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Abstract. Plasma filamentation is often encountered in collisionless shocks and
inertial confinement fusion. We develop a general analytical description of the
two-dimensional relativistic filamentary equilibrium and derive the conditions for
existence of potential-free equilibria. A pseudopotential equation for the vector-
potential is constructed for cold and relativistic Maxwellian distributions. The role
of counter-streaming is explained. We present single current sheet and periodic
current sheet solutions, and analyze the equilibria with electric potential. These
solutions can be used to study linear and nonlinear evolution of the relativistic
filamentation instability.

1. Introduction
Filamentary instability studies have greatly intensified during the last decade, due
to the role they are believed to play in the generation of magnetic fields (Pegoraro
et al. 1996; Medvedev and Loeb 1999) and formation of shocks in essentially
unmagnetized interstellar plasma penetrated by a relativistic jet ejected from a
powerful source, like a gamma-ray burst (Lyubarsky and Eichler 2006; Medvedev
2007; Spitkovsky 2008; Nishikawa et al. 2009). Linear stage of the filamentary devel-
opment has been extensively studied for various distributions of counter-streaming
beams in a wide range of parameters, analytically and numerically (Pegoraro
et al. 1996; Yoon 2007; Schaefer-Rolffs and Tautz 2008; Bret 2009). Numerous
full-particle simulations have been performed to study the filament growth and
merging (Silva et al. 2003; Frederiksen et al. 2004; Hededal and Nishikawa 2005;
Spitkovsky 2008; Nishikawa et al. 2009). Yet, there were almost no attempts to
analytically construct a stationary filamentary equilibrium, in a way, similar to
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the building of a Harris current sheet. Recently, an attempt to derive a Grad-
Shafranov-type equation for such equilibrium has been made (Mart’yanov et al.
2008). In doing this, the authors failed to make one of their basic assumptions
consistent with Maxwell equations, thus losing an important constraint, which has
to be satisfied. In the present paper we develop a general analytical description
for two-dimensional filamentary equilibria using the technique outlined in Balikhin
and Gedalin (2008). We show that counter-streaming is necessary for the existence
of spatially periodic filamentary structure. Fine-tuning, necessary to maintain such
equilibria in the presence of four species, is presented.

2. 2D stationary filamentary structure
Let x and y be the coordinates on the 2D domain, with z being the out-of-plane
direction. We consider a 2D structure of the kind Bz(y) and Ey(y), where Bz and
Ey are the components of magnetic and electric fields. In principle, there may be an
arbitrary number of charged particle species streaming along x and producing the
fields. For all these particles, vz = 0. In what follows, c ≡ 1. In this representation
the filaments are, in fact, current sheets.

If everything depends on y only, then there are three integrals of motion

P = px + qA = mγvx + qA, (2.1)

H =
√

p2 + m2 + qφ = mγ + qφ, (2.2)

and pz , where

Ey = −∂φ

∂y
, Bz = −∂A

∂y
. (2.3)

If we express everything in terms of u = p/m and γ2 = 1+ u2, the integrals of motion
can be written as

U = ux + (q/m)A, h = γ + (q/m)φ, uz. (2.4)

For each species s, the distribution function, should be a function of these three
integrals of motion:

fs(y, ux, uy, uz) = fs(Us, hs, uz), (2.5)

Us = ux + (qs/ms)A, (2.6)

hs = γs + (qs/ms)φ. (2.7)

The current and charge density are

jx =
∑
s

qs

∫
vxfs(Us, hs, uz)d

3u =
∑
s

qs

∫
ux

γ
fs(Us, hs, uz)d

3u, (2.8)

jy =
∑
s

qs

∫
vyfs(Us, hs, uz)d

3u =
∑
s

qs

∫
uy

γ
fs(Us, hs, uz)d

3u = 0, (2.9)

ρ =
∑
s

qs

∫
fs(Us, hs, uz)d

3u, (2.10)
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and Maxwell equations read

d2A

dy2
= −4πjx, (2.11)

d2φ

dy2
= −4πρ, (2.12)

where both ρ and jx are functions of A and φ only. Equation (2.12) was not included
in Mart’yanov et al. (2008), which made their analysis inconsistent. For spatially
periodic solutions A(y + L) =A(y) and φ(y + L) =φ(y), the global requirements of
zero total charge and current are automatically satisfied. Indeed,

4π

∫ y+L

y

jx(y
′)dy′ = −

∫ y+L

y

d2A

dy′2 dy
′ =

dA

dy y

− dA

dy y+L

= 0 (2.13)

and similarly for ρ. In the case of a solitary filament (current sheet) we should
require dφ/dy → 0, dA/dy → 0 for y → ±∞, which also ensures validity of the same
global restrictions.

For cold distributions the representation in terms of the distribution function is
not convenient. Cold distributions (denoted by subscript ‘c’) describe particles which
move along x with the constant velocity βc, so that ux = βc(1 − β2

c )
−1/2, uy = uz = 0,

which requires dφ/dy= βc(dA/dy), or βc = (dφ/dA), provided |dφ/dA| < 1. In this
case nc = n(φ,A) and

ρc = qcnc, jx,c = qcncβc. (2.14)

As an example of a hot distribution let us consider a relativistic shifted Maxwellian
(Juttner distribution), which will be extensively used throughout the paper:

f(H,P ) = C exp[−m(h − βU)/T ] (2.15)

= C exp[−m(γ − βux)/T ] exp[−q(φ − βA)/T ]. (2.16)

It is worth mentioning that the invariant rest frame temperature is Tinv = γ̄T , where
γ̄= (1 − β2)−1/2. In what follows, we shall consider a mixture of a cold distribution
with a number of Juttner distributions (denoted by index ‘s’), so that

ρ =
∑
s

nsqse
−qs(φ−βsA)/Ts + qcnc, (2.17)

jx =
∑
s

nsqsβse
−qs(φ−βsA)/Ts + qcncβc, (2.18)

ns = C

∫
e−ms(γ−βsux)/Tsd3u, (2.19)

nsβs = C

∫
vxe

−ms(γ−βsux)/Tsd3u. (2.20)
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196 M. Gedalin et al.

Here βs < 1. It is worth noting that the charge and current density for Maxwell
distributed particles can be written as follows:

4πρ = −∂U

∂φ
, (2.21)

4πjx =
∂U

∂A
, (2.22)

U = 4π
∑
s

nsTse
−qs(φ−βsA)/Ts , (2.23)

so that

d2

dy2
φ =

∂U

∂φ
, (2.24)

d2

dy2
A = −∂U

∂A
. (2.25)

The generally accepted approach to the analysis of nonlinear waves and structures
is to derive an equation of the form

dR

dX
= −∂U

∂R
. (2.26)

This equation can be interpreted as an equation of a particle motion in a po-
tential. Here X is the ‘pseudotime’, R is the ‘pseudoposition vector’ and U is the
‘pseudopotential’. Since (2.24) and (2.25) do not have the required structure, no 2D
pseudopotential can be constructed.

3. Electromagnetic filaments
In this section we restrict ourselves to a special kind of solutions, φ= β̄A, β̄ < 1.
Physically, this means that in the frame moving with the velocity β̄, there is no
scalar potential. This condition is unavoidable if one of the distributions (and only
one) describes particles, which are cold and, hence, move with the same speed along
the current. Let these be ions moving with the velocity β̄, then

dpy

dt
= q(Ey − β̄Bz) = 0, (3.1)

which requires Ey = β̄Bz and, therefore, φ= β̄A.
Together with (2.11) and (2.12) this imposes the condition ρ= β̄jx, or∑

s

qs

∫
(1 − β̄βx)fs(ux + (qs/ms)A, γ + (qs/ms)β̄A)d3u + qcnc(1 − β̄2) = 0, (3.2)

where we used βc = dϕ/dA= β̄ and (2.14) is taken into account. Since in this case
jx = jx(A), one has a pseudo-potential type of equation

d2A

dy2
= −4πjx ≡ −dΦ

dA
, (3.3)

1

2

(
dA

dy

)2

+ Φ(A) = E = const. (3.4)
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We are seeking for spatially periodic solutions. For this to occur, the pseudo-potential
must have a stable minimum point. Without the loss of generality we shall calibrate
the vector potential A so that dΦ/dA= 4πjx = 0 at A= 0:∑

s

∫
qsfs(ux, γ)d

3u + qcnc(0) = 0. (3.5)

Here nc(0) is the value of the cold ion density (depending on y implicitly via explicit
dependence on A) in the point where the total charge density vanishes.

The requirement of stability is d2Φ/dA2 > 0 at A= 0, or dρ/dA > 0 at A= 0. The
latter can be further rewritten as follows:∑

s

q2
s

ms

∫
[(∂fs/∂Us) + β̄(∂fs/∂hs)]A=0d

3u + qc

(
dnc

dA

)
A=0

> 0. (3.6)

For the cold particles, (3.2) gives

qcnc = −γ̄2
∑
s

qs

∫
(1 − β̄βx)fs(ux + (qs/ms)A, γ + (qs/ms)β̄A)d3u, (3.7)

and further, taking (2.10) into account

ρ =
∑
s

qsγ̄
2β̄

∫
(β̄ − βx)fs(ux + (qs/ms)A, γ + (qs/ms)β̄A)d3u, (3.8)

and the stability condition takes the form

∑
s

q2
s

ms

∫
(β̄ − βx)[(∂fs/∂Us) + β̄(∂fs/∂hs)]A=0d

3u > 0. (3.9)

For the relativistic shifted Maxwellians fs =Cs exp[−ms(γ − βsux)/Ts) exp[−qs(β̄ −
βs)A/Ts], the relation (3.9) can be written as

∑
s

q2
s (βs − β̄)2

Ts

ns > 0, (3.10)

which is always satisfied, while (3.7) takes the form

qcnc = −γ̄2
∑
s

(1 − β̄βs)qsnse
−qs(β̄−βs)A/Ts . (3.11)

3.1. Solutions without backstreaming particles

In order to elucidate the role of the backstreaming particles we analyze below two
simple cases of the species moving in the same direction. Let us consider first the
case of cold ions and Maxwellian electrons. Let the cold ions move with the velocity
βi. This requires φ= βiA. Choosing the electron Maxwellian shifted around βe�βi,
one has (qi = −qe = q)

d2

dy2
A = −4πq(niβi − neβee

q(βi−βe)A/T ), (3.12)

d2

dy2
φ = −4πq(ni − nee

q(βi−βe)A/T ). (3.13)
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198 M. Gedalin et al.

The requirement φ= βiA gives

ni − nee
−qe(βi−βe)A/T = βi(niβi − neβee

q(βi−βe)A/T ), (3.14)

ni = neγ
2
i (1 − βiue)e

q(βi−βe)A/T , (3.15)

d2

dy2
A = −4πqne[βiγ

2
i (1 − βiβe) − βe]e

q(βi−βe)A/T (3.16)

= −4πqne(βi − βe)γ
2
i e

q(βi−βe)A/T . (3.17)

We have arrived at the well-known equation for Harris equilibrium. The solution of
this equation describes a single current layer.

Let now both species (ions and electrons) be Maxwellian, then

ρ = q(nie
−q(β−βi)A/Ti − nee

q(β−βe)A/Te), (3.18)

jx = q(niβie
−q(β−βi)A/Ti − neβee

q(β−βe)A/Te), (3.19)

jx = βρ ⇒ (3.20)

ni(1 − ββi)e
−q(β−βi)A/Ti = ne(1 − ββe)e

q(β−βe)A/Te , (3.21)

and therefore −(β − βi)/Ti = (β − βe)/Te so that

β = (Teβi + Tiβe)/(Ti + Te), (3.22)

and we again arrive at the Harris equilibrium. The solution of this equation also
describes a single current layer. In neither case we arrive at multi-layered structure.
This means that backstreaming particles are necessary for a filamentary structure.

3.2. Cold ions with three hot species

Let us now consider a self-consistent solution with four species: (a) cold forward
streaming ions βif = β > 0, (b) Maxwellian forward streaming electrons βef > 0, (c)
Maxwellian backstreaming ions βib < 0 and (d) Maxwellian backstreaming electrons
βeb < 0. Apparently, this is a minimal required set to allow for spatially periodic
patterns (see above). Now for each Maxwellian species s= ef, eb, ib

n(s) = nse
csA, cs = qs(β − βs)/Ts, (3.23)

while nif = nif(A) for cold forward streaming ions. Here qif = qib = q, qef = qeb = −q.
The charge and current density are, respectively,

ρ = qnif +
∑
s

qsnse
−csA, (3.24)

j = qnifβ +
∑
s

qsnsβse
−csA. (3.25)

The requirement φ= βA gives ρ= βj and, therefore,

nif = −γ2
∑
s

(1 − ββs)(qs/q)nse
−csA. (3.26)
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The total charge density, respectively, is

ρ = −
∑
s

qsβ(β − βs)γ
2nse

−csA. (3.27)

We calibrate the potentials so that A= 0 ⇒ ρ= 0, which gives

∑
s

qs(β − βs)ns = 0 ⇒ (3.28)

nib =
nef(β − βef) + neb(β − βeb)

β − βib
. (3.29)

In other words, the vector potential and the scalar potential are both zero in the
point y, where the charge density is zero.

The equation for A now reads

d2A

dx2
= 4πγ2

∑
s

qs(β − βs)nse
−csA, (3.30)

where s= ef, eb, ib. This equation can be further rewritten in the form

d2A

dx2
= −dU

dA
, (3.31)

U = 4πγ2
∑
s

qs(β − βs)ns
cs

e−csA (3.32)

= 4πγ2
∑
s

nsTse
−csA. (3.33)

Since U(A → ±∞) → ∞, any solution of this equation describes a spatially periodic
system of current sheets (filaments), provided nif > 0.

It is of interest to study small deviations csA� 1, for which

U = U0 +
1

2
K2A2, (3.34)

U0 = 4πγ2
∑
s

nsTs, (3.35)

K2 =
∑
s

4πγ2nsq
2
s (β − βs)(β − βs)

Ts

. (3.36)
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It is easy to see that 1/K plays the role of the generalized Debye length for the
relativistic streaming equilibria under consideration. Respectively,

A =Am cos(Ky), (3.37)

n(ef) =nef[1 + q(β − βef)A/Tef], (3.38)

n(eb) =neb[1 + q(β − βeb)A/Teb], (3.39)

n(ib) =nib[1 − q(β − βib)A/Tib], (3.40)

n(if) = − γ2
∑
s

(1 − ββs)(qs/q)ns

+ [γ2q
∑
s

(1 − ββs)ns(β − βs)/Ts]A. (3.41)

If

nif ≡ ni(A = 0) = −γ2
∑
s

(1 − ββs)(qs/q)ns (3.42)

=
nef(βef − βib) + neb(βeb − βib)

β − βib
> 0, (3.43)

then there always exists Am such that for |A| < Am the ion density ni > 0. This
inequality is always satisfied for |βib| > |βeb|, while for |βib| < |βeb| there is the
restriction

neb < nef(βef + |βib|)/(|βeb| − |βib|). (3.44)

The condition csA � 1 requires that (β + |βb|)qAm/Tb � 1 and (β − |βef |)qAm/

Tef � 1, which means

qAm/Tib ∼ qAm/Teb � 0.5, (3.45)

qAm/Tef � 1/(β − βef). (3.46)

The last relation allows qAm/Tef�1 for β−βef � 1. We also see that the temperature
of the backstreaming particles is of the same order as the potential in the filament.

For the visualization below, we have chosen the following normalized parameters:
β = 0.92, βef = 0.91, βib = −0.9, βeb = −0.8, Am = 0.2, A=Am cos(y), Tib = 2, Teb = 1,
Tef = 0.1, nib = neb = 1. Figure 1 illustrates the transverse cut of the 2D filamentary
structure. It is seen that the fluctuations of the density of the forward streaming
cold ions are much stronger than the fluctuations of the densities of hot species.
The filaments are charged positively. The densities of the cold ions are higher in the
region of positive potential, while the densities of hot other species are higher in the
potential well.

3.3. Four hot species

Let us now consider four Maxwellian species in an electromagnetic filament. It will
be more transparent here to perform the analysis in the frame where there is no
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Figure 1. Structure of a filament. Left top: Densities of the forward streaming particles across
the filament. Right top: Densities of the backstreaming particles. Left bottom: Total densities.
Thick lines are for electrons. Right bottom: Magnetic field.

potential, that is β = 0. This requires∑
s

nsqse
qsβsA/Ts = 0, (3.47)

nife
qβifA/Tif + nibe

−q|βib|A/Tib − nefe
−qβefA/Tef − nebe

q|βeb|A/Teb = 0. (3.48)

The latter expression can be made identically zero if

Teb =
|βeb|Tif

βif
, nif = neb. (3.49)

Tef =
βefTib

|βib| , nef = nib. (3.50)

With this condition taken into account, the current density is

jx =
∑
s

nsqse
qsβsA/Ts (3.51)

= q[nif(βif + |βeb|)eqβifA/Tif − nib(βef + |βib|)e−q|βib|A/Tib] (3.52)

so that the pseudopotential takes the form

Φ = 4π

[
nif(βif + |βeb|)Tif

βif
eqβifA/Tif +

nib(βef + |βib|)Tib

|βib| e−q|βib|A/Tib

]
. (3.53)

Since Φ → ∞ for A → ±∞ and has only one minimum, the equation for A has only
spatially periodic solutions. There are no additional constraints on the parameters
of different species.
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4. Potential filaments
If no distribution is cold, the relation φ= βA is no longer necessary (since Ey/Bz =
construction does not have to be satisfied), which means that there may not be a
frame where the electric potential vanishes. It is difficult to treat the problem in the
fully nonlinear regime, but it is possible to advance in the case of weak filaments,
qA/T � 1, qφ/T � 1. In a more general way, we shall assume that it is possible to
expand (for each species, index s omitted for brevity)

f(U, h, uz)= f(ux, γ, uz) + (qA/m)
∂f

∂ux
+ (qφ/m)

(
∂f

∂γ

)

+
1

2
(qA/m)2

(
∂2f

∂u2
x

)
+

1

2
(qφ/m)2

(
∂2f

∂γ2

)
(4.1)

+(qφ/m)(qA/m)2
(

∂2f

∂ux∂γ

)
+ . . .

Then

ρ =
∑

nsqs

∫
f(ux, γ, uz)d

3u + A
∑
s

nsq
2
s

ms

∫
∂fs

∂ux
d3u

+ φ
∑
s

nsq
2
s

ms

∫
∂fs

∂γ
d3u, (4.2)

jx =
∑

nsqs

∫
ux

γ
f(ux, γ, uz)d

3u +
∑

A
∑
s

nsq
2
s

ms

∫
ux

γ

∂fs

∂ux
d3u

+ φ
∑
s

nsq
2
s

ms

∫
ux

γ

∂fs

∂γ
d3u, (4.3)

where we restricted ourselves with the lowest order. Although the expansion can
be carried out for arbitrary distributions, it is more physically clear with the
distributions described by the single-temperature parameter, like the relativistic
Maxwellian (Juttner). We will limit our analysis with this case, where

ρ =
∑
s

nsqs

[
1 − qs(φ − βsA)

Ts

+
1

2

(
qs(φ − βsA)

Ts

)2
]
, (4.4)

jx =
∑
s

nsqsβs

[
1 − qs(φ − βsA)

Ts

+
1

2

(
qs(φ − βsA)

Ts

)2
]
. (4.5)

In the lowest order, linear approximation, one has

ρ = A
∑
s

nsq
2
s βs

Ts

− φ
∑
s

nsq
2
s

Ts

, (4.6)

jx = A
∑
s

nsq
2
s β

2
s

Ts

− φ
∑
s

nsq
2
s βs

Ts

, (4.7)
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where we also applied the conditions
∑

s nsqs = 0,
∑

s nsqsβs = 0. Substituting this
into (2.11) and (2.12) one gets

d2A

dy2
= −K2A + K1φ, (4.8)

d2φ

dy2
= −K1A + K0φ, (4.9)

K0 =
∑
s

4πnsq
2
s

Ts

> 0, (4.10)

K1 =
∑
s

4πnsq
2
s βs

Ts

, (4.11)

K2 =
∑
s

4πnsq
2
s β

2
s

Ts

> 0, K2 < K0, (4.12)

which has the solutions A,φ ∝ eiky , where

(K0 + k2)(K2 − k2) = K2
1 (4.13)

k2 =
1

2

[
K2 − K0 ±

√
(K0 + K2)2 − 4K2

1

]
. (4.14)

Since

K0K2 − K2
1 =

∑
ij

ninjq
2
i q

2
j (βi − βj)

2

2TiTj

> 0, (4.15)

the solution

k2 =
1

2

[
K2 − K0 +

√
(K0 + K2)2 − 4K2

1

]
> 0 (4.16)

corresponds to the periodic filaments.

5. Conclusions and discussion
Two-dimensional filamentary equilibria are, in fact, periodically arranged current
sheets and, therefore, could be expected to be described in a way similar to what has
been done for a relativistic periodic Harris sheet structure. Indeed, the distribution
functions are immediately expressed in terms of the integrals of motion, which allow
to express the charge and current density as functions of the scalar and vector
potential only. It is worth mentioning that, in general, the scalar potential, and,
therefore, the electric field, cannot be ignored unless special conditions are imposed.
In order to satisfy these conditions, the species’ densities, temperatures and velocities
should be fine tuned, thus reducing the number of free parameters. This means that
for arbitrarily chosen initial conditions, the developed filamentary structure will not
be necessarily non-potential or even stationary.

To summarize:
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• A non-potential filamentary equilibrium with one cold ion distributions and
three hot species is constructed and necessary conditions for such equilibrium are
established.

• A non-potential filamentary equilibrium with four relativistic Maxwellian spe-
cies is constructed and necessary conditions for such equilibrium are estab-
lished.

• The role of the backstreaming distributions in the formation of station-
ary spatially periodic filamentary structure is elucidated and it is shown that
at least four streaming species are necessary for the existence of non-potential
filaments.

• A weak filamentary equilibrium with potential is derived for arbitrary number
of Maxwellian species.
Analysis of fully nonlinear filaments with electrostatic potential appears to be
difficult and will be discussed elsewhere.
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