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ABSTRACT

The rare and conspicuous flux density variations of some radio sources (extragalactic and pulsars) for periods of weeks to months
have been denoted Extreme Scattering Events (ESE’s) by Fiedler et al. (1987, Nature, 362, 675). Presently, there is no astrophysical
mechanism that satisfactorily produces this phenomenon. In this paper, we conjecture that inhomogeneities of the electronic density
in the turbulent interstellar medium might be the origin of this phenomenon. We have tested this conjecture by a simulation of the
scintillation of the pulsar B1937+21 at 1.4 GHz and 1.7 GHz for a period of six months. To this end, we have constructed a large
square Kolmogorov phase screen made of 131k × 131k pixels with electron inhomogeneity scales ranging from 6 × 106 m to 1012 m
and used the Kirchhoff-Fresnel integral to simulate dynamic spectra of a pulsar within the framework of Physical Optics.
The simulated light curves exhibit a 10 day long variation simultaneously at 1.41 and 1.7 GHz that is alike the “ESE” observed with
the Nançay radiotelescope toward the pulsar B1937+21 in October 1989. Thus, we conclude that the “ESE” toward pulsars can be
caused naturally by the turbulence in the ionized interstellar medium. This is instead of discrete over pressured ionized clouds crossing
the line of sight as in the model of Fiedler et al. (1987, Nature, 362, 675). We suggest that longer events could occur in a simulation
of scintillation, if larger electron inhomogeneities (>1012 m) were included in the construction of the Kolmogorov phase screen. This
next step requires a supercomputer.
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1. Introduction

The rare and conspicuous flux density variations of some ra-
dio sources for periods of weeks to months have been denoted
Extreme Scattering Events (ESE’s). Usually, the flux density
drops by at least 50% and increases somewhat at ingress and
egress although there is a variety of possible shapes. The first
event was recognized in the direction of the quasar 0954+658
at 2.7 and 8.4 GHz (Fiedler et al. 1987). The first event asso-
ciated with a pulsar was detected in the direction of the mil-
lisecond pulsar B1937+21 at 1.41 GHz (Cognard et al. 1993).
The most recent census indicates that 15 ESE’s have been iden-
tified in the radio light curves of 12 quasars in the entire Green
Bank Interferometer monitoring of 149 radio sources at GHz fre-
quencies between 1979 and 1996 (Lazio et al. 2001). Five ESE’s
have been identified in the direction of the pulsar B1937+21 be-
tween 1989 and 1996 (Lestrade et al. 1998, LRC98 hereafter)
and a very long event was observed in the direction of the pul-
sar J1643-1224 (Maitia et al. 2003). Hill et al. (2005) also report
criss-cross pattern in the dynamic spectra of PSR B0834+06 at
327MHz they interpret as resulting from compact scattering ob-
jects essentially stationary in the screen in 20 years.

The mechanism usually invoked for this phenomenon is scat-
tering by a plasma lens that occurs when a discrete ionized cloud
crosses the line of sight. Fiedler et al. (1987) proposed that the
medium inside the cloud is highly turbulent, causing extreme
scattering responsible for the flux density variation and source
broadening. Differently, Romani et al. (1987) proposed that the

medium inside the cloud acts as a purely refractive lens pro-
ducing extreme refraction with caustics responsible for the flux
variation and source displacement during the event. The obser-
vations of ESE’s in directions of quasars and pulsars and these
models provide an estimation of the cloud size of 1–50 AU and
internal electronic density of 100−1000 e− cm−3 (Fiedler et al.
1994). Therefore, such a structure is over pressurized relative to
the ambient medium making its lifetime as short as a few years.
In addition, the observed rate of occurrence implies a cloud
space density as high as ∼106 clouds pc−3 (LRC98). There is
no known mechanism that can produce so many discrete ionized
clouds in the ISM. In order to avoid this difficulty, we conjec-
ture in this paper that the Kolmogorov turbulence of the ionized
ISM is the natural cause for the ESE’s and their occurrence is
statistical.

In order to support this proposition, we have simulated in-
terstellar scintillation at 1.41 and 1.7 GHz toward the pulsar
B1937+21 to compare to the observations taken at the Nançay
radiotelescope1. The flux density of this pulsar measured at the
Nançay radiotelescope is an average over an integration time
of 70 min and an integration bandwidth of 7.5 MHz centered
around 1.41 GHz and 12.5 MHz around 1.7 GHz. These intervals
are large enough to average several diffractive interstellar scin-
tillation patterns in the time-frequency domain, and so essen-
tially sample the refractive regime. However, some significant

1 Nançay radiotelescope is an instrument of the Observatoire de
Nançay, France.
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influence of diffractive ISS remains. Therefore, we conducted
a full scintillation calculation including the diffractive and re-
fractive scales. The refractive time scales measured at Nançay
in the direction of B1937+21 are 16 ± 1 days and 8 ± 1 days,
at 1.41 GHz and 1.7 GHz respectively. Also, the modulation in-
dexes are mr = 0.30 ± 0.02 and 0.50 ± 0.04 at 1.41 GHz and
1.7 GHz respectively. The zero-lag correlation of the flux den-
sity between these two frequencies is 0.93 ± 0.05. Detailed de-
scriptions of these measurements are given in LRC98.

For the simulation presented in this paper, we have used
the Kolmogorov 3D power spectrum of the electronic den-
sity δne(x, y, z) in the interstellar medium as established lo-
cally (<1 kpc) by Armstrong et al. (1995). We have used the
Kirchhoff-Fresnel integral to compute pulsar dynamic spectra in
the framework of Physical Optics. In Sect. 2, we present the for-
mulae for this simulation carried out in the thin screen approx-
imation, the construction of the Kolmogorov phase screen and
the computation of the diffraction pattern (see also Hamidouche
2003). In Sect. 3 (see also Appendix A), we construct a large
square Kolmogorov phase screen of 131k × 131k pixels. In
Sect. 4 and in Appendix B, we make a series of tests to empiri-
cally determine how to set the parameters of the Kirchoff-Fresnel
integral. In Sect. 5, we present the result of the simulation in the
direction of B1937+21 simulated over a period of 6 months.

2. Scattering of a point-like source by the ionized
interstellar medium

The historical problem of diffraction have been cast in mod-
ern mathematical terms by Born & Wolf (1999) and Goodman
(1968). A particularly clear presentation of this problem applied
to interstellar optics in the radio domain is in Narayan (1992)
and Gwinn et al. (1998). The tenuous interstellar plasma is a ran-
dom medium where inhomogeneities of the density of free elec-
trons produce fluctuations of the index of refraction. The radio
wavefronts emitted by a point-like source (pulsar) and propagat-
ing through such a medium produce rapid intensity fluctuations
at the Earth. These fluctuations are due to diffraction speckles
in the plane of the observer with a short time scale of several
minutes and over a narrow bandwidth (∼1 MHz) at radio fre-
quencies. This is the DISS phenomenon (Diffractive interstel-
lar medium scintillation). This random medium produces also
slow intensity variations of 10–100% over several days or more
and over a broad bandwidth (>100 MHz). This is the RISS phe-
nomenon (Refractive interstellar medium scintillation). Rickett
(1988) proposes a concise presentation of these phenomena and
of their main observables. Rickett (1977), Blandford & Narayan
(1985) and Rickett (1990) provide a complete derivation of these
observables as functions of the random medium physical prop-
erties. Diffractive scintillation in dynamic spectra of pulsars is
caused by medium inhomogeneities, whose scale s0 is called
diffractive scale or coherence length. From observations of pul-
sars at frequency around 1 GHz, this diffractive scale is between
105 m and 108 m. Refractive scintillation of pulsars depends on
medium inhomogeneities whose scales are about the scattering
disk radius rS = θSL where L is the distance to the equivalent
turbulent screen and θS =

λ
2πs0

is the scattering angle. From

pulsar observations, this refractive scale rS is between 1010 m
and 1013 m. These two main scales of the ionized interstellar
medium are suggestively sketched in Cordes et al. (1986). The
line of sight to a pulsar moves through the medium with a sig-
nificant transverse velocity V⊥ and continuously samples inho-
mogeneities of sizes s0 and rS so that the diffractive timescale

is td = s0/V⊥ and the refractive timescale is tr = LθS/V⊥. The
decorrelation bandwidth ∆νdc = 1/2πτS observed in dynamic
spectra of pulsars is associated with the temporal broadening of
pulsars τS ∼ Lθ2

s /2c (Rickett 1988). The refractive modulation
index (mr = rms of intensity / mean intensity) is an important
quantity directly comparable to observations and is theoretically
mr = 1.08(∆νd/ν)1/6 (Appendix B in Gupta et al. 1993). Pulsar
dynamic spectra provide measurements of the diffractive param-
eters td and ∆νdc that yield the turbulence strength C2

n (e.g. Gupta
et al. 1994). Long term pulsar flux density series yields the re-
fractive parameter tr that is typically in tens of days and the mod-
ulation index mr < 1 (Stinebring et al. 2000).

Armstrong et al. (1995) analyze a large corpus of radioas-
tronomy observations to establish that the 3D space power spec-
trum P3N(qx, qy, qz) of the free electron density δne(x, y, z) in
the local interstellar medium (<1 kpc) is of the Kolmogorov
turbulence type. They give evidence of the power spectrum

P3N(qx, qy, qz) = C2
n×
(√

q2
x + q2

y + q2
z

)−11/3
valid over 6 decades,

10−12 m−1 <
√

q2
x + q2

y + q2
z < 10−6 m−1. They suggest that it

might extend over 12 decades. The derived turbulence strength
by the same authors is C2

n ∼ 10−3 m−20/3. This value can be
considered as typical but large deviations are found depending
on the celestial direction 10−4 < C2

n < 10−1 m−20/3 (Johnston
et al. 1998; Cordes et al. 1985).

The duration of ESE’s (weeks to years; Maitia et al. 2003)
and the typical transverse velocity of pulsar (tens of km s−1;
Gupta et al. 1994) would make these events associated with
large-scale inhomogeneities of free electrons, i.e. the refrac-
tive scales rS (1010 m and 1013 m) following our conjecture.
To test this concept, we simulate the scintillation of the pulsar
B1937+21 at 1.41 and 1.7 GHz with a Kolmogorov phase screen
as large as 1012 m × 1012 m sampled by 131k × 131k pixels.
The 3D nature of this simulation is reduced advantageously to
a 2D problem in the thin screen approximation valid in the in-
terplanetary and interstellar tenuous plasma. Following Salpeter
(1967) and Lovelace (1970), this approximation is the limit
where the ray lateral deflection is weak relative to the radial
phase fluctuations. In this condition, the phase of a wavefront
reduces to φ(x, y) =

∫ z

0
λreδne(x, y, z)dz, with the electron radius

re = 2.8179 × 10−13 cm. The propagation of a wavefront from a
source to an observer can be computed by the Kirchhoff-Fresnel
diffraction integral (Born & Wolf 1999). This integral relates the
electrical field E(x′) in the observer’s plane to the field Es emit-
ted by a distant point-like source. Classically, this integral yields
the diffraction pattern of an unperturbed aperture. We modify
this integral by adding the Kolmogorov phase field φK(x) of a
turbulent equivalent screen to model the wavefront corrugations
caused by the ionized ISM. The electric field in the observer’s
plane with the Kirchhoff-Fresnel integral is:

E(x′) =
Es

λ|L|
∫
S

ei[ 2π
λ |�|+φK (x)]dS (1)

where λ is the wavelength, x′ is the observer position vector in a
plane parallel to the sky plane, x is the position vector of a point
in the phase screen planeS also parallel to the sky plane, L is the
vector between the observer and the screen planes. In addition,
|x′| and |x| are very small with respect to |L| in our application
below. This explains why the factor 1

λ|L| is constant in Eq. (1). |�|
is the full geometric path from the pulsar to the observer through
the screen. The geometry is sketched in Fig. 1.

The 2D power spectrum of this phase screen P2φ(qx, qy)
is related to the 3D Kolmogorov power spectrum of the
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Fig. 1. Sketch of our computation of the dynamic spectrum of a pulsar
seen through a 2D turbulent equivalent phase screen. The geometric
path � in the Kirchhoff-Fresnel integral, Eq. (1), is from the point source
pulsar P to the radiotelescope position T , by crossing the phase screen
at the running pixel S (m, n).

interstellar electronic density P3N(qx, qy, qz = 0) as shown in
Lovelace (1970) and Lovelace et al. (1970) in the thin screen
approximation:

P2φ(qx, qy) = 2πz(λre)2P3N(qx, qy, qz = 0) (2)

z is the screen thickness. The thin screen approximation refers to
a small deviation in the propagation direction of the wave rather
than to a small thickness (Salpeter 1967).

In Appendix A, we derive the expression of the phase field
φK(x, y) by using this relationship and the definition of the 2D
average power spectrum P2φ(qx, qy) over the square screen sur-
face N2∆r2 recalled here as:

P2φ(qx, qy) =
|F2φ(qx, qy)|2

N2∆r2
(3)

F2φ(qx, qy) is the Fourier Transform of the phase field φK(x, y).
In Appendix A, φK(x, y) is cast into a discrete form for compu-
tation by FFT. The observer’s plane x = (x, y) becomes a grid
(m, n) such as x = m ∆r and y = n ∆r with the grid step ∆r.
The spatial frequency plane (qx, qy) becomes the grid (k, l) such
as qx = k dqx and qy = l dqy. The frequency step dqx is cho-
sen to be the lowest spatial frequency qmin,x = 1/N∆r along x
and, similarly, dqy = 1/N∆r along y. The grid step ∆r is chosen
to be s0/4 after the tests described in Appendix B and adopting
the notation s0 for the coherence length. The maximum spatial
frequency qmax =

1
2 ∆r in the integral (A.5) satisfies the Nyquist

sampling rate. The discrete formula reduced to the case of the
square screen is:

φK(m, n) = 2π
(1−β)

2 b λre

√
zC2

N (N∆r)−1+β/2

×
k=+N/2∑
k=−N/2

l=+N/2∑
l=−N/2

(
k2 + l2

)−β/4
e−

2πi
N (km+ln) e−iψ(k,l). (4)

The grid step ∆r conveniently appears as part of the multiplying
factor in Eq. (4) so that the double summation of this equation
can be computed once and stored in a file for use with differ-
ent values of ∆r. This was particularly useful for the tests in
Appendix B made with several phase screens constructed by ad-
justing the multiplying factor.

We used a complex Hermitian symmetric spectrum to make
the phase field φK(m, n) real, i.e. The complex coefficients of
Eq. (4) are conjugate by applying ψ(k, l) = −ψ(−k,−l) in the
construction of the screen. Equation (4) is suitable for computa-
tion by FFT where the elements of the input complex array are

the coefficients c(k, l) = −c(−k,−l) =
(
k2 + l2

)−β/4
e±iψ(k,l). We

generate a random phase field φK(m, n) by making the Fourier
phase ψ(k, l) a random variable uniformly distributed over [0, 2π]
(Rice 1944, p. 287). We had to make the adjustment factor b = 2
in Eq. (4) so that the phase structure function Dφ(r) computed di-
rectly from the screen yields a coherence length that matches the
theoretical value s0. Coles et al. (1995) have devised a method
to randomize a phase screen. Instead of our complex numbers
be−iψ(k,l) in Eq. (4), with the random phase ψ(k, l) described
above, Coles et al. (1995) set complex random numbers made
of independent zero-mean Gaussian random variables x and y
with variance σ2 for their real and imaginary parts. In polar co-
ordinates, these variables x and y have magnitudes following
a Rayleigh probability distribution and phases distributed uni-
formly over [0, 2π] as for our ψ(k, l) (see Thompson et al. 1986,
pp. 259–260; and reference to Papoulis 1956). We have verified
in generating independent zero-mean Gaussian random variables
x and y of various σ that the mean amplitude of the correspond-
ing Rayleigh probability distribution for σ = 1.6 is 2, i.e. the
value of our b factor. Thus, the method we use to generate the
random complex numbers in Eq. (4) is a satisfactory approxi-
mation of the formal synthesis of the random phase field φK in
Coles et al. (1995).

The intensity of the pulsar i(x′, λ) = |E|2(x′, λ) at wavelength
λ is computed with the discrete form of the Kirchhoff-Fresnel
integral where the gridded phase screen φK(m, n) substitutes the
continuous Kolmogorov phase φK(x). The electric field (Eq. (1))
at the grid position p of the radiotelescope and wavelength λ is:

E(p, λ) =
Esdxs

2

λL

n=H∑
n=1

m=H∑
m=1

ei[ 2π
λ �(p,m,n)+φK (m,n)] (5)

where the geometric path �(p,m, n) is from the point source pul-
sar P through the phase screen at the running pixel S (m, n) to
the radiotelescope position T along the x-axis (p) in Fig. 1.
We have not approximated this path by a power series in our
code so that we assumed neither the Fraunhofer approximation
nor the Fresnel approximation but carried out the full compu-
tation of �(p,m, n). The parameter dxs is the spatial resolution
of the phase screen which does not have to be equal to the grid
step ∆r controlling the limits qmin and qmax of the Kolmogorov
spectrum P3N . Since Eq. (5) is the discrete form of Eq. (1), the
parameter H of Eq. (5) controls the size of the integration surface
noted S in Eq. (1); S = (H × dxs)2.
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3. Construction of a large square kolmogorov
phase screen

We have computed a relatively large Kolmogorov phase screen
for the pulsar PSR1937+21 with Eq. (4) on an alpha server as-
suming turbulence strength C2

n = 10−3m−20/3 and screen thick-
ness z to be the pulsar distance (3.6 kpc) (this assumption is dis-
cussed below). The size of the screen is N = 217, i.e. there are
∼131k × 131k pixels. Obviously, this computation could not be
done in a single 2D FFT and we had to resort to multiple 1D
FFT’s. Each line of the input complex array, coefficients c(k, l)
of Eq. (4), was first transformed by a 217 point 1D FFT along
the x-axis. Then, each resulting column was transformed by a
217 point 1D FFT along the y-axis. The construction of this large
square phase screen took 10 days on our workstation and needs
68 GigaBytes of disk space to store all the phases but the peak
storage during the computation was 200 GigaBytes.

With the assumed turbulence strength C2
n = 10−3 m−20/3 and

thickness z = 3.6 kpc, the coherence length in the screen is s0 =
2.66 107 m at 1.41 GHz as calculated from the phase structure
function Dφ(s0) = 1 Rd2 with the theoretical expression Dφ(s) =
8πr2

eλ
2C2

Nz f (α)(α + 1)−1sα, where numerically f (α) = 1.12 for
α = 5/3 (Armstrong et al. 1995). To qualify our phase screen,
we have computed the phase structure functions Dφ(s) along
multiple x-lines through the screen and, orthogonally, along y.
From the log-log plots of these functions (examples in Fig. 2),
we made linear least-square-fits and found slopes of 1.68± 0.10
for x and 1.64 ± 0.1 for y. The theoretical slope of Dφ(s) is
α = 5/3 for an isotropic turbulent medium with the exponent
β = 11/3 in P3N . We have also measured the coherence lengths
from these phase structure functions: rcoh = 2.4 ± 0.6 × 107 m
along x and rcoh = 3.2 ± 0.6 × 107 m along y. These values are
consistent with the value s0 = 2.66 × 107 m predicted by the
structure function Dφ(s0) = 1 Rd. This is also consistent with
the value obtained from the equation rcoh = V/td � 2.1 × 107 m,
where V = 50 km s−1 and td = 7 min is the observed diffractive
timescale toward the pulsar B1937+21 (Ryba 1991). We note
that it is coincidental that s0 has the expected value by using the
conventional value of C2

n for PSR1937+21 and our assumption
above that the thickness z equals the pulsar distance.

4. Results: simulation of the scintillation
of the pulsar B1937+21 at 1.41 and 1.7 GHz

Prior to the full scale simulations, we studied the convergence of
the computation of the dynamic spectra that depends on four pa-
rameters: the size S of the integration surface of Eq. (1), the spa-
tial resolution dxs to read the phase screen file, the grid step ∆r
in the phase screen and the size N of the phase screen (Eq. (4))
which control the minimum and maximum spatial frequencies
qmin =

1
N∆r and qmax =

1
2∆r of the Kolmogorov spectrum P3N .

The parameter N was fixed to 217, limited only by the maximum
disc space available with our computer to store the phase screen.
This screen size corresponds to a period of 6 months, for an ob-
server line of sight sliding across the screen with a velocity of
50 km s−1. We have empirically determined the other three pa-
rameters by a sequence of tests that are described in detail in
Appendix B.

In Fig. 3, we present the intensity of the pulsar B1937+21
simulated during this period of six months at 1.41 and 1.7 GHz.
The intervening phase screen φK(m, n) is constructed with C2

n =
10−3 m−20/3 and z = 3.6 kpc that are the parameters of B1937+21
(Ryba 1991; Johnston et al. 1998), N = 217 and ∆r = s0/4 in

Fig. 2. Examples of the phase structure functions Dφ(x) and Dφ(y) com-
puted for 1D cuts along the x and y axis across the whole 131k × 131k
phase screen φK(m, n) constructed with C2

n = 10−3, z = 3.6 kpc and
∆r = s0. The slopes of these structure functions measured from the log-
log plots are satisfactorily close to the theoretical value α = 5/3 for
β = 11/3 of the Kolmogorov spectrum P3N .

Eq. (4) based on our conclusion in the second test (Appendix B).
The coherence length in the phase screen is 2.6× 107 m thus the
lower and upper limit scales of the Kolmogorov spectrum P3N
are qmin =

1
217×2.6×107 =

1
3.4×1012 m−1 and qmax =

1
2×2.6×107 m−1. We

adopt the integration surface S = (4rS)2 to compute Eq. (5) from
the conclusion in the first test (Table 1). We use the resolution
dxs = s0/4 (Table 2) to read the phase screen file into Eq. (5).
This resolution is conservative relative to our conclusion in the
third test; it was dictated for algorithmic peculiarities to the ex-
pense of computing speed. A dynamic spectrum was computed
in these conditions every other 1.25 days. Averaging these dy-
namic spectra provides the intensity measured by the telescope
over the integration time 70 min and the bandwidth 8.8 MHz,
sampled over 32 × 32 time bins and frequency channels in our
computation. The velocity of the screen is V = 50 km s−1. This
simulation took twice 1.5 months on our alpha server.

Overall, Fig. 3 shows the typical behavior of flux density
recorded for pulsars; for instance B1937+21 at Nançay at 1.41
and 1.7 GHz in Figs. 1 and 2 of LRC98. In addition, there is the
interesting feature labeled “ESE” and present simultaneously at
1.41 and 1.7 GHz in Fig. 3 from day 30 to day 40. The significant
drop of flux density (60% below the mean value) and the low
rms during this ESE period (rms= 0.10 during the ESE versus
rms= 0.71 off ESE) for these 10 days is alike the ESE observed
toward B1937+21 in October 1989 (Cognard et al. 1993). In this
previous paper, we suggested this phenomenon was caused by
a discrete cloud of plasma following the standard interpretation
of Fiedler et al. (1987). Our simulation shows instead that this
event can arise naturally because of the turbulence in the ionized
interstellar medium as conjectured. We have labeled this event
“ESE” in Fig. 3. The ratio of the duration of this event to the
length of our simulation is ∼10 days/180 days � 5%. Although
this might be fortuitous, this percentage is consistent with the
observations of B1937+21 at Nançay for which the rate of oc-
currence of “ESE’s” is 4% (LRC98). Figure 4 shows the cross
correlation function of the flux densities at 1.41 and 1.7 GHz
(Fig. 3). The zero-lag value �0.8 is consistent with the observed
value 0.93 ± 0.05 (LRC98).
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Fig. 3. Intensity of B1937+21 simulated at 1.41 GHz and 1.7 GHz. The intervening phase screen is constructed with C2
n = 10−3, z = 3.6 kpc,

N = 217 and ∆r = s0/4 in Eq. (4) and S = (4rS)2 and dxs = s0/4 in Eq. (5). Between days 30 and 40, there is an event occurring simultaneously at
1.41 and 1.7 GHz which is alike the behavior of the flux density recorded in direction of B1937+21 at Nançay in October 1989 and interpreted as
an Extreme Scattering Event. The mean intensities 〈I〉 are 1.46 and 1.60 and the modulation indexes m are 0.49 and 0.67 for these two series.

Fig. 4. Cross-correlation function of the flux densities at 1.41 GHz and
1.7 GHz of Fig. 3.

The duration of the event labeled “ESE” in our simulation
is comparable to the event observed at Nançay in October 1989
(12 days) but is short compared to three others of duration 1–
3 months identified in the radio light curves of B1937+21 si-
multaneously at 1.41 and 1.7 GHz by LRC98. The extraordinary
focusing of pulsar waves is caused by the large scale fluctuations
of the electronic density in the interstellar medium. The largest

fluctuation scale in our simulation is 217 × 2.6× 107/4 ∼ 1012 m
while the ionized interstellar medium is made of fluctuations up
to 1018 m (Armstrong et al. 1995). We expect that longer “ESE”s
require to include fluctuations of larger scales in our simula-
tion. We plan to extend this calculation on a supercomputer.
We note here that the relatively long events labeled “ESE” in
Hamidouche et al. (2002) are from a simulation that was improp-
erly done with an integration surface as small as S = (0.7rS)2

chosen before we made the tests of the present paper.
Finally, we note that the anti-correlation coefficient −0.62

between flux density and TOA in the simulation conducted with
a rectangular phase screen is reported in Hamidouche (2003),
and is comparable to the correlation coefficient −0.43 to −0.73
depending on data segments of the Nançay observations in
LRC98. We have not calculated this correlation in the final
simulation.

5. Conclusion

We have presented the simulation of the scintillation of pulsars
carried out within the frame of Physical Optics by extending the
seminal work by Cordes et al. (1986). We have built a large
square Kolmogorov phase screen of 131k × 131k pixels on an
alpha server and shown how to set properly the parameters of
the Kirchhoff-Fresnel integral by conducting several tests. Our
final simulation was done for the condition of turbulence known
in the direction of the pulsar B1937+21 (C2

n ∼ 10−3 and distance
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z = 3.6 kpc) and the radio light curves were generated at 1.41
and 1.7 GHz for a period of 6 months.

These two light curves exhibit simultaneous variations at
1.41 and 1.7 GHz that are alike the “ESE” observed at these fre-
quencies at Nançay in October 1989 and that lasted ∼10 days.
Our simulation shows that this observed event can be caused
naturally by the turbulence in the ionized interstellar medium
instead of invoking the crossing of a discrete over pressured ion-
ized cloud on the line of sight as in the model of Fiedler et al.
(1987). We think that longer events could occur by including the
electronic density fluctuations of larger scales in the construction
of the Kolmogorov phase screen used in the simulation.

Finally, we note that Deshpande (2000) stresses that the
opacity differences in HI and other species measured over a
transverse separation x0 result from all scale of the 3D power
spectrum of the opacity fluctuations while they are currently,
and erroneously in his opinion, interpreted as over pressured
and overdensed cloudlets of size x0. Our simulation of “ESE’s”
caused by the turbulent ionized interstellar medium strengthens
this opinion for the neutral gas.
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Appendix A: Construction of a Kolmogorov phase
screen

The definition of the 2D phase power spectrum of the phase field
φ(x, y) averaged over the rectangular screen surface NM∆r2 is:

P2φ(qx, qy) =
|F 2φ(qx, qy)|2

NM∆r2
(A.1)

where F2φ(qx, qy) is the Fourier Transform of φ(x, y). Hence, the
module of the Fourier component for the frequencies (qx, qy) is:

|F2φ(qx, qy)| =
√

NM∆r2P2φ(qx, qy) (A.2)

Lovelace (1970) and Lovelace et al. (1970) have established:

P2φ(qx, qy) = 2πz(λre)2P3N(qx, qy, qz = 0). (A.3)

Hence, the complex Fourier components of the phase field
φ(x, y) are:

F2φ(qx, qy) =
√

2πλre

√
NM∆r2zC2

n(q2
x + q2

y)−β/2 e−iψ(qx ,qy) (A.4)

that must satisfy the complex Hermitian symmetric spectrum
with the Fourier phase ψ(qx, qy) = −ψ(−qx,−qy) to make the
phase field φ(x, y) real. ψ(qx, qy) is a random variable uniformly
distributed over [0, 2π] as prescribed by Rice (1944, p. 287). C2

n
is the turbulence strength and z is the propagation length.

The phase field φ(x, y) can be computed by the inverse
Fourier Transform of F2φ(qx, qy). Although P3N is a power-law,
the Fourier integral is finite because there is an outer scale in
the ionized interstellar medium that makes P3N becomes zero
for small q rather than infinity when q → 0. Also, we point
out that there is the factor (2π)−2 in this integral to be consis-
tent with the Fourier Transform definition used to define P3N in
Rickett (1977, Eq. (6)) and used to demonstrate the Lovelace

Table B.1. Sensitivity of the averaged intensity and modulation index
to the integration surface at 1.4 GHz a.

Integration Nber of 〈I〉 Index m
surface S intensities

(1rS)2 303 0.28 0.95
(2rS)2 302 0.83 0.80
(4rS)2 299 1.39 0.63
(6rS)2 296 1.52 0.59
(8rS)2 292 1.55 0.58
(10rS)2 289 1.56 0.58

a ∆r = dxs = s0 kept fixed.

relationship (Lovelace 1970, Eq. (36)). This inverse Fourier
Transform is:

φ(x, y) = (2π)−2+ 1
2 λre∆r

√
NMzC2

N

×
⎡⎢⎢⎢⎢⎣
∫ −qx,min

−qx,max

∫ −qy,min

−qy,max

(q2
x + q2

y)
−β/4e−iψ(qx ,qy)e−i(qx x+qyy)dqxdqy

+

∫ +qx,max

+qx,min

∫ +qy,max

+qy,min

(q2
x + q2

y)
−β/4e−iψ(qx ,qy)e−i(qx x+qyy)dqxdqy

⎤⎥⎥⎥⎥⎦ .
(A.5)

This integral was split into two parts to avoid the singular-
ity of the power-law function. In Eq. (A.5) for the rectangu-
lar screen case, the minimum frequencies are qx,min =

1
N∆r and

qy,min =
1

M∆r .

Appendix B: Tests for the computation
of the dynamic spectra

Prior to the full scale simulations, we studied the convergence
of the computation of the dynamic spectra that depends on four
parameters: the size S of the integration surface S of Eq. (1),
the spatial resolution dxs to read the phase screen file, the grid
step ∆r in the screen phase, and the size N of the phase screen
(Eq. (4)). These latter two parameters control the minimum and
maximum spatial frequencies qmin =

1
N∆r and qmax =

1
2∆r of the

Kolmogorov spectrum P3N . The parameter N is fixed to 217 in
our computation and we have empirically determined the other
three parameters.

As a first test, we study the effect of S of Eq. (1) while keep-
ing the parameters ∆r and dxs fixed and equal to s0. We express
the dimension of the integration surface S in terms of the scat-
tering radius rS since, as shown below, the required S to make
the dynamic spectra numerically convergent is a few times this
scale. In fact, Coles et al. (1995) have demonstrated that the in-
tegration surface in the phase screen has to be larger than the
scattering disk. The physical idea is that the scattering disk is the
approximate area in the phase screen irradiating a single location
in the observing plane. We chose the following sizes S for our
test: S = (1rS)2, S = (2rS)2, S = (4rS)2, S = (6rS)2, S = (8rS)2,
S = (10rS)2. For each size S , we compute the whole series of
dynamic spectra at 1.41 GHz by shifting S by 2.5 days across
the screen using V = 50 km s−1. Each dynamic spectrum is
70 min×8.8 MHz in size, similarly to observations of B1937+21
at Nançay, and sampled over 8×8 pixels. For each series, we de-
rive the mean intensity 〈I〉 and the modulation index m = Irms

〈I〉 in
Table B.1. This table shows that these two indicators converge
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Fig. B.1. Test on the parameter S : simulations of the intensity of a pulsar at 1.41 GHz every other 2.5 days observed through the phase screen
φK (m, n) constructed with C2

n = 10−3, z = 3.6 kpc, N = 217 and ∆r = s0. The spatial resolution used to read the screen file is dxs = ∆r. The three
light curves are for the integration surfaces S = (2rS)2 (filled circle), S = (4rS)2 (filled triangle), S = (10rS)2 (empty circle). This test demonstrates
that the computation of the dynamic spectra has converged for the integration surface S = (4rS)2.

when S reaches (4rS)2. In Fig. B.1, we show only three series
for clarity; S = (2rS)2, S = (4rS)2 and S = (10rS)2 to depict the
convergence process. In addition, we illustrate this convergence
process in Fig. B.2 by showing dynamic spectra computed at
the same position in the observer plane but for the 6 integra-
tion surfaces mentioned above. From this first test summarized
by Table B.1, Figs. B.1 and B.2, we conclude that convergence
of dynamic spectra starts for S = (4rS)2 since improvement in
the average intensity and index m are less than 10% for larger
surfaces S .

As a second test, we study the impact of the grid step ∆r
in the screen phase while keeping fixed S = (4rS)2 and dxs =
s0. The parameter ∆r is directly related to the minimum and
maximum spatial frequencies qmin =

1
N∆r and qmax =

1
2∆r of

the Kolmogorov spectrum P3N as already mentioned. Note that
∆r appears conveniently in the multiplying factor of the phase
screen φK(m, n) in Eq. (4) and hence it can be easily changed to
any value to modify qmax and, correlatively, qmin. The parame-
ter N is not amendable after the double summation of Eq. (4)
has been calculated and stored in a computer file. In princi-
ple, we would have liked to tune N in order to keep qmin =

1
N∆r unchanged while ∆r is adjusted to increase qmax =

1
2∆r .

One expects that the high frequency part of the Kolmogorov

spectrum becomes insignificant in shaping the dynamic spec-
trum when qmax is sufficiently high while the low frequency part
modifies it drastically. This test is difficult to implement in prac-
tice because it requires computing several screens with different
N while keeping the same random phases ψ(k, l) for the lower
part of the spectrum. Instead of this approach, we simulate the
effect by superimposing a corrugated surface of period q−1 and
amplitude δφ upon the original screen. The aim is to seek which
perturbating surface (q, δφ) degrades significantly the dynamic
spectrum when compared to the one computed with the original
phase screen. This test covers the following corrugated surfaces:
δφ = 101◦ and q = 1

2×2s0
; δφ = 57◦and q = 1

2s0
; δφ = 32◦ and

q = 1
2s0/2

; δφ = 18◦ and q = 1
2s0/4

; δφ = 10◦ for q = 1
2s0/8

.
These amplitudes δφ are derived from the phase structure func-
tion Dφ(s) for the separations s = 2 s0, s = s0, s = s0/2, s = s0/4
and s = s0/8. Figure B.3 shows the comparison of the dy-
namic spectra computed with these five perturbations (q, δφ) as
well as the dynamic spectrum simulated with the original screen
(δφ = 0) constructed with C2

n = 10−3, z = 3.6 kpc, N = 217 and
∆r = s0/4. The morphology and averaged intensities of these
dynamic spectra indicate that perturbations are significant above
(δφ = 32◦, q = 1

2s0/2
), i.e. qmax must be at least as high as 1

2s0/2
,

i.e. ∆r ≤ s0/2, for convergence of the computation.
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Fig. B.2. Test on parameter S : dynamic spectra computed, at 1.41 GHz, at the same telescope location but for different sizes S of the integration
surface S in Eq. (1). The six cases shown are for S = (1rS)2, (2rS)2, (4rS)2, (6rS)2, (8rS)2, (10rS)2. The total size of the dynamic spectrum is
70 min × 8.8 MHz sampled over 8 × 8 pixels, i.e. unity corresponds to 1.1 MHz along the frequency axis (vertical) and to 8.8 min along the time
axis (horizontal) with the screen speed V = 50 km s−1. The phase screen φK (m, n) is constructed as in Fig. 2. This figure shows that the dynamic
spectrum converges from the surface size S = (4rS)2.

Table B.2. Sensitivity of the averaged intensity and modulation index
to qmax

a.

∆r qmax =
1

2 ∆r Sampling Nb of 〈I〉 Index m
of dyn. sp. intensities

s0
1

2 s0
8 × 8 299 1.39 0.63

s0/2 1
2 s0/2

16 × 16 142 1.43 0.54
s0/4 1

2 s0/4
32 × 32 69 1.58 0.50

a ∆r = dxs = s0 kept fixed.

We complement this test done at a single position of the ob-
server by simulating three intensity series across the full screen
with the grid step ∆r = dxs set to 1s0, s0/2 and s0/4. The dy-
namic spectra are sampled over 8 × 8, 16 × 16, 32 × 32 pixels,
respectively, to synthesize the same 70 min × 8.8 MHz domain.
Table B.2 shows that the mean intensity 〈I〉 and modulation in-
dex m are within 10% over these three cases. From this sec-
ond test we conclude, somewhat conservatively, that ∆r = s0/4
is necessary for the convergence of the computation, i.e. the
Kolmogorov spectrum P3N must include qmax =

1
2 s0/4

.

As a third test, we study the impact of the spatial resolu-
tion dxs used to read the phase screen file into Eq. (5). Although
we have just concluded that ∆r = s0/4 is necessary to include
enough high frequencies, the phases can possibly be read with
a lower resolution. Using the phase screen file constructed with
C2

n = 10−3, z = 3.6 kpc, N = 217 and ∆r = s0/4, we test the three
cases: dxs = s0 in reading every other four phases, dxs = s0/2
in reading every other two phases and dxs = s0/4 in reading ev-
ery phase. The integration surface is fixed to S = (4rS)2 in this
test. Figure B.4 shows the three dynamic spectra corresponding
to these resolutions. As the figure shows, they have the same
morphology and their averaged intensities changed by only 6%.
We extended the resolution further to dxs = 2s0 and found then
that the morphology of the dynamic spectrum becomes abruptly
very dissimilar (not shown in Fig. B.4) meaning it had not yet
converged. We also computed the intensity series for significant
fractions of the screen and report 〈I〉 and m in Table B.3. From
this third test, we conclude that dxs = s0 is sufficient.

Finally, we note that the resulting modulation index m (∼0.5)
is larger than the theoretical value mr = 0.32 derived for
purely refractive scintillation by Gupta et al. (1993) (mr =

1.08 (∆νdc

ν
)1/6). This is because the size of the dynamic spec-

tra simulated (70 min × 8.8 MHz) is not much larger than the
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Fig. B.3. Test on parameter ∆r: dynamic spectra computed at 1.41 GHz at the same telescope location and with the same integration surface size
S = (4rS)2 but with different grid step ∆r for the phase screen φK(m, n) in Eq. (4). The limits of the Kolmogorov spectrum are directly related
to ∆r and N as qmin =

1
N∆r and qmax =

1
2∆r . A full test would require to construct effectively several Kolmogorov phase screens in decreasing

∆r to modify qmax and in increasing N to keep the same qmin. This is very difficult to implement numerically (see text) and, instead, we have
simulated this effect in superimposing a corrugated surface onto the original phase screen. This surface is characterized by an amplitude δφ for
some spatial frequency q. The idea is to find out which perturbating surface δφ is required to modify significantly either the averaged intensity or
the morphology of the resulting dynamic spectrum. Our computation covered the following cases: δφ = 10◦ for q = 1

2 s0/8
; δφ = 18◦ for q = 1

2 s0/4
;

δφ = 32◦ for q = 1
2 s0/2

; δφ = 57◦ for q = 1
2 s0

; δφ = 101◦ for q = 1
4 s0

. These amplitudes δφ are derived from the phase structure function Dφ(s) for
the separations s = 1/8s0, s = 1/4s0, s = 1/2s0, s = 1s0, s = 2s0, respectively. The first panel of the figure shows the dynamic spectrum computed
with the original Kolmogorov screen (δφ = 0◦) constructed with C2

n = 10−3, z = 3.6 kpc, N = 217 and ∆r = s0/4. This test shows that qmax =
1

2 s0/2
,

i.e. ∆r = s0/2, is necessary to include all relevant Fourier components for the computation of dynamic spectra. The gray scale and contours are
the same for all panels. Unity corresponds to 1.1 MHz along the frequency axis (vertical) and to 8.8 min along the time axis (horizontal) with the
screen speed V = 50 km s−1.

Table B.3. Sensitivity of the averaged intensity and modulation index
to dxs

a.

Resolution dxs Sampling Nb of 〈I〉 Index m
of dyn. sp. intensities

1s0 8 × 8 69 1.57 0.54
s0/2 16 × 16 31 1.87 0.49
s0/4 32 × 32 18 1.98 0.49

a S = (4rS)2 and qmax =
1

2s0/4
kept fixed.

diffractive patches td ×∆νdc = 8.8min× 1.1 MHz (td = s0/V and
∆νdc = 1/(2πτS)). This size (70 min × 8.8 MHz) we used to

average out diffractive scintillation is not large enough and so we
have a blend of both refraction and diffraction into m. We note
also that the normalized intensity 〈I〉 is ∼1.5 rather than unity but
this is a statistical fluctuation. For instance, we found 〈I〉 = 0.77
and m = 0.51 for scintillation simulated along a full 4rS wide
track in another part of our large phase screen. In Fig. B.5, we
provide an example of 11 dynamic spectra 2.5 days apart and
their summed autocorrelation function. The visibility at σ = s0
(∼60%) in 〈E(s)E∗(s + σ)〉 = exp[−0.5(σ/s0)α] (Rickett 1988)
is closely delineated by the contours 65% in the 2D autorrela-
tion function of Fig. B.5. The half widths of this function are
∼4 min and ∼0.5 MHz and are consistent with the theoretical
values td = 8.8 min and ∆νdc = 1.1 MHz.
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Fig. B.4. Test on the parameter dxs: dynamic spectrum computed at 1.41 GHz at the same telescope location and with the same integration surface
S = (4rS)2 but with different spatial resolution dxs in reading the phase screen file. The phase screen φK (m, n) has been constructed with C2

n = 10−3,
z = 3.6 kpc, N = 217 and ∆r = s0/4. Only every other 4 pixels are read from the phase file into Eq. (5) in the case dxs = s0; only every other 2 pixels
for dxs = s0/2; every pixel for dxs = s0/4 matching ∆r = s0/4 in that case. The size of the dynamic spectrum is the same for the three panels,
70 min × 8.8 MHz, sampled over 8 × 8, 16 × 16 and 32 × 32 pixels, respectively, and unity is correspondingly 1.1 MHz, 0.55 MHz, 0.275 MHz
along the frequency axis (vertical) and 8.8 min, 4.4 min, 2.2 min along the time axis (horizontal) with the screen speed V = 50 km s−1. This test
shows that the spatial resolution dxs = s0 is sufficient to make the computation of dynamic spectra and averaged intensities 〈i(x′, λ)〉 convergent.

Fig. B.5. Sample of simulated dynamic spectra at 1.4 GHz and their summed autocorrelation function (last panel). All the dynamic spectra are
plotted with the same intensity scale, they are 1.25 days apart with the adopted screen speed V = 50 km s−1. They show a high variability
in morphology and averaged intensity as expected for pulsars. The structure in these dynamic spectra is similar to speckles seen in images at
optical wavelengths. Their summed autocorrelation provides a mean to measure the diffactive time scale and decorrelation bandwidth. We found
they match the theoretical values (see text). Unity corresponds to 0.275 MHz along the frequency axis (vertical) and to 2.2 min along the time
axis (horizontal) for both the dynamic spectra and the summed autocorrelation function. This simulation is done with C2

n = 10−3, z = 3.6 kpc,
dxs = ∆r = s0/4, N = 217 and S = (4rS)2.

In Fig. B.6, we compute the normalized autocorrelation
function (ac f (τ)/ac f (0)) of the time series of the intensity
shown in Fig. B.1 for the cases S = (4rS)2. This function shows

the slow decline, ∼10 days at half-maximum of ac f (1)/ac f (0),
expected because of the correlation induced by the long re-
fractive scales of the phase screen. This is consistent with the
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Fig. B.6. Autocorrelation function of the time series of the intensity computed with S = (4rS)2 and shown as filled triangles in Fig. B.1. The
refraction time scale of ∼10 days at half-maximum of this function is consistent with the theoretical value of 15 days.

theoretical refractive time scale τR = LθS/V (Rickett 1988) of
15 days with L = 1.8 kpc, V = 50 km s−1 and the scatter-
ing angle θS =

λ
2πs0
= 1.25 × 10−9 Rd, with λ = 0.21 m and

s0 = 2.66 × 107 m.
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