect more pronounced at relative pressures above 0.4. This indicates that the microporosity of the
gels is rather unaffected by the incorporation of the CB, with a dominant impact on the mesoporosity.
The values of the microporosity evaluated by the DR equation (Table 1, Figure S4) confirmed this
observation. Indeed, the experimental surface areas and micropore volumes matched the values
predicted by a general mixing rule (Figure 4) taking into account the composition of the materials and
the textural features corresponding to the individual components: the gel and the CB. This was also
corroborated by the analysis of narrow microporosity from the CO2 adsorption/desorption isotherms
at 0 ◦C (Figure S5). The impact in the volume of mesopores was more pronounced, as it will be
discussed below.

An important feature of the gas adsorption isotherms is the evolution of the shape and the
position of the hysteresis loop (Figure 3) with the amount of conductive additive. The pristine gel
(sample PG) exhibited a narrow loop (type H2) between 0.4 and 0.7 of relative pressures, in agreement
with previous studies using a similar reactants molar ratio [31]. For the samples prepared in the
presence of CB, the hysteresis loop broadened significantly, spanning from 0.4 up to 0.9 of relative
pressures. Furthermore, these samples displayed a stepped loop, with the appearance of a curvature
(inflection point) in both the adsorption and desorption branches. This feature—nicely preserved in
the carbonized samples—has been reported for carbon aerogels prepared with moderate amounts of
carbon black following a similar protocol, and is attributed to systems with a complex multimodal
mesopore structure comprised of constricted pore necks and bodies [15,32]. Above 8 wt.% of CB,
the hysteresis loops become steeper and the adsorption and desorption branches are somewhat parallel
over the entire range of relative pressures.
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The impact of the CB in the development of the porosity of the gels was more evident in the
volume distribution of the hysteresis loop within the whole range of relative pressures. For clarity,
we differentiated two regions in the loops: the first one (noted as V1) corresponds to the volume
adsorbed between 0.4 and the relative pressure of the inflection point (IP) in the adsorption branch;
the second one (noted as V2) corresponds to the volume adsorbed at relative pressures between IP and
1. In the case of the samples without CB additive, V1 accounts for the full loop, as V2 is not detected.
Interestingly, while the increase in V2 follows a linear correlation with the amount of CB additive (for
both the organic and the carbon gels), the evolution of V1 is discrete (ca. an increase between 4 and
12 wt.% of CB, and a disrupt above this value) and does not follow the expected trend considering a
mixing rule (Figure 4). Both findings confirm that the appearance of a secondary mesopore network is
directly connected with the presence of the carbon black additive. The relative pressure of the inflection
point (higher relative pressures indicate larger pore sizes) follows a similar trend to V1 in the amount of
CB (Figure S4). This indicates that the CB is responsible for the enlargement of the primary mesopore
structure (higher IP and V1), and for the creation of a secondary network of mesopores of larger sizes.

Regarding the size of the mesopores, the analysis of the pore size distributions (Figure S6) of the
carbonized samples showed multimodal distributions of mesopores, with the average mesopore size
increasing with the amount of CB additive, in agreement with the adsorption isotherms.
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Figure 3. (a,b) N2 adsorption/desorption isotherms at−196 ◦C of the organic and carbon gels synthesized
with different amounts of CB additive. Data corresponding to the carbon black are also shown as
references. Isotherms in plots (c,d) have been shifted ca. 150 cm3/g for clarity.
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Figure 4. (a–e) Correlation of selected experimental textural parameters (surface area, pore volumes) of
the gels/CB composites with the values predicted by the general mixing rule. Dashed lines indicate the
expected trend following predictions of the general mixing rule. (f) Evolution of V2 with the amount of
carbon additive.

3.4. Conductivity

Figure 5 shows the U–I (potential drop-intensity) curves obtained for pellets of the prepared
materials by the four-probe measurements. The linearity of the response retrieved for all the samples
confirmed that sheet resistances can be confidently evaluated obtained from the slope of the U–I curves.
On the other hand, higher slopes were obtained for the materials with lower CB content, pointing to
higher resistance values, and thus, lower conductivity. For instance, a decrease of ca. 12–15 times
resistance was obtained for the carbon gel prepared with the highest amount of carbon black. A rise in
the conductivity of the gel/CB materials was expected owing to the high intrinsic conductivity of the
CB used as additive (e.g., 1.64 S/cm), compared to the poorly conductive carbon matrix of the carbon
gels (e.g., 0.022 S/cm measured under the same conditions). Such a rise was, however, somewhat
smaller when compared to the values reported for similar carbon electrodes when a CB additive was
incorporated in the electrode’s ink (i.e., after the synthesis of the carbon material sued as electrode) [10].
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This suggests a different connectivity between the CB and carbon gel particles, depending on the
preparation of the electrodes.
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Figure 5. (Top) U–I curves and (bottom) electrical conductivity values for the studied carbon
gel/CB composites.

To further clarify this aspect, the dependence of the conductivity of the gel/CB samples on the
amount of conductive additive was analyzed considering a percolation model and a general mixing
rule (Figure 6). The rule of mixtures would predict the conductivity of electrodes as if both components
(carbon gel and CB) were segregated like a homogeneous mixture [33]. On the other hand, according
to the standard percolation theory in isotropic materials, the bulk conductivity of a gel/CB composite
with concentration F of a conducting phase would behave as a power law of the form [33]:

σ = σo (F − Fc)β (2)

where σ is the conductivity of the carbon gel/CB composite (S/cm), σo is characteristic conductivity of
the carbon gel without additive (S/cm), F is the fraction of the CB additive (wt.%), Fc is the fraction of
the additive at the percolation threshold, and β is a critical exponent related to the dimensionality of
the material [34].
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Figure 6. (a) Correlation of the electrical conductivity with the amount of carbon black; (b) correlation
between the experimental conductivity and the values predicted by the general mixing rule; (c) log–log
plot of the conductivity as a function of the amount of conductive phase following a percolation model.

As seen in Figure 6, the experimental conductivity data of our gel/CB composites cannot be
fitted to the rule of mixtures, as it did not follow a linear correlation with the amount of CB additive.
Furthermore, experimental values were ca. 1.5–3 times lower than those predicted by the mixing of
rules (Figure 6b), indicating that the poorly-conductive layer of the carbon gel mixed among the CB
aggregates plays a dominant role in the conductivity of the bulk gel/CB composites. Conductivity
values followed a power-like regime with the amount of CB additive, characteristic of percolating
systems. Below 8 wt.% of CB, the conductivity of the carbon gel/CB composites was lower than
expected by a mixing rule, and similar to that of the carbon gel without additive. Above this value an
abrupt change is observed, suggesting a different regime governing the electronic transport properties
of the composites (even though the conductivity is still lower than the value predicted by the mixing
rules, and that of the CB particles alone). This can be attributed to the presence of a 3D electrically
conductive network provided by the CB particles within the carbon gel matrix, which would facilitate
the electron mobility between the conductive additive particles. The percolation threshold for the
conductive additive loading was evaluated by plotting the log (σ) versus log (F) as depicted in Figure 6c.
The percolation threshold was found at 8–12 wt.%, where the conductivity of the gel/CB materials
showed a marked increase, seen by the intersection of both straight line fits. This value is higher
than percolation thresholds reported for CB and other carbon additives; for instance, 0.19–4 vol.%.
for MWCNT and graphene-derived materials [10,35–37], 2–3 wt.% for polystyrene/graphite and
epoxy/graphite composites [9,38,39], and 7.5 wt.% for carbon fiber/polyethylene composites [39,40].
This is a consequence of the synthetic route, since the CB was incorporated in the reactant’s mixture
(before formation of sol-gel and the carbonization) and not in the formulation of the electrodes ink
(e.g., post-synthesis of the carbon material), as is usually the case in the literature.

The two well-defined regimes corresponding to different exponent β values (i.e., intersection
of lines) observed in the plot (Figure 6c), indicate that our systems follow a tunneling-percolating
regime, rather than a pure percolation model [41–43]. In this case, the conductivity of the composites
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depends on tunneling processes occurring between the conducting particles of the CB; since these are
embedded in a less conductive medium—the matrix of the carbon gel—the distribution function of the
conducting particles within the bulk material becomes more important than the bulk composition itself.
The existence of percolation-tunneling systems has been proposed for other specific distributions of
conducting and insulating phases involving carbon black additives [44].

4. Conclusions

We have prepared a series of porous gel/carbon black composites with enhanced electrical
conductivity by the incorporation of the conductive additive during the early stages of the preparation
of the organic gels, as opposed to the classical approach based on a post-synthetic addition in the
electrodes ink. The presence of the carbon black during the polymerization of the reactants did not
only modify the conductivity of the resulting carbons after carbonization of the organic gels, but also
impacted the formation of the nanoporous network. Data showed that the mesopore structure of the
gels is significantly developed in the presence of the CB aggregates, with the materials showing higher
mesopore volumes of larger sizes, and complex multimodal mesopore size distributions. In contrast,
the surface area and microporosity followed the expected trend based on the general rule of mixtures
and the composition of the carbon gel/CB composites. The absence of specific interactions between
the CB nanoparticles and the reactants indicates that the former would act as a porogenic agent,
controlling the growth and arrangement of the resorcinol/formaldehyde clusters around the aggregates
of carbon black. As a result, the primary micropore structure of the gels remains constant (as it depends
on the molar ratio of reactants), while the secondary mesopore network is much more developed.
The electrical conductivity of the carbon gel/CB composites increased with the amount of CB additive,
following a percolation trend and indicating the good dispersion of the additive within the carbon
matrix, even for the highest amounts of CB. The percolation threshold (ca. 8 wt.% of carbon black
additive) was found to be higher than that reported for other additives, which is due to the different
approach herein used for its incorporation in the electrode material (i.e., pre versus post-synthesis).
Nonetheless, this approach allows the preparation of highly porous carbon materials with controlled
mesopore architectures and enhanced electrical conductivity, facilitating the preparation of conductive
carbon electrodes either in monolithic form (as-prepared) or in powder form.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/1/217/s1.
Figure S1: Nitrogen adsorption/desorption isotherms at −196 ◦C of the gel/CB composites prepared with and
without mechanical stirring. Inset: Images of the materials showing the distribution of the CB additive within
the matrix. Figure S2: X-ray diffraction patterns of the organic and carbon gels. Figure S3: FTIR spectra of
the polymeric gels before carbonization. Figure S4: Correlation of the amount of carbon black with the pore
volumes and the relative pressures of the inflection point in the N2 adsorption isotherms for the polymeric and
the carbon gels. Figure S5: CO2 adsorption isotherms at 0 ◦C of the gel/CB composites. Figure S6: Pore Size
Distribution (PSD) of the carbon gels/CB composites evaluated from the nitrogen adsorption data and applying
2D-NLDFT-HS model.
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