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   Abstract— We derive the statistics for the multilook intensity 

ratio for a multilayered medium bounded by randomly rough 

surfaces. Calculations are carried out in the context of the first-

order small perturbation method and assume slightly rough 

surfaces of infinite extent and centered Gaussian height 

distributions. We show that the probability distributions for the 

co-polar and cross-polarized intensity ratios for n-look data are 

functions of three parameters and that the mean exists for 1n   

and the variance for 2n  . The obtained theoretical expressions 

are verified by comparison with Monte-Carlo results. 

 
Index Terms— Multilook intensity ratio, layered rough 

surfaces, scattering amplitudes, small perturbation method. 

I. INTRODUCTION 

CATTERING of electromagnetic waves from rough 

surfaces or multilayered media bounded by randomly 

rough interfaces is encountered in a large number of 

physical problems, for remote sensing, civil engineering, 

geophysics or optics applications. The Small Perturbation 

Method (SPM) is often used for the analysis of these 

scattering phenomena. This model is based on Taylor series of 

the scattering amplitudes and of the boundary value problem 

and gives closed-form expressions for the coherent and 

incoherent scattered intensities [1]-[9]. The rigorous methods 

associated with numerical techniques have the advantage that 

they do not rely on simplifying approximations [10-15]. But, 

they require the computation of solutions for a large number 

of realizations of rough surfaces or multilayered media. 

Within its domain of validity [6]-|8], the SPM allows a fast 

analysis unlike to the high computational burden of numerical 

solutions. 

Polarimetric synthetic aperture radar has proven to be an 

efficient tool for geophysical remote sensing [16]. The co- and 

cross-polarized intensity ratios are widely used indicators for 

the analysis of polarimetric data [17]. To reduce statistical 

variations, polarimetric radars use the multilook processing by 

averaging spatially the backscattered intensities. The statistics 

of single-look and multilook polarimetric SAR data have been 
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investigated under the hypothesis of multivariate Gaussian and 

K-distribution models for the underlying complex scattering 

amplitudes [18]-[21]. The derivations presented in [18]-[21] 

are relevant but the connection with an electromagnetic model 

is not made [22]-[24]. 

In [25], we derive the closed-form expression for the 

probability distribution for the scattered intensity ratio for a 

stratified medium under a monochromatic plane wave 

illumination. The scattered intensities are derived from the 

first-order small perturbation method and we assumed slightly 

rough interfaces of infinite extent and centered Gaussian 

height distributions. For single-look signatures, the co- and 

cross-polarized intensity ratios follow heavy-tailed 

distributions which don’t have finite mean and variance. In 

[26], we showed that the statistics of the co- and cross-

polarized intensity ratios allow differentiating a stratification 

air/clayey soil/rock with or without snow cover. In [27], we 

derive the statistics for the Normalized Difference Polarization 

Index (NDPI) which is defined as the ratio of the difference 

between two intensities under different polarizations on the 

sum of these two intensities. The NDPI therefore takes values 

between – 1 and 1. Contrary to the intensity ratio, the first and 

second order statistical moment values of this discriminator 

are finite. 

In the present paper, we are interested in the statistical 

properties of the co- and cross-polarized intensity ratios but 

for multilook configurations. We derive the theoretical 

expressions for the probability density function (PDF) and the 

cumulative distribution function (CDF) for a stratified medium 

bounded by random slightly rough interfaces under a plane 

wave illumination. The scattered intensities are given by the 

first-order SPM [3]-[4]. For electromagnetic signatures based 

on more than two looks, we show that the probability 

distribution has finite mean and variance. To our knowledge, it 

is the first time that the analytical expressions for the mean 

and variance and the CDF are found. 

This paper is organized as follows. Section II is dedicated to 

the statistical properties of the stratified medium. Section III is 

devoted to the analytical expressions derived from the first-

order SPM for the scattering amplitudes and the scattered 

intensities. In section IV and appendix, we derive closed-form 

expressions for the PDF and CDF and for the mean and 

variance.  In Section V, the theory is verified by comparison 

with Monte-Carlo results. 
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II.  ANALYZED STRUCTURE  

As shown in Fig. 1, the structure we consider is a stack of 

two surfaces separating three media. The rough surfaces are 

randomly deformed over an area L L . The quantity 0u  

designates the layer average thickness. The two boundaries are 

located at the height 1( , )z a x y  and 2 0( , )z a x y u  . They 

are realizations of second order stationary, centered Gaussian 

stochastic processes with Gaussian spectrum ˆ ( , )iiR   : 

2 2 2 2

2ˆ ( , ) exp
4

xi yi

ii i xi yi

l l
R l l

 
   

 
   

 

       (1) 

There are two distinct correlation lengths, xil  and yil . The i-th 

interface is isotropic if xi yil l  and anisotropic if xi yil l .  

The rms-heights i  are small numbers compared to the 

incident wavelength and the gradients of the surface height 

functions ( , )ia x y  are much smaller than 1 so that the 

perturbation method may be used to study wave scattering [6]-

[8].  

The cross-spectrum 12
ˆ ( , )R    is given in the following form: 

12 1 2 1 2 1 2

2 22 2
1 22 21 2

ˆ ( , )

( )( )
               exp

8 8

x x y y

y yx x

R q l l l l

l ll l

    

 



 
   

  

     (2) 

The coefficient q  is a mixing parameter with 1q   [3], [26]. If 

0q  , both rough interfaces are uncorrelated, otherwise, they 

are fully or partially correlated. 

A monochromatic h- or v-polarized plane wave of 

wavelength   impinges on the structure. The incident 

direction is defined by the wave vector 0k  and the angles 0  

and 0 . The structure is composed of three different regions 

characterized by an isotropic and homogeneous permittivity. 

The top and bottom regions are half-spaces. The permeability 

of all regions is assumed to be 0 . 

III.  SCATTERED INTENSITY AS A RANDOM PROCESS  

For an observation direction defined by the angles   and   

(see Fig. 1), the first-order amplitudes of the co- and cross-

polarized contributions of the field scattered in the upper 

region are derived from the SPM as follows [3]: 

(1)

1,( ) 1,( ) 1 0 0

2,( ) 2 0 0

ˆ( , ) ( , ) ( , )

ˆ                   ( , ) ( , )

ba ba

ba

A K a

K a

       

     

  

  
     (3) 

with sin cosk   , sin sink   , 0 0 0sin cosk   , 

0 0 0sin sink    and 2 /k   . The subscript (a) gives the 

impinging plane wave polarization (h or v) and the subscript 

(b), the scattered wave polarization (h or v), respectively. The 

function ˆ ( , )ia    is the Fourier transform of the 

function ( , )ia x y . The quantities ,( ) ( , )i baK   are the first-order 

SPM kernels [3]. 

The normalized scattered intensity ( )baI  is defined as the 

power scattered per unit of solid angle divided by the incident 

power. In the direction ( , ), the first-order perturbation 

theory gives ( )baI  as follows [3], 

2
2

(1)0
( ) ( )2

cos
( , ) ( , )

cos
ba baI A

 
   


           (4) 

where 
(1) (1)

( ) ( )( , ) ( , ) /ba baA A L    . The scattered intensity 

( ) ( , )baI    depends on rough boundary height profile 

realizations and for a given direction, it is a random variable. 

When L  , the mean of  ( ) ( , )baI    is given by, 

( )

2 2 2
*0
,( ) ,( ) 0 02

1 1

( , )

cos ˆ     Re[ ( , )]
cos

ba

i ba j ba ij

i j

I

K K R

 

 
   

  

 

 
  (5) 

where the brackets denote a statistical average over the 

ensemble of realizations of ( ) ( , )baI   . 

IV. MULTILOOK INTENSITY RATIO STATISTICS 

A. Scattering amplitudes as complex random variables 

Let ( ) ( , )baI    and ( ' ') ( , )b aI    be the (b)- and (b’)-polarized 

contributions of the scattered intensity under the (a)- and (a’)-

polarized incident waves, respectively. In a first stage, we 

determine the joint PDF 
( ) ( ' '), ( , )
ba b aI Ip w w  for the single-look 

data ( ) ( , )baI    and ( ' ') ( , )b aI   . In a second stage, we derive 

from the closed-form formula of 
( ) ( ' '), ( , )
ba b aI Ip w w  the joint 

probability law for the multilook intensities and finally, the 

probability law for the multilook intensity ratios.  

Let ( ) ( , )baR    and ( ) ( , )baJ    be the real and imaginary 

parts of the scattering amplitude 
(1)

( ) ( , )baA    and let 

( ' ') ( , )b aR    and ( ' ') ( , )b aJ    be the real and imaginary ones of 

(1)

( ' ') ( , )b aA   , respectively. We assume that the height 

distributions of both interfaces are centered and Gaussian. 

 
 

Fig. 1.  Structure with two nonparallel interfaces 
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Since any linear operator transforms a Gaussian process into 

another Gaussian process, we deduce that the first-order 

scattering amplitudes given by (3) are Gaussian processes and 

that the joint PDF of the random variables ( ) ( , )baR   , 

( ) ( , )baJ   , ( ' ') ( , )b aR    and ( ' ') ( , )b aJ    is a four-dimensional 

Gaussian function. So, it is necessary to determine the 

covariance matrix characterizing this Gaussian law. Insofar as 

the rough surface height distributions are centered, the random 

variables ( ) ( , )baR   , ( ) ( , )baJ   , ( ' ') ( , )b aR    and ( ' ') ( , )b aJ    

are also centered. We showed in [3] that the random variables 

( ) ( , )baR    and ( ) ( , )baJ    (respectively, ( ' ') ( , )b aR    and 

( ' ') ( , )b aJ   ) are asymptotically uncorrelated (when L  ) 

with equal variances 
2

baR . The random variables ( ) ( , )baR    

and ( ' ') ( , )b aR    are correlated with a covariance 
' 'ba b aR R  and 

likewise, the random variables ( ) ( , )baR    and ( ' ') ( , )b aJ    are 

also correlated with a covariance 
' 'ba b aR J . These statistical 

moments are defined as follows [3], [25]: 

2 2
2 *

,( ) ,( ) 0 0

1 1

1 ˆRe[ ( , )]
2baR i ba j ba ij

i j

K K R    
 

      (6) 

' '

2 2
*

,( ) ,( ' ') 0 0

1 1

1 ˆRe[ ( , )]
2ba b aR R i ba j b a ij

i j

K K R    
 

     (7) 

' '

2 2
*

,( ) ,( ' ') 0 0

1 1

1 ˆIm[ ( , )]
2ba b aR J i ba j b a ij

i j

K K R    
 

     (8) 

We find from (5) and (6) that: 

2
20

( ) 2

cos
( , ) 2

cos baba RI
 

  


            (9) 

 

B. Probability density function of the multilook intensity ratio  

By using polar coordinates, we derive from the joint PDF of 

( )baR , ( )baJ , ( ' ')b aR  and ( ' ')b aJ   the 4D-PDF of modulus ( )baM  

and ( ' ')b aM  and phases ( )ba  and ( ' ')b a  of scattering 

amplitudes 
(1)

( ) ( , )baA    and 
(1)

( ' ') ( , )b aA   . By integrating over 

the phases, we obtain the joint PDF 
( ) ( ' '), ( , )
ba b aM Mp m m  of the 

modulus ( )baM  and ( ' ')b aM  and we find from 

( ) ( ' '), ( , )
ba b aM Mp m m  the joint probability law 

( ) ( ' '), ( , )
ba b aI Ip w w  for 

the intensities ( )baI  and ( ' ')b aI  [25], 

( ) ( ' ')

2

0 0 0
, 02 2

0 0

0 2

( , ) exp ( )
1 1

2
                        

1

ba b aI I

p
p w w w p w

r r

r p ww
I

r

 



 
      

 
  

  

    (10) 

where 

' '

2

( )

0 2

( ' ')

( , )

( , )

ba

b a

R ba

R b a

I
p

I

  

  

 
 

 
            (11) 

and  
2

0
0 2 2

cos

2 cos
baR

 


 
                 (12) 

The function 0I  denotes the zeroth-order modified Bessel 

function. The quantity r  is the modulus of the correlation 

coefficient between the two complex random variables 
(1)

( ) ( , )baA    and 
(1)

( ' ') ( , )b aA    with 0 1r  : 

' ' ' '

' '

2 2

2 2

ba b a ba b a

ba b a

R R R I

R R

r
 

  
                (13) 

The n-look averaged intensity is defined as follows: 

( ) ( ),

1

1 n

ba ba i

i

I I
n 

                  (14) 

We assume that the n-look intensities are means of n 

independent identically distributed random variables. Because 

the n-look intensities are identically distributed, all the random 

variables ( ), /ba iI n  (1 i n  ) follows the same probability law 

0( ), 0( ' ') 0 0 ' '( , )
ba b aI I ba b ap w w  with: 

 

 

0( ), 0( ' ') ( ) ( ' ')

( ) ( ' ')

' '
0 0 ' '

,

2

, ' '

, ,

                                  ,

ba b a ba b a

ba b a

ba b a
I I ba b a I I

n n

I I ba b a

w w
p w w p

n n

n p nw nw

 
  

 



     (15) 

Because the n-look intensities are independent random 

variables, the joint probability law 
( ) ( ' ') ' ',

( , )
ba b a ba b aI I

p w w  is 

found by convolving 
0( ), 0( ' ') 0 0 ' '( , )

ba b aI I ba b ap w w  with itself 

1n  times [28, chap. 5]. For determining this joint PDF, we 

also use, as in [19], the properties of the two-dimensional 

Laplace transform of 
0( ), 0( ' ') 0 0 ' '( , )

ba b aI I ba b ap w w . The 

mathematical derivation is included in the appendix and gives 

the following analytical expression,  

( ) ( ' ')

1 1 ( 1)/2

0 0 0

1 2,

0 0
0 1 02 2

( )
( , ')

(1 ) ( 1)!

2
        exp ( )

1 1

ba b a

n n n

nI I

n

p n p ww
p w w

r r n

n rn
w p w I p ww

r r



 

  








 

   
      

    

 (16) 

where 1nI   is the ( 1n )-th order modified Bessel function. 

Let ( ) ( ' '),( , ' ') /ba b an ba b aV I I  be the n-look intensity ratio. 

Finally, we obtain the PDF for the ratio ,( , ' ')n ba b aV as follows: 

,( ' ') ( ) ( ' '), ,0
( ) ( , )

n ba b a ba b aV I I
p v w p vw w dw



           (17) 

By substituting (16) into (17), we find: 

,( ' ')

1 1 ( 1)/2 ( 1)/2

0 0
, 1 2 0

0 0
1 0 02 2

( )
(1 ) ( 1)!

2
exp ( )

1 1

n ba b a

n n n n
n

V n

n

n v p
p v w

r r n

rn n
I p vw v p w dw

r r



 

   







 

   
       

    


  (18) 
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By using the following relation found in the Laplace transform 

table [29, p. 73, Eq. 6],  

 
1

1 2 2 1/20

2 ( 1 / 2)
( ) exp

( )

n n
n

n n

n a s
x I ax sx dx

s a




 

 
 


    (19) 

where the letter   designates the Gamma function, we get the 

probability distribution 
,( ' '), ( )

n ba b aVp v  for the multilook intensity 

ratio: 

,( ' ')

2 1

0 0
, 1/2

2 2 2

0 0

(1 ) ( )(2 )
( )

( ) ( ) 2 (1 2 )
n ba b a

n n n

V n

r p v v pn
p v

n n v vp r p





 

      

  (20) 

The PDF only depends on the three parameters n, r  and 

0p . For 1n  , we get the PDF for the single-look intensity 

ratio.  It’s a heavy-tailed distribution with infinite mean and 

variance. 

The closed-form expression (20) has been established in 

[19] and [20]. The derivation begins with a multivariate 

Gaussian model for the underlying complex scattering 

amplitudes. But, our approach is not based on the a priori 

assumption that the complex scattering amplitudes follows a 

multivariate Gaussian distribution. For slightly rough 

interfaces with Gaussian height distributions, we establish this 

property in the context of the first-order SPM. 

 

C.  Cumulative density function of the multilook intensity ratio 

We find from (20) the recurrence relation between 

,( ' '), ( )
n ba b aVp v  and 

1,( ' '), ( )
n ba b aVp v


: 

1,( ' ')

,( ' ')

2
2 0

0 ,

2

0 ,

2 (1 2 ) ( )

2 1
2(1 ) ( )

n ba b a

n ba b a

V

V

p
v p r p v

v

n
r p p v

n



 
    

 




        (21) 

By integration, we find from (21): 

1,( ' ') 1,( ' ')

1,( ' ')

,( ' ')

2

0 , ,

0

,2 2

0 0 ,

0

2 (1 2 ) ( ) ( )

( ) 2 1
2(1 ) ( )

n ba b a n ba b a

n ba b a

n ba b a

v

V V

v
V

V

p r F v xp x dx

p x n
p dx r p F v

x n

 



 


  





   (22) 

where the function 
,( ' '), ( )

n ba b aVF v  designates the CDF for the n-

look intensity ratio. We write the (n+1)-look PDF as follows: 

1,( ' ')

0

, 1 1 1/2

( )
( )

( )n ba b a

n

V n n

v v p
p v q

R v   


             (23) 

where 
2( )R v cv bv a    with, 

2

0

2

02 (1 2 )

1

a p

b p r

c

 


 
 


                (24) 

and, 

2 1 1

1 0

(2 2)
(1 )

( 1) ( 1)

n n

n

n
q r p

n n

 



 
 
   

         (25) 

In accordance with the following recursion formula [30, Eq. 

(2.263), p.95] with 2m n , 

 
1

, 1,1/2

2,

(2 2 1)

( 2 ) 2( 2 )

( 1)
          

( 2 )

m

m n m nn

m n

x m n b
K K

m n cR m n c

m a
K

m n c







   
  

  






    (26) 

where 

, 1/2

m

m n n

x
K dx

R 
                  (27) 

we find from (23), 

1 1 1, 1 1 0 , 1( )n n n n n n nF v q K q p K                 (28) 

and we also establish that, 

 

1
1

0 0

1 2, 1 0 1, 1 , 1 0 1, 1

( )
( )

v v

n
n

n n n n n n n n n

p x
xp x dx a dx

x

q K p K aK ap K




       

 

  

 
    (29) 

By substituting (29) into (22) and using the relation (26), after 

some algebraic manipulations, we obtain a mathematical 

recurrence formula for the CDF: 

1,( ' ') ,( ' ')

0
, ,( ) ( )

n ba b a n ba b a

n

V V n

v p v
F v F v q

RR


  
   

 
   (30) 

Finally, we obtain from (30) the analytical expression of 

,( ' '), ( )
n ba b aVF v : 

,( ' ') 1,( ' ')

0
, ,

2 2 2

0 0

21
0

2 2 2
1 0 0

( ) ( )
2 (1 2 )

(1 )(2 )

( ) ( ) 2 (1 2 )

n ba b a ba b aV V

m
n

m

v p
F v F v

v vp r p

r p vm

m m v vp r p






 

  

 
  

     
              

  (31) 

where the function 
1,( ' '), ( )

ba b aVF v  is the CDF for a single-look 

intensity ratio. We established in [25] that 

1,( ' ')

0

,
2 2 2

0 0

1
( )

2 2 2 (1 2 )
ba b aV

v p
F v

v vp r p


 

  
             (32) 

This is new compared to previous works on the n-look 

intensity ratio statistics. We find from (31) that for any n, 

0 1 0( ) ( ) 0.5nF p F p  . As a result, the median of ,( , ' ')n ba b aV  is 

0p  for any value of n. 

 

D.  Mean and variance of the multilook intensity ratio 

Using the recurrence formula (26), we show that the mean 

,( , ' ')n ba b aV   of ,( , ' ')n ba b aV  exists if 1n   with, 

2

0

,( , ' ')

( )

( 1)
n ba b a

n r p
V

n


 


            (33) 

and that the variance 
,( , ' ')

2

n ba b aV is finite only for 2n   with, 
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 

,( , ' '

2
2 0

) 2

2 2 2

( 1) ( 2)

(2 1) 4( 1)(1 ) (2 )

n ba b aV

p

n n

n n r n r n n r

 
 

                   

 (34) 

The mean ,( , ' ')n ba b aV   and the standard deviation 
,( , ' ' )n ba b aV  

increase linearly with 0p . The limit of the mean is 0p  as n 

tends to infinity and, the limit of the variance is zero. When n 

goes to infinity, the intensity ratio value is no longer random.  

For uncorrelated scattered amplitudes (1)

( )baA  and (1)

( ' ')b aA , 

0r  . For this case, the multilook intensity ratio follows a 

Fisher distribution for which the closed-form expressions for 

the mean and variance are well known [31]. To the best of our 

knowledge, it is the first time that the analytical expressions 

for the mean and variance for correlated scattered amplitudes 

are found. 

 

V.  NUMERICAL RESULTS 

We consider a two-layer rough ground.  The wavelength   

is equal to 24 cm. The relative dielectric constants of the 

ground layers are 2 4.66-0.29r j   and 3 8.75 0.85r j    at 

1.25 GHz [32]. The rms-heights are 1 0.5 cm   and 

2 0.4 cm  for the upper and lower surfaces, respectively. A 

5cm-thickness ( 0u  in Fig. 1) is assumed for the middle layer 

[33]. The Gaussian spectrum of the upper interface is 

anisotropic with the correlation lengths 1 5 cmxl   and 

1 4 cmyl  . The lower interface spectrum is isotropic with 

2 2 6 cmx yl l  . Both random surfaces are partially correlated 

with a correlation coefficient 12  equal to 0.2. The incident 

wave vector angles 0  and 0  are equal to 30° and 0°. 

Fig. 2 shows the PDFs of the co-polarized intensity ratio 

,( , )n hh vvV  in the backscattering direction. The theoretical 

probability law obtained for surfaces of infinite extent is given 

by (20). The histograms are estimated over results associated 

with 213 surface realizations where 20L  [26]. The 

probability law is representative of the values which the 

intensity ratio can take and does not lose some details as for 

the statistical averages. The agreement between the theoretical 

probability law with the histogram obtained from Monte-Carlo 

simulations is very good for each value of n and validates the 

theory for the co-polarized intensity ratio in the backscattering 

direction. 

Given the simulation parameter values, the correlation 

coefficient r is equal to 0.994 and therefore, the co-polarized 

scattering amplitudes 
(1)

( )hhA  and
(1)

( )vvA  are strongly correlated. 

The parameter 0p  is equal to 0.542, which means that 

( ) ( )0.542hh vvI I    . As shown by Fig. 2, as the number 

of looks increases, the PDF curve becomes narrower and 

concentrated near 0p  because multilook processing reduces 

the statistical variation and this causes an increase of the 

maximum value of the PDF. 

 

Fig. 3 shows the theoretical CDF and the CDF estimated 

from the set of realizations of the co-polarized scattered 

intensities. For each value of n, the two curves are 

superimposed. As the number of looks increases, the CDF 

becomes a staircase function about the value 0p  because the 

reduction of the statistical variation by the multilook 

processing. 

Fig.4 compares the values of the theoretical mean and 

standard deviation of ,( , ) ( 30 , 0 )n hh vvV        with the 

values estimated over Monte-Carlo simulations versus the 

number of looks. The comparison is conclusive.  These curves 

show that the mean ,( , )n hh vvV   quickly converges towards 

the median 0p  and for large values of  n , the standard 

Fig. 2. Theoretical PDF of random variable ,( , ) ( 30 , 0 )n hh vvV        and 

normalized histogram for n=1, 2, 4 and 8. 

 

Fig. 3. Theoretical CDF of random variable ,( , ) ( 30 , 0 )n hh vvV        and 

CDF estimated from Monte-Carlo simulations for n=1, 2, 4 and 8. 
 

 
Fig. 4. Values of theoretical means and standard deviation of 

,( , ) ( 30 , 0 )n hh vvV        and values estimated over Monte-Carlo 

simulations versus number of looks 
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deviation 
,( , )n hh vvV decreases in 1 / n . 

In the plane perpendicular to the incidence plane, there is a 

depolarization and we established in the context of the first-

order perturbation theory that the cross-polarized intensity ratio 

is only defined for a (v)-polarized impinging plane wave [34]. 

Fig. 5 shows the theoretical PDF of ,( , ) ( 30 , 90 )n hv vvV        

and the associated histogram for four values of n. Given 

simulation parameter values, the correlation coefficient r  is 

equal to 0.872 and therefore, the co-polarized scattering 

amplitude 
(1)

( )vvA  and the cross-polarized amplitude 
(1)

( )hvA  are 

strongly correlated. The parameter 0p  is equal to 11.2 and 

( ) ( )11.2hv vvI I    . As a result, for this medium under 

consideration, the depolarization is strong within the transverse 

plane.  At 1,n   the random variable 1,( , )hv vvV  follows a heavy-

tailed law and has a large amount of skewness. As n  increases, 

the PDF starts to become symmetrical about 0v p  so that the 

ratio mean approaches 0p  and the maximum value increases. 

As previously mentioned, the histograms are estimated from 

213 realizations over areas of 
2400 . We find a very good 

agreement between the histograms and the corresponding 

theoretical probability laws for the four values of the number of 

looks. 

Fig. 6 shows the theoretical CDF and the CDF estimated 

from Monte-Carlo simulation data. For each value of n, the 

two curves are superimposed and this comparison validates 

the analytical formulation for the CDF for the cross-polarized 

ratio. At 1,n   the distribution has a heavy tail and as a result, 

the CDF converges very slowly towards 1 as the ratio tends to 

positive infinity. As n increases, the convergence is faster. 

Fig.7 gives the values of the theoretical mean and standard 

deviation for the random variable ,( , ) ( 30 , 90 )n hv vvV        

and the values estimated over Monte-Carlo simulations versus 

the number of looks. As previously in the backscattered 

direction, the mean ,( , )n hv vvV   quickly converges towards the 

median 0p  and for large values of n , the standard deviation 

,( , )n hv vvV decreases in 1 / n . The comparison is satisfactory 

and validates the closed-form expressions for the mean and 

variance for the multilook cross-polarized intensity ratio. For 

2n  , there is a slight difference between the estimated and 

theoretical mean values and for 3n  , a weak difference for 

the variance values, respectively. This difference decreases 

when increasing the area L L . 

VI. CONCLUSION  

We have derived the theoretical statistics for multilook 

intensity ratios for 3-D layered structures under a 

monochromatic plane wave illumination. The derivation 

begins with a multivariate Gaussian model for the underlying 

complex scattering amplitudes. In contrast to previous works 

[19]-[20], our approach is not based on the a priori 

assumption that the complex scattering amplitudes follow a 

multivariate Gaussian distribution. For slightly rough 

interfaces with an infinite extent and centered Gaussian height 

distributions, we establish this property in the context of the 

first-order small perturbation method.  

Assuming that the n-look intensities are means of n 

independent identically distributed single look intensities, we 

obtain a 3-parameter probability distribution and we show that 

the PDF and CDF only depend on the number of looks n, the 

correlation coefficient r  between the complex scattering 

amplitudes under study and the ratio 0p  between the 

associated average single-look intensities. We have shown that 

the parameter 0p  is the median of the n-look intensity ratio 

for any value of n and that the mean exists for 1n   and the 

variance for 2n  , respectively. The mean and the standard 

deviation of the n-look intensity ratio increase linearly with 

0p . The limit of the mean is 0p  as n tends to infinity and for 

large values of n , the standard deviation decreases in 1/ n . 

 
Fig. 5. Theoretical PDF of random variable ,( , ) ( 30 , 90 )n hv vvV        

and normalized histogram for n=1, 2, 4 and 8. 
 

 

Fig. 6. Theoretical CDF of random variable ,( , ) ( 30 , 90 )n hv vvV        

and CDF estimated from Monte-Carlo simulations for n=1, 2, 4 and 8. 

 
Fig. 7. Values of theoretical means and standard deviation of 

,( , ) ( 30 , 90 )n hv vvV        and values estimated over Monte-Carlo 

simulations versus number of looks. 
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The obtained formulae are derived from the first-order SPM 

and they are valid for slightly rough interfaces only. 

For a two-layer rough ground, the analytical results were 

compared with those derived from Monte Carlo simulations. 

We have assumed an upper interface with an anisotropic 

Gaussian spectrum and a lower interface with an isotropic one. 

Both random surfaces are partially correlated. The stratified 

medium is studied in the backscattering direction and in the 

transverse plane. The analytical formulas assume rough 

interfaces with infinite extent. Nevertheless, we have shown 

by Monte-Carlo simulations that these analytical expressions 

can be used for surfaces of a few hundred wavelength squared. 

The agreement between simulated data and theory is observed 

to be very good for the probability density function, the 

cumulative density function, the mean and the standard 

deviation for the co- and cross-polar ratios. We have 

considered random processes with Gaussian spectra and cross-

spectra but the analytical results established in the paper can 

be used for all random processes with finite memory and for 

an arbitrary number of interfaces. 

APPENDIX 

The two-dimensional Laplace Transform (LT2) of 

 
0( ), 0( ' ') 0 0 ' ',

ba b aI I ba b ap w w  is defined as follows: 

  

 

0( ), 0( ' ') 0( ), 0( ' ')2 0 0 ' '

2 2

0 0 0
02 20 0

0 0

0 2

( , ) ,

exp ( )
1 1

2
exp ( )

1

ba b a ba b aI I I I ba b aP s s LT p w w

n p n
w p w

r r

rn p ww
I sw s w dwdw

r

 



 

 

 
     

 
     

  

      (A1) 

The determination of 
0( ), 0( ' ')

( , )
ba b aI IP s s  requires two one-

dimensional Laplace transforms (LT), 

0( ), 0( ' ')

2 2

0 0 0 0
1 2 2

0 01
1 02 2

( , ) exp
1 1

2 '
     exp

1 1

ba b aI I

n p n p
P s s LT w

r r

rn p wwnp
LT w I

r r

 



  
    

  

    
            

   (A2) 

By using the following representation of the zeroth-order 

modified Bessel function [29, p. 919, eq. 8.447], 

2

0 0 0 0

0 2 2 2
0

2 ' ' 1

1 1 ( !)

m

m

nr p ww rn p ww
I

r r m

 



   
   

       
        (A3) 

and after some mathematical calculations, we find: 

0( ) 0( ' ')

2 2

0 0
, 2

0

2

2 2 2

0 0 0 0
1 2

2 2 0

2

1
( , )

1

1

exp '
1

(1 )
1

ba b aI I

n p
P s s

nr
s

r

n p r n p
TL w

nr
r s

r





 



 





   
   
      

              

  (A4) 

The analytical calculation of the last one-dimensional Laplace 

transform yields: 

0( ) 0( ' ')

2 2

0 0
, 2

2 2 2

0 0 0 0 0 0 0

2 2 2 2 2

( , )
1

1

' '
1 1 1 (1 )

ba b aI I

n p
P s s

r

n p n n p r n p
s s s

r r r r



   

 



   

      
      

   (A5)  

The joint probability law of 
( ) ( ' '),

( , )
ba b aI I

p w w  is found by 

convolving  
0( ), 0( ' ') 0 0 ' ',

ba b aI I ba b ap w w  with itself 1n  times. 

The 2LT  of the convoluted PDFs is 
0( ) 0( ' '), ( , )

ba b a

n

I IP s s 
 

 and 

the joint PDF 
( ) ( ' '),

( , )
ba b aI I

p w w  is obtained from a 2D inverse 

Laplace transform (
1

2LT 
) as follows: 

( ) ( ' ')

1

2,

2 2

0 0

2

2 2 2

0 0 0 0 0 0 0

2 2 2 2 2

( , )

1

1 1 1 (1 )

ba b aI I

n

n

p w w LT

n p

r

n p n n p r n p
s s s

r r r r



   

 

  
  

  
 
     

                 

 (A6)  

The two-dimensional inverse Laplace transform (A6) becomes 

with two consecutive one-dimensional inverse Laplace 

transforms, 

( ) ( ' ')

2 2
10 0

12,

0 0

2

2 2 2
1 0 0 0

1 2
2 2 1 0

2

1
( , )

1

1

  1 /
1

(1 ) ( ' )
1

ba b a

n

nI I

n

n p
p w w TL

r n p
s

r

n r n p
TL s

np pr
r s

r





 








  
   

         

  
   

    
    

    

  (A7) 

Knowing that   

 1

1

( 1)!
exp( )

( )

n

n

n
TL w aw

s a

 
 


         (A8) 

the relationship (A7) becomes: 

( ) ( ' ')

2 2 1

0 0 0

2 2,

2 2 2
1 0 0 0 0

1 2
2 2 0 0

2

( , ) exp
1 ( 1)! 1

    exp / '
1

(1 ) ( ' )
1

ba b a

n
n

I I

n

n p nw
p w w w

r n r

r n p w n p
TL s

n p r
r s

r

 

 







   
     

    

  
    

    
     

    

  (A9) 

By using the following relationship found in the Laplace 

transform table [29, pp. 245, Eq. 9], 

1 ( 1)/2

1 1

exp( / )
( / ) (2 )n

nn

a s
TL w a I aw

s

 



 
 

 
     (A10) 

We find the closed-form formula (16) giving the joint PDF for 

the multilook intensities ( )baI  and ( ' ')b aI . 
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