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investigated under the hypothesis of multivariate Gaussian and K-distribution models for the underlying complex scattering amplitudes [START_REF] Kong | Identification of terrain cover using the optimum polarimetric classifier[END_REF]- [START_REF] Lee | Polarimetric Radar Imaging: From Basics to Applications[END_REF]. The derivations presented in [START_REF] Kong | Identification of terrain cover using the optimum polarimetric classifier[END_REF]- [START_REF] Lee | Polarimetric Radar Imaging: From Basics to Applications[END_REF] are relevant but the connection with an electromagnetic model is not made [START_REF] Gardashov | Determination of the distribution of the number of specular points of a random cylindrical homogeneous Gaussian surface[END_REF]- [START_REF] Chen | Polarimetric simulations of SAR at L-band over bare soil using scattering matrices of random rough surfaces from numerical threedimensional solutions of Maxwell equations[END_REF].

In [START_REF] Afifi | On the co-polarized scattered intensity ratio of rough layered surfaces: The probability law derived from the small perturbation method[END_REF], we derive the closed-form expression for the probability distribution for the scattered intensity ratio for a stratified medium under a monochromatic plane wave illumination. The scattered intensities are derived from the first-order small perturbation method and we assumed slightly rough interfaces of infinite extent and centered Gaussian height distributions. For single-look signatures, the co-and cross-polarized intensity ratios follow heavy-tailed distributions which don't have finite mean and variance. In [START_REF] Afifi | The coand cross-polarized scattered intensity ratios for 3D layered structures with randomly rough interfaces[END_REF], we showed that the statistics of the co-and crosspolarized intensity ratios allow differentiating a stratification air/clayey soil/rock with or without snow cover. In [START_REF] Afifi | Statistical distribution of the Normalized Difference Polarization Index for 3-D layered structures with slightly rough interfaces[END_REF], we derive the statistics for the Normalized Difference Polarization Index (NDPI) which is defined as the ratio of the difference between two intensities under different polarizations on the sum of these two intensities. The NDPI therefore takes values between -1 and 1. Contrary to the intensity ratio, the first and second order statistical moment values of this discriminator are finite.

In the present paper, we are interested in the statistical properties of the co-and cross-polarized intensity ratios but for multilook configurations. We derive the theoretical expressions for the probability density function (PDF) and the cumulative distribution function (CDF) for a stratified medium bounded by random slightly rough interfaces under a plane wave illumination. The scattered intensities are given by the first-order SPM [START_REF] Afifi | Scattering by anisotropic rough layered 2D interfaces[END_REF]- [START_REF] Afifi | Electromagnetic scattering from 3D layered structures with randomly rough interfaces: Analysis with the small perturbation method and the small slope approximation[END_REF]. For electromagnetic signatures based on more than two looks, we show that the probability distribution has finite mean and variance. To our knowledge, it is the first time that the analytical expressions for the mean and variance and the CDF are found.

This paper is organized as follows. Section II is dedicated to the statistical properties of the stratified medium. Section III is devoted to the analytical expressions derived from the firstorder SPM for the scattering amplitudes and the scattered intensities. In section IV and appendix, we derive closed-form expressions for the PDF and CDF and for the mean and variance. In Section V, the theory is verified by comparison with Monte-Carlo results. ˆ( , ) () () exp 88
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The coefficient q is a mixing parameter with 1 q  [3], [START_REF] Afifi | The coand cross-polarized scattered intensity ratios for 3D layered structures with randomly rough interfaces[END_REF]. If 0 q  , both rough interfaces are uncorrelated, otherwise, they are fully or partially correlated.

A monochromatic h-or v-polarized plane wave of wavelength  impinges on the structure. The incident direction is defined by the wave vector 0 k and the angles 0  and 0  . The structure is composed of three different regions characterized by an isotropic and homogeneous permittivity. The top and bottom regions are half-spaces. The permeability of all regions is assumed to be 0  .

III. SCATTERED INTENSITY AS A RANDOM PROCESS

For an observation direction defined by the angles  and  (see Fig. 1), the first-order amplitudes of the co-and crosspolarized contributions of the field scattered in the upper region are derived from the SPM as follows [START_REF] Afifi | Scattering by anisotropic rough layered 2D interfaces[END_REF]:
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The subscript (a) gives the impinging plane wave polarization (h or v) and the subscript (b), the scattered wave polarization (h or v), respectively. The function ˆ( , ) 
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where the brackets denote a statistical average over the ensemble of realizations of () ( , ) ba I  .

IV. MULTILOOK INTENSITY RATIO STATISTICS

A. Scattering amplitudes as complex random variables Let () ( , )  , respectively. We assume that the height distributions of both interfaces are centered and Gaussian. Since any linear operator transforms a Gaussian process into another Gaussian process, we deduce that the first-order scattering amplitudes given by [START_REF] Afifi | Scattering by anisotropic rough layered 2D interfaces[END_REF] 
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We find from ( 5) and ( 6) that:
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B. Probability density function of the multilook intensity ratio

By using polar coordinates, we derive from the joint PDF of 
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The function 0 I denotes the zeroth-order modified Bessel function. The quantity r is the modulus of the correlation coefficient between the two complex random variables 

The n-look averaged intensity is defined as follows:
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We assume that the n-look intensities are means of n independent identically distributed random variables. Because the n-look intensities are identically distributed, all the random variables ( ), / 

    0 ( ), 0 ( ' ') ( ) ( ' ') ( ) ( ' ') '' 0 0 ' ' , 2 , ' ' ,, 
                           (16) 
where

1 n I  is the ( 1 n  )-th order modified Bessel function. Let ( ) ( ' ') ,( , ' ') / ba b a n ba b a V I I 
be the n-look intensity ratio.
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By substituting ( 16) into [START_REF] Mishra | A statistical-measure-based adaptive land cover classification algorithm by efficient utilization of polarimetric SAR observables[END_REF], we find:
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The PDF only depends on the three parameters n, r and 0 p . For 1 n  , we get the PDF for the single-look intensity ratio. It's a heavy-tailed distribution with infinite mean and variance.

The closed-form expression [START_REF] Lee | Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery[END_REF] has been established in [START_REF] Joughin | Probability density functions for multilook polarimetric signatures[END_REF] and [START_REF] Lee | Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery[END_REF]. The derivation begins with a multivariate Gaussian model for the underlying complex scattering amplitudes. But, our approach is not based on the a priori assumption that the complex scattering amplitudes follows a multivariate Gaussian distribution. For slightly rough interfaces with Gaussian height distributions, we establish this property in the context of the first-order SPM.

C. Cumulative density function of the multilook intensity ratio

We find from [START_REF] Lee | Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery[END_REF] the recurrence relation between
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By integration, we find from (21):
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Fv designates the CDF for the n- look intensity ratio. We write the (n+1)-look PDF as follows:
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In accordance with the following recursion formula [30, Eq.
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and we also establish that,
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By substituting ( 29) into ( 22) and using the relation [START_REF] Afifi | The coand cross-polarized scattered intensity ratios for 3D layered structures with randomly rough interfaces[END_REF], after some algebraic manipulations, we obtain a mathematical recurrence formula for the CDF:
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Finally, we obtain from (30) the analytical expression of ,( ' ') , ()
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where the function Fv is the CDF for a single-look intensity ratio. We established in [START_REF] Afifi | On the co-polarized scattered intensity ratio of rough layered surfaces: The probability law derived from the small perturbation method[END_REF] 
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This is new compared to previous works on the n-look intensity ratio statistics. We find from (31) that for any n, 

D. Mean and variance of the multilook intensity ratio

Using the recurrence formula (26), we show that the mean ,( , ' ') n ba b a V  of ,( , ' ')

n ba b a V exists if 1 n  with, 2 0 ,( , ' ') () ( 1) 
n ba b a n r p V n     (33) 
and that the variance ,( , ' ') increase linearly with 0 p . The limit of the mean is 0 p as n tends to infinity and, the limit of the variance is zero. When n goes to infinity, the intensity ratio value is no longer random.

For uncorrelated scattered amplitudes

(1) () ba A and (1) ( ' ') ba A , 0 r  . For this case, the multilook intensity ratio follows a Fisher distribution for which the closed-form expressions for the mean and variance are well known [START_REF] Kendall | Kendull's Avdanced Theory of Statistics[END_REF]. To the best of our knowledge, it is the first time that the analytical expressions for the mean and variance for correlated scattered amplitudes are found.

V. NUMERICAL RESULTS

We consider a two-layer rough ground. The wavelength  is equal to 24 cm. The relative dielectric constants of the ground layers are 2 4.66-0.29 

 

for the upper and lower surfaces, respectively. A 5cm-thickness ( 0 u in Fig. 1) is assumed for the middle layer [START_REF] Boisvert | Effect of surface soil moisture gradients on modelling radar backscattering from bare fields[END_REF]. The Gaussian spectrum of the upper interface is anisotropic with the correlation lengths in the backscattering direction. The theoretical probability law obtained for surfaces of infinite extent is given by [START_REF] Lee | Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery[END_REF]. The histograms are estimated over results associated with 2 13 surface realizations where 20 L   [START_REF] Afifi | The coand cross-polarized scattered intensity ratios for 3D layered structures with randomly rough interfaces[END_REF]. The probability law is representative of the values which the intensity ratio can take and does not lose some details as for the statistical averages. The agreement between the theoretical probability law with the histogram obtained from Monte-Carlo simulations is very good for each value of n and validates the theory for the co-polarized intensity ratio in the backscattering direction.

Given the simulation parameter values, the correlation coefficient r is equal to 0.994 and therefore, the co-polarized scattering amplitudes (1) () hh In the plane perpendicular to the incidence plane, there is a depolarization and we established in the context of the firstorder perturbation theory that the cross-polarized intensity ratio is only defined for a (v)-polarized impinging plane wave [START_REF] Dusséaux | Statistical distributions of the coand crosspolarized phase differences of stratified media[END_REF]. Fig. 5 shows the theoretical PDF of ,( , ) ( 30 , 90 ) n hv vv V       and the associated histogram for four values of n. Given simulation parameter values, the correlation coefficient r is equal to 0.872 and therefore, the co-polarized scattering amplitude (1) () vv A and the cross-polarized amplitude (1) () hv

A are strongly correlated. The parameter 0 p is equal to 11. vp  so that the ratio mean approaches 0 p and the maximum value increases. As previously mentioned, the histograms are estimated from 2 13 realizations over areas of 2 400 . We find a very good agreement between the histograms and the corresponding theoretical probability laws for the four values of the number of looks. Fig. 6 shows the theoretical CDF and the CDF estimated from Monte-Carlo simulation data. For each value of n, the two curves are superimposed and this comparison validates the analytical formulation for the CDF for the cross-polarized ratio. At 1, n  the distribution has a heavy tail and as a result, the CDF converges very slowly towards 1 as the ratio tends to positive infinity. As n increases, the convergence is faster. Fig. 7 gives the values of the theoretical mean and standard deviation for the variable ,( , ) ( 30 , 90 ) n hv vv V       and the values estimated over Monte-Carlo simulations versus the number of looks. As previously in the backscattered the mean ,( , ) n hv vv V  quickly converges towards the median 0 p and for large values of n , the standard deviation ,( , ) n hv vv V  decreases in 1/ n . The comparison is satisfactory and validates the closed-form expressions for the mean and variance for the multilook cross-polarized intensity ratio. For 2  , there is a slight difference between the estimated and theoretical mean values and for 3 n  , a weak difference for the variance values, respectively. This difference decreases when increasing the area LL  .

VI. CONCLUSION

We have derived the theoretical statistics for multilook intensity ratios for 3-D layered structures under a monochromatic plane wave illumination. The derivation begins with a multivariate Gaussian model for the underlying complex scattering amplitudes. In contrast to previous works [START_REF] Joughin | Probability density functions for multilook polarimetric signatures[END_REF]- [START_REF] Lee | Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery[END_REF], our approach is not based on the a priori assumption that the complex scattering amplitudes follow a multivariate Gaussian distribution. For slightly rough interfaces with an infinite extent and centered Gaussian height distributions, we establish this property in the context of the first-order small perturbation method.

Assuming that the n-look intensities are means of n independent identically distributed single look intensities, we obtain a 3-parameter probability distribution and we show that the PDF and CDF only depend on the number of looks n, the correlation coefficient r between the complex scattering amplitudes under study and the ratio 0 p between the associated average single-look intensities. We have shown that the parameter 0 p is the median of the n-look intensity ratio for any value of n and that the mean exists for 1 n  and the variance for 2 n  , respectively. The mean and the standard deviation of the n-look intensity ratio increase linearly with 0 p . The limit of the mean is 0 p as n tends to infinity and for large values of n , the standard deviation decreases in 1/ n . The obtained formulae are derived from the first-order SPM and they are valid for slightly rough interfaces only. For a two-layer rough ground, the analytical results were compared with those derived from Monte Carlo simulations. We have assumed an upper interface with an anisotropic Gaussian spectrum and a lower interface with an isotropic one. Both random surfaces are partially correlated. The stratified medium is studied in the backscattering direction and in the transverse plane. The analytical formulas assume rough interfaces with infinite extent. Nevertheless, we have shown by Monte-Carlo simulations that these analytical expressions can be used for surfaces of a few hundred wavelength squared. The agreement between simulated data and theory is observed to be very good for the probability density function, the cumulative density function, the mean and the standard deviation for the co-and cross-polar ratios. We have considered random processes with Gaussian spectra and crossspectra but the analytical results established in the paper can be used for all random processes with finite memory and for an arbitrary number of interfaces. 
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and after some mathematical calculations, we find: 
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   and ( ' ') ( , ) ba I  be the (b)-and (b')-polarized contributions of the scattered intensity under the (a)-and (a')polarized incident waves, respectively. In a first stage, we determine the probability law for the multilook intensities and finally, the probability law for the multilook intensity ratios. Let () ( , ) ba R  and () ( , ) ba J  be the real and imaginary parts of the scattering amplitude (1) () ( , ) ba A  and let ( ' ') ( , ) ba R  and ( ' ') ( , ) ba J  be the real and imaginary ones of (1) ( ' ') ( , ) ba A
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 1 Fig. 1. Structure with two nonparallel interfaces
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  the n-look intensities are independent random variables, the joint probability law ( times[28, chap. 5]. For determining this joint PDF, we also use, as in[START_REF] Joughin | Probability density functions for multilook polarimetric signatures[END_REF], the properties of the two-dimensional Laplace transform of 0 ( ), 0 ( ' ') derivation is included in the appendix and gives the following analytical expression, ( ) ( ' ')
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  for any value of n.
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  surfaces are partially correlated with a correlation coefficient[START_REF] Déchamps | Electromagnetic scattering from a rough layer: Propagation-inside-layer expansion method combined to the forward-backward novel spectral acceleration[END_REF]  equal to 0.2. The incident wave vector angles 0  and 0  are equal to 30° and 0°. Fig.2shows the PDFs of the co-polarized intensity ratio ,( , ) n hh vv V

  shown by Fig.2, as the number of looks increases, the PDF curve becomes narrower and concentrated near 0 p because multilook processing reduces the statistical variation and this causes an increase of the maximum value of the PDF.

Fig. 3

 3 Fig.3shows the theoretical CDF and the CDF estimated from the set of realizations of the co-polarized scattered intensities. For each value of n, the two curves are superimposed. As the number of looks increases, the CDF becomes a staircase function about the value 0 p because the reduction of the statistical variation by the multilook processing.
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 2 Fig.2. Theoretical PDF of random variable ,( , )( 30 , 0 ) n hh vv V
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 34 Fig. 3. Theoretical CDF of random variable ,( , ) ( 30 , 0 ) n hh vv V

  a result, for this medium under consideration, the depolarization is strong within the transverse plane. At 1, n  the random variable 1,( , ) hv vv V follows a heavytailed law and has a large amount of skewness. As n increases, the PDF starts to become symmetrical about 0

Fig. 5 .Fig. 6 .

 56 Fig.5. Theoretical PDF of random variable ,( , )( 30 , 90 ) n hv vv V
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 7 Fig. 7. Values of theoretical means and standard deviation of ,( , ) ( 30 , 90 ) n hv vv V

  The two-dimensional Laplace Transform (LT2) of

  As shown in Fig.1, the structure we consider is a stack of two surfaces separating three media. The rough surfaces are randomly deformed over an area LL  . The quantity 0
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  By using the following relationship found in the Laplace transform table[29, pp. 245, Eq. 9],
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	transforms,		
										
		p	( ) ( ' ') , ba b a II	( , ) w w  	22 00 2 1 np r     	n	1  1 TL	00 2 np 1 1 r   s           	n	(A7)
	2 2 2 0 0 22 ) ( ' 1 r n p np 10 2 p rs  0 2 (1 n 1 r    1 / ) n s                        r Knowing that 1 1 TL  
	 the relationship (A7) becomes:  1 1 ( 1)! exp( ) () n n n TL w aw     sa	(A8)
	p	( ) ( ' ') , ba b a II	22 0 0 22 1 0 exp 1 ( 1)! 1 n n n p n w r n r     w    ( , ) w w      
		2 2 2 0 0 22 ) ( ' 1 r n p w np 00 2 rs r  / ' 1 ) n p 0 0 2 s r    exp (1 n                  1 1 TL   	(A9)
	1 11 ( 1)/ 2 exp( / ) ( / ) n n n as TL w a I s      	(2	aw	)	(A10)

We find the closed-form formula
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giving the joint PDF for the multilook intensities () ba I and ( ' ') ba I .