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Abstract: We go forward in completing the standard model of the universe back

in time with planckian and trans-planckian physics before inflation in agreement

with observations, classical-quantum gravity duality and quantum space-time. The

quantum vacuum energy bends the space-time and produces a constant curvature

de Sitter background. We link de Sitter universe and the cosmological constant

to the (classical and quantum) harmonic oscillator. We find the quantum discrete

cosmological levels: size, time, vacuum energy, Hubble constant and gravitational

(Gibbons-Hawking) entropy and temperature from the very early trans-planckian

vacuum to the classical today vacuum energy. For each level n = 0, 1, 2, ... the

two: post and pre (trans)-planckian phases are covered: In the post-planckian uni-

verse: tplanck ≡ tP ≤ t ≤ 1061tP the levels (in planck units) are: Hubble constant

Hn = 1/
√

(2n + 1), vacuum energy Λn = 1/(2n + 1), entropy Sn = (2n + 1). As n

increases, radius, mass and Sn increase, Hn and Λn decrease and consistently the uni-

verse classicalizes. In the pre-planckian (trans-planckian) phase 10−61tP ≤ t ≤ tP

the quantum levels are: HQn =
√

(2n + 1), ΛQn = (2n + 1), SQn = 1/(2n + 1),

Q denoting quantum. The n-levels cover all scales from the far past highest

excited trans-planckian level n = 10122 with finite curvature, ΛQ = 10122 and

minimum entropy SQ = 10−122, n decreases till the planck level (n = 0) with

Hplanck = 1 = Λplanck = Splanck and enters the post-planckian phase e.g. n =

1, 2, ..., ninflation = 1012, ..., ncmb = 10114, ..., nreoin = 10118, ..., ntoday = 10122 with

the most classical value Htoday = 10−61, Λtoday = 10−122, Stoday = 10122. We im-

plement the Snyder-Yang algebra in this context yielding a consistent group-theory

realization of quantum discrete de Sitter space-time, classical-quantum gravity du-

ality symmetry and a clarifying unifying picture.
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I. INTRODUCTION AND RESULTS

Planckian and trans-planckian energies are theoretically allowed, physically motivated

too, the universe and its very early stages have all the quantum conditions for such extreme

quantum gravitational regimes and energies, the black hole interiors too. The truly quantum

gravity domain is not reduced to be fixed at the planck scale or the neighborhoods of it, but

extends deep beyond the planck scale in the highly quantum trans-planckian range.

In this paper we go forward in completing the standard model of the universe back in

time with planckian and trans-planckian physics before inflation in agreement with obser-

vations, classical-quantum gravity duality and quantum space-time in this context.
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Quantum theory is more complete than classical theory and tells us what value a classical

observable should have. The classical-quantum (or wave-particle) duality is a robust and

universal concept (it does not depend on the nature or number of space-time dimensions,

compactified or not, nor on particular space-time geometries, topologies, symmetries, nor

on other at priori condition). Moreover, the quantum trans-planckian eras in the far past

universe determine the observables of the post-planckian eras, e.g. the inflation observables,

CMB and the cosmological vacuum energy until today dark energy, namely the evolution

from the quantum very early phases to the semi-classical and classical phases and the arrow

of time as determined by the gravitational entropy.

The complete universe is composed of two main phases, the planck scale being the tran-

sition scale: the quantum pre-planckian or trans-planckian phase 0 < 10−61tP ≤ t ≤ tP

and the semiclassical and mostly classical post-planckian universe tP < t ≤ ttoday = 1061tP ,

tP being the planck time. The pre-planckian era can be tested indirectly through its post-

planckian observables, e.g. primordial graviton signals, inflation and the CMB till today

dark energy. This framework provides in particular the gravitational entropy and temper-

ature (classical, semiclassical and quantum) in the different cosmological regimes and eras

[1],[2], in particular the Gibbons-Hawking entropy and temperature. Interesting too (and

related with) are the classical and quantum cosmological vacuum energy values (Λ,ΛQ)

dual of each other: For instance, the quantum ΛQ obtained from the classical-quantum (or

wave-particle) duality approach turns out to be the saddle point obtained from the quantum

gravity path integral euclidean approach which action is the well-known Gibbons-Hawking

de Sitter entropy, showing the consistency of the results [1], [2].

The huge difference between the observed value of the cosmological classical vacuum

energy Λ today and the theoretically evaluated value of the quantum particle physics vacuum

ΛQ, must correctly and physically be like that, because the two values correspond to two

huge different physical vacua and eras. The observed Λ value today corresponds to the

classical, large and dilute (mostly empty) universe today, (termed voids and supervoids in

cosmological observations, termed vacuum space-time in classical gravitation), and this is

consistent with the very low Λ vacuum value, (10−122 in planck units), while the computed

quantum value ΛQ corresponds to the quantum, small and highly dense energetic universe in

its far (trans-planckian) past, and this is consistent with its extremely high, trans-planckian,



5

value (10122 in planck units). As is well known, the theoretical value ΛQ ' 10122 is clearly

trans-planckian, this value corresponds and fits correctly the value of ΛQ in the far past trans-

planckian era and its physical properties: quantum size and time 10−61, quantum (Gibbons-

Hawking) temperature 1061 and entropy 10−122. Consistently too, the trans-planckian era

provides the quantum precursor of inflation from which the known classical/semiclassical

inflation era, its CMB observables and quantum corrections are recovered in agreement with

the set of well established cosmological observations.

Starting from quantum theory to reach the planck scale and trans-planckian domain (in-

stead of starting from classical gravity by quantizing general relativity) reveals successful

with novel results, ”quantum relativity” and quantum space-time structure [1],[3],[2]. Be-

yond the classical-quantum duality of the space-time, the space-time coordinates can be

promoted to quantum non-commuting operators: comparison to the harmonic oscillator

and global phase space is enlighting, the hyperbolic quantum space-time structure gener-

ates the quantum light cone: The classical space-time null generators X = ±T dissapear at

the quantum level due to the relevant [X,T ] conmutator which is always non-zero, a new

quantum vacuum region beyond the planck scale emerges.

In this paper we analyze the new vacuum quantum region inside the planck scale hyper-

bolae which delimitate the quantum light cone. The effect of the zero point (vacuum) quan-

tum energy bends the space-time and produces a constant curvature de Sitter background.

We find the quantum discrete levels in the cosmological vacuum trans-planckian region and

in the post-planckian one. The quantum light cone is generated by the quantum planck

hyperbolae X2 − T 2 = ± [X,T ] due to the quantum uncertainty ∆X∆T or commutator

[X,T ] = 1, (in planck units), the classical light cone generators X = ±T being a particular

case of it. This generalizes the classical known space-time structure and reduces to it in the

classical case (zero quantum commutators). In higher D space-time dimensions, the quan-

tum non-commuting coordinates (X,T ) and the transverse commuting spatial coordinates

X⊥j generate the quantum two-sheet hyperboloid X2−T 2 +X⊥jX
j
⊥ = ±1; j = 2, ...(D−2).

Interestingly enough, the quantum space-time structure turns out to be discretized in

quantum hyperbolic levels. For times and lengths larger than the planck time and length

(tP , lP ), the levels are (X2
n − T 2

n) = ±(2n + 1), n = 0, 1, 2..., .(Xn, Tn) and the mass levels

being
√

(2n+ 1). The discrete allowed levels from the quantum planck scale hyperbolae
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(X2
n − T 2

n) = ±1, (n = 0) and the quantum levels (low n) until the quasi-classical and

classical ones (intermediate and large n), tend asymptotically (very large n) to a continuum

classical space-time. In the trans-planckian domain: times and lengths smaller than the

planck scale, the (Xn, Tn) levels are 1/(2n + 1), the most higher n being the more excited

quantum and transplanckian ones.

For each level n = 0, 1, 2, ...., the two: post and pre (trans) - planckian phases are

covered: In the post-planckian universe tP ≡ tplanck < t ≤ ttoday = 1061tP the levels (in

planck units) for the Hubble constant Hn, vacuum energy Λn, and gravitational (Gibbons-

Hawking) entropy Sn are

Hn = 1/
√

(2n+ 1), Λn = 3/(2n+ 1), Sn = (2n+ 1), n = 0, 1, 2, ..... (1.1)

As n increases, radius and mass increase, Hn and Λn decrease, Sn increases and consistently

the universe classicalizes. In the pre-planckian (trans-planckian) phase 10−61tP ≤ t ≤ tP ,

the quantum trans-plankian levels (Q denoting quantum) are:

HQn =
√

(2n+ 1), ΛQn = (2n+ 1)/3, SQn = 1/(2n+ 1), n = 0, 1, 2, ..... (1.2)

The scalar curvature levels in the respective phases being RQn = (2n + 1)/12 and Rn =

12/(2n+1). The n-levels cover all scales from the remote past highly excited trans-planckian

level n = 10122 with maximum curvature RQ = 10122, vacuum ΛQ = 10122 and mini-

mum entropy SQ = 10−122, n decreases passing the planck level n = 0: Hplanck = 1 =

Λplanck = Splanck and enters the post-planckian phase: n = 1, 2, ...ninfl = 1012, ...ncmb =

10114, ...nreion = 10118, ...ntoday = 122 with the most classical value Htoday = 10−61, Λtoday =

10−122, Stoday = 10122.

The space-time (the arena of events) in the quantum domain is described by a quantum

algebra of space-time position and momenta: We implement the Snyder-Yang algebra in the

cosmological context thus yielding a consistent group-theory realization of quantum discrete

de Sitter space-time, classical-quantum gravity duality and its symmetry with a clarifying

unifying picture: Our complete (classical and quantum) length LQH(lP , LH) = LQ + LH =

lP (LH/lP + lP/LH), LH being the classical universe radius, LQ = l2P/LH being its quantum

size (the compton length), turns out to be the appropriate length for the two-parameter

Snyder-Yang algebra, thus providing a quantum operator realization of the complete de

Sitter universe including the quantum trans-planckian and classical late de Sitter phases.
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This paper is organized as follows: In section II we describe the standard model of

the universe extended back in time before inflation, thus covering its different phases: classi-

cal, semiclassical and quantum -planckian and transplankian- domains and their properties

including the gravitational entropy and temperature. In Sections IV and V we describe

the classical, quantum dual and complete de Sitter universe covering the different de Sit-

ter regimes. Sections VI and VII show the link of de Sitter universe and the cosmological

constant to the harmonic oscillator. Section VIII shows the link of the space-time structure

to the phase space (classical and quantum) harmonic oscillator and describes the quantum

space-time discrete levels. We find in Sections VIII and IX the quantum discrete levels

of the universe: size, time, vacuum energy, Hubble constant, entropy and their properties

from the very early trans-planckian phase to today dark energy. Section X describes the

Snyder-Yang algebra as a group-theory realization of quantum discrete de Sitter space-time

and of classical-quantum gravity duality symmetry. Section XI summarizes remarks and

conclusions and the clarifying unifying picture we obtained.

II. THE STANDARD MODEL OF THE UNIVERSE BEFORE INFLATION

The set of robust cosmological data (cosmic microwave background, large scale structure

and deep galaxy surveys, supernovae observations, measurements of the Hubble-Lemaitre

constant and other data) support the standard (concordance) model of the universe and place

de Sitter (and quasi-de Sitter) stages as a real part of it [4],[5],[6], [7],[8][9],[10]. Moreover,

the physical classical, semiclassical and quantum planckian and trans-planckian de Sitter

regimes are particularly important for several reasons:

(i) The classical, present time accelerated expansion of the Universe and its associated

dark energy or cosmological constant in the today era: classical cosmological de Sitter regime.

(ii) The semiclassical early accelerated expansion of the Universe and its associated

Inflation era: semiclassical cosmological de Sitter (or quasi de Sitter) regime (classical general

relativity plus quantum field fluctuations.)

(iii) The quantum, very early stage preceeding the Inflation era: Planckian and super-

Planckian quantum era. Besides its high conceptual and fundamental physics interest, this

era could be of realistic cosmological interest for the test of quantum theory itself at such
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extreme scales, as well as for the search of gravitational wave signals from quantum gravity

for e-LISA [11] for instance, after the success of LIGO [12],[13]. In addition, this quantum

stage should be relevant in providing quantum precursors and consistent initial states for the

semiclassical (fast-roll and slow roll) inflation, and their imprint on the observable primordial

fluctuation spectra for instance. Moreover, a novel result is that this quantum era allows a

clarification of dark energy as the vacuum cosmological energy or cosmological constant.

(iv) de Sitter is a simple and smooth constant curvature vacuum background without any

physical singularity, it is maximally symmetric and can be described as a hyperboloid em-

bedded in Minkowski space- time with one more spatial dimension. Its radius, curvature and

equivalent density are described in terms of only one physical parameter: the cosmological

constant.

The lack of a complete theory of quantum gravity (in field and in string theory) does not

preclude to explore and describe quantum planckian and transplanckian regimes. Instead of

going from classical gravity to quantum gravity by quantizing general relativity, (is not our

aim here to review it), we start from quantum physics and its foundational milestone: the

classical-quantum (wave-particle) duality, and extend it to include gravity and the planck

scale domain, namely, wave-particle-gravity duality, (or classical-quantum gravity duality),

[1], [16]. As a consequence, the different gravity regimes are covered: classical, semiclassical

and quantum, together with the planckian and trans-planckian domain and the elementary

particle mass range as well. This duality is universal, as the wave-particle duality, this does

not rely on the number of space-time dimensions (compactified or not), nor on any symmetry,

isometry nor on any other at priori condition. It includes the known classical-quantum

duality as a special case and allows a general clarification from which physical understanding

and cosmological results can be extracted. This is not an assumed or conjectured duality.

The standard model of the universe extended to earlier trans-planckian eras.

The gravitational history of the universe before the Inflation era and the current picture

can be extended by including the quantum precursor phase within the standard model

of the universe in agreement with observations. Quantum physics is more complete than

classical physics and contains it as a particular case: It adds a new quantum planckian

and transplanckian phase of the Universe from the planck time tP until the extreme past

10−61tP , which is an upper bound for the origin of the Universe, with energy HQ = 1061hP ,
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in a similar manner the present age is a lower bound to the (unknown) future age.

The classical large dilute Universe today and the highly dense very early quantum trans-

planckian Universe are classical-quantum duals of each other in the precise meaning of the

classical-quantum duality. This means the following: The classical Universe today UΛ is

clearly characterized by the set of physical gravitational magnitudes or observables (age or

size, mass, density, temperature, entropy) ≡ (LΛ,MΛ, ρΛ, TΛ, SΛ):

UΛ = (LΛ,MΛ, ρΛ, TΛ, SΛ) (2.1)

The highly dense very early quantum Universe UQ is characterized by the corresponding

set of quantum dual physical quantities (LQ,MQ, ρQ, TQ, SQ) in the precise meaning of the

classical-quantum duality:

UQ = (LQ,MQ, ρQ, TQ, SQ) (2.2)

UQ =
u2
P

UΛ

, uP = (lP ,mP , ρP , tP , sP ) (2.3)

uP standing for the corresponding quantities at the fundamental constant planck scale,

the crossing scale between the two main (classical and quantum) gravity domains. The

classical UΛ and quantum UQ Universe eras or regimes (classical/semiclassical eras of the

known Universe and its quantum planckian and transplanckian very early phases), satisfy

Eqs.(2.1)-(2.3). The total Universe UQΛ is composed by their classical/semiclassical and

quantum phases:

UQΛ = ( UQ + UΛ + uP ) (2.4)

Subscript Λ -or equivalently H for Hubble Lemaitre- stands for the classical magnitudes, Q

stands for Quantum, and P for the fundamental planck scale constant values.

In particular, the quantum dual de Sitter universe UQ is generated from the classical de

Sitter universe UΛ through Eqs.(2.1)-(2.4): classical-quantum de Sitter duality. The total

(classical plus quantum dual) de Sitter universe UQΛ endowes automatically a classical-

quantum de Sitter symmetry. This includes in particular the classical, quantum and total

de Sitter temperatures and entropies and allows to characterize in a complete and precise

way the different classical, semiclassical, quantum planckian and superplanckian de Sitter

regimes. H stands for the classical Hubble-Lemaitre constant, or its equivalent Λ = 3 (H/c)2.

HQ (or ΛQ) stands for quantum dual, and QΛ (or QH) for the total or complete quantities

including the both ones.
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The size of the Universe is the gravitational length LΛ =
√

3/Λ in the classical regime, it

is the quantum compton length LQ in the quantum dual regime (which is the full quantum

planckian and superplanckian regime), and it is the planck length lP at the fundamental

planck scale: the crossing scale. The total (or complete) size LQΛ is the sum of the two

components. Similarly, the horizon acceleration (surface gravity) KΛ of the universe in

its classical gravity regime becomes the quantum acceleration KQ in the quantum dual

gravity regime. The temperature TΛ, measure of the classical gravitational length or mass

becomes the quantum temperature TQ (measure of the quantum size or compton length)

in the quantum regime. Consistently, the Gibbons-Hawking temperature is precisely the

quantum temperature TQ. Similarly, the classical/semiclassical gravitational area or entropy

SΛ (Gibbons-Hawking entropy) has its quantum dual SQ in the quantum gravity (planckian

and trans-planckian) regime. The concept of gravitational entropy is the same for any of the

gravity regimes: Area/4l2P in units of kB. For a classical object of size LΛ, this is the classical

area AΛ = 4πL2
Λ. For a quantum object of quantum size LQ, this is the area AQ = 4πL2

Q:

AΛ = aP

(
LΛ

λP

)2

, AQ = aP

(
λP
LΛ

)2

=
a2
P

AΛ

, aP = 4π l2P (2.5)

aP being the planck area. The corresponding gravitational entropies SΛ, SQ are

SΛ =
κB
4

AΛ

l2P
, SQ =

κB
4

AQ
l2P

(2.6)

And the total (classical and quantum) gravitational entropy SQλ being given by

SQH = 2 [ sP +
1

2
(SH + SQ) ], sP =

κB
4

aP
l2P

= πκB, (2.7)

sP being the planck entropy.

III. CLASSICAL, SEMICLASSICAL AND QUANTUM VACUUM ENERGY OF

THE UNIVERSE

The classical universe today UΛ is precisely a classical dilute gravity vacuum dominated by

voids and supervoids as shown by observations [21], [22], [23] whose observed ρΛ or Λ value

today [6],[7],[8],[9],[10] is precisely the classical dual of its quantum precursor values ρQ,ΛQ

in the quantum very early precursor vacuum UQ as determined by Eqs.(2.1)-(2.2). The

high density ρQ and cosmological constant ΛQ are precisely the quantum particle physics
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transplanckian value 10122. This is precisely expressed by Eqs.(2.1)-(2.2) applied to this

case:

Λ = 3H2 = λP

(
H

hP

)2

= λP

(
lP
LH

)2

= (2.846± 0.076) 10−122 m2
P (3.1)

ΛQ = 3H2
Q = λP

(
hP
H

)2

= λP

(
LH
lP

)2

= (0.3516± 0.094) 10122 h2
P (3.2)

ΛQ =
λ2
P

Λ
, λP = 3h2

P (3.3)

The quantum dual value ΛQ is precisely the quantum vacuum value ρQ = 10122 ρP obtained

from particle physics:

ρQ = ρP

(
ΛQ

λP

)
=
ρ2
P

ρΛ

= 10122 ρP (3.4)

Eqs.(3.1)-(3.4) are consistently supported by the data [6],[7],[8],[9],[10] which we also link

to the gravitational entropy and temperature of the universe. The complete total vacuum

energy density ρQΛ or ΛQΛ is the sum of its classical and quantum components (corresponding

to the classical today era and its quantum planckian and trans-planckian precursor):

ΛQΛ = λP

(
Λ

λP
+
λP
Λ

+ 1

)
= λP ( 10−122 + 10+122 + 1 ) (3.5)

The observed Λ or ρΛ today is the classical gravity vacuum value in the classical universe

UΛ today. Such observed value must be consistently in such way because of the large classical

size of the universe today LΛ =
√

3/Λ, and of the empty or vacuum dilute state today

dominated by voids and supervoids as shown by the set of large structure observations [21],

[22], [23]. This is one main physical reason for such a low Λ value at the present age today

1061tP . Its precursor value and density ΛQ, ρQ is a high superplanckian value precisely

because this is a high density very early quantum cosmological vacuum in the extreme past

10−61tP of the quantum trans-planckian precursor phase UQ.

The quantum vacuum density ΛQ = ρQ = 10122 (in planck units) in the precursor trans-

planckian phase UQ at 10−61tP , (the extreme past), became the classical vacuum density

Λ = ρΛ = 10−122 in the classical universe UΛ today at 1061tP . The transplanckian value is

consistently in such way because is a extreme quantum gravity (transplanckian) vacuum in

the extreme quantum past 10−61tP with minimal entropy SQ = 10−122 = Λ = ρΛ. Eqs.(3.1)

to (3.4),(3.5) concisely explain why the classical gravitational vacuum Λ or ρΛ coincides

with such observed low value10−122 in planck units, and why their corresponding quantum



12

gravity precursor vacuum has such extremely high trans-planckian value 10122. The classical

gravitational entropy SΛ today has precisely such high value:

SΛ = sP

(
ρQ
ρP

)
= sP

(
λP
Λ

)
= sP 10+122 (3.6)

SQ = sP

(
ρΛ

ρP

)
= sP

(
Λ

λP

)
= sP 10−122 (3.7)

The total QΛ gravitational entropy turns out the sum of the three components as it must be:

classical (subscript Λ), quantum (subcript Q) and planck value (subscript P) corresponding

to the tree gravity regimes:

SQΛ = 2 [sP +
1

2
(SΛ + SQ)] = 2 sP [ 1 +

1

2
(10+122 + 10−122) ] (3.8)

The gravitational entropy SΛ of the present time large classical universe is a very huge

number, consistent with the fact that the universe today contains a very huge amount of

information. Moreover, to reach such a huge size and entropy today 10+122, the universe in

its very beginning should have been in a hugely energetic initial vacuum 10+122.

A whole picture. Overall, a consistent unifying picture of the gravitational cosmic his-

tory through its vacuum energy does emerge from the extreme past quantum transplanckian,

planckian and post-planckian: semiclassical (inflation) and classical today phases and their

relevant physical magnitudes: size, age, gravitational entropy and temperature, all in terms

of the vacuum energy. This sheds light on inflation and dark energy. The whole duration

(of the transplanckian plus post-planckians) is precisely 10−61 t ≤ t ≤ 10+61 (in planck units

tP = 10−44). That is to say, each component naturally dominates in each phase: classical

time component 10+61 in the classical era, quantum planck time tP in the quantum preceding

era. The present time of the universe at 10+61tP , which is a lower bound for the future (if

any) age of the universe, the remote past quantum precursor equal to 10−61 tP , is an upper

bound for the origin of the universe. The classical/semi-classical known inflation era which

occurred at about 10+6tP , H = 10−6hP has a preceding quantum era at 10−6tP , H = 106hP

which is a semi-quantum era (’low H’ with respect to the extreme past transplanckian state

H = 1061hP ), and similarly, for any of the other known eras in the classical post-planckian

universe. This appears to be the way in which the universe has evolved.

The total or complete (classical plus quantum) physical quantities are invariant

under the classical-quantum duality: H ↔ Q (or Λ ↔ Q) as it must be: This means
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physically that: (i) what occurred in the quantum phase before tP determines through

Eqs.(2.1)-(2.4) what occurred in the classical phase after tP . And: (ii) what occurred in the

quantum phase before the planck time tP is the same observable which occurred after tP

but in a different physical state in the precise meaning of Eqs.(2.1)-(2.4). That is to say:

The quantum quantities in the phase before tP , are the quantum precursors of the classi-

cal/semiclassical quantities after tP . As the wave-particle duality at the basis of quantum

mechanics, the wave-particle-gravity duality, is reflected in all cosmological eras and its asso-

ciated quantites, temperatures and entropies. Cosmological evolution goes from a quantum

transplanckian vacuum energy phase to a semiclassical accelerated era (de Sitter inflation),

then to the classical known eras until the present classical de Sitter phase. The classical-

quantum or wave-particle-gravity duality specifically manifests in this evolution, between

the different gravity regimes, and could be view as a mapping between asymptotic (in and

out) states characterized by sets UQ and UΛ and thus as a Scattering-matrix description.

IV. CLASSICAL AND QUANTUM DUAL DE SITTER UNIVERSES

de Sitter space-time in D space-time dimensions is the hyperboloid embedded in (D+ 1)

dimensional Minkowski space-time:

X2 − T 2 +XjX
j + Z2 = L2

H , j = 2, 3, ...(D − 2) (4.1)

LH is the classical radius or characteristic length of the de Sitter universe. The scalar

curvature R is constant. Classically:

LH = c/H, R = H2D(D − 1) =
2D

(D − 2]
Λ, Λ =

H2

2
(D − 1)(D − 2)

A mass MH can be associated to LH or H, such that (D = 4 for simplicity):

LH = GMH/c
2 ≡ LG, MH = c3/(GH) (4.2)

The corresponding quantum dual magnitudes LQ, MQ are:

LQ =
~

MHc
=

~ GH
c3

=
l2P
LH

, MQ =
~H
c2

=
m2
P

MH

(4.3)

ie, LQ =
l2P
LH

, MQ =
m2
P

MH

(4.4)
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lP and mP being the planck length and Planck mass respectively:

lP =
√

~ G/c3 , mP =
√
c ~/G (4.5)

The quantum dual Hubble constant HQ and the quantum curvature RQ are:

HQ = h2
P/H, RQ = r2

P/R, ΛQ = λ2
P/Λ (4.6)

where hP , rP , λP are the planck scale values of the Hubble constant, scalar curvature and

cosmological constant respectively:

hP = c/lP , rP = h2
P D(D − 1), λP =

h2
P

2
(D − 1)(D − 2) (4.7)

hP = c2
√
c/~G, rP = 12 h2

P = 4 λP , λP = 3
(
c5/~G

)
, (D = 4) (4.8)

V. TOTAL DE SITTER UNIVERSE AND ITS DUALITY SYMMETRY

The classical and quantum lengths: LH , LQ can be extended to a more complete length

LQH which contains both: the Q and H lengths):

LQH = (LH + LQ) = lP (
LH
lP

+
lP
LH

) (5.1)

and we have then :

X2 − T 2 +XjX
j + Z2 = L2

QH = 2 l2P

[
1 +

1

2
[ (
LH
lP

)2 + (
lP
LH

)2 ]

]
(5.2)

with j = 2, 3, ...(D − 3).

Eq.(5.2) quantum generalize de Sitter space-time including the classical, semiclassical and

quantum planckian and transplanckian de Sitter regimes as well. It contains two non-zero

lengths (LH , LQ) or two relevant scales (H, lP ) enlarging the possibilities for the space-time

phases, thus:

• For LH >> lP , ie LQ << LH , Eq.(5.2) yields the classical de Sitter space-time. For

intermediate LH values between lP and LQ it yields the semiclassical de Sitter space-

time.

• For LH = lP ie LQ = lP = LQH , Eq.(5.2) yields the planck scale de Sitter hyperboloid.
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• For LH << lP , ie LQ >> LH it yields the highly quantum de Sitter regime, deep

inside the planck domain.

H = c/LH is (c−1) times the surface gravity (or gravity acceleration) of the classical

de Sitter space-time. Similarly, HQ = c/LQ and HQH = c/LQH are the surface gravity in

the quantum and whole QH de Sitter phases respectively. Similarly, Eq. (5.1) and Eqs

(4.2)-(4.4), yield for the mass:

MQH = ( MH +MQ ) = mP (
MH

mP

+
mP

MH

) (5.3)

MQH

mP

= mP (
LH
lP

+
lP
LH

) =
LQH
lP

(5.4)

MQH/mP and LQH/lP both have the same expression with respect to their respective

planck values.

The complete QH Hubble constant HQH, curvature RQH and ΛQH.

The total (classical and quantum) QH Hubble constant HQH , curvature RQH and ΛQH

follow from the QH de Sitter length LQH Eq.(5.1):

HQH =
c

LQH
, RQH = H2

QH D (D − 1), ΛQH =
H2
QH

2
(D − 1)(D − 2) (5.5)

where from Eqs.(5.1) and (4.6):

HQH =
H

[ 1 + (lPH/c)2 ]
, HQH/hP =

(H/hP )

[ 1 + (H/hP )2 ]
, hP = c/lP (5.6)

which exhibit the symmetry of HQH under (H/hP ) → (hP/H), ie under H → HQ =

(h2
P/H) :

HQH(H/hP ) = HQH(hP/H) (5.7)

The classical H and quantum HQ are classical-quantum duals of each other through

the planck scale hP , but the total HQH is invariant. And similarly, for the total quantum

curvature RQH and cosmological constant ΛQH Eq.(5.5):

RQH(H/hP ) = RQH(hP/H), ΛQH(H/hP ) = ΛQH(hP/H) (5.8)

where:

RQH =
RH

[ 1 +RH/rP ]2
=

RQ

[ 1 +RQ/rP ]2
, rP = 12 h2

P (5.9)
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ΛQH =
ΛH

[ 1 + ΛH/λP ]2
=

ΛQ

[ 1 + ΛQ/λP ]2
, λP = 3 h2

P (5.10)

The classical H/hP << 1, quantum H/hP >> 1 and planck H/hP = 1 regimes are clearly

exhibited in the QH expressions Eqs (5.5), Eq.(5.6):

HQH (H<<hP ) = H [ 1− (H/hP )2 ] +O (H/hP )4 (5.11)

HQH (H = hP ) =
hP
2
, hP = c/lP (5.12)

HQH (H>>hP ) = (h2
P/H) [1− (hP/H)2] + O(hP/H)4 (5.13)

The three above equations show respectively the three different de Sitter phases:

• The classical gravity de Sitter universe (with lower curvature than the planck scale

rP ) outside the planck domain (lP < LH <∞).

• The planck curvature de Sitter state (RH = rP , LH = lP )

• The highly quantum or high curvature (RH >> rP ) de Sitter phase inside the quantum

gravity planck domain (0 < LH ≤ lP ).

Is natural here to define the dimensionless magnitudes:

L ≡ LQH/lP , M≡MQH/mP , H ≡ HQG/hP , l ≡ LH/lP , h ≡ H/hP = l−1

(5.14)

in terms of which, Eqs (5.1),(5.3) and (5.6) and their duality symmetry Eqs (5.7), (5.8)

simply read:

L = (l +
1

l
) =M, H =

1

(l + 1
l
)

= L−1 (5.15)

L(l−1) = L(l), M(l−1) =M(l) (5.16)

H(l−1) = H(l), R(l−1) = R(l), Λ(l−1) = Λ(l) (5.17)

The QH magnitudes are complete variables covering both classical and quantum, planck-

ian and transplanckian, domains. Similarly, for the classical, quantum and QH de Sitter

densities (ρH , ρQ, ρQH), ρP being the Planck density scale):

ρH = ρP (H/hP )2 = ρP (Λ/λP ) , ρP = 3 h2
P/8πG, λP = 3 h2

P/c
4 (5.18)
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ρQ = ρP (HQ/hP )2 = ρP (ΛQ/λP ) = ρ2
P/ρH = ρP (hP/H)2 = ρP (λP/Λ) (5.19)

ρHQ = ρH + ρQ = ρP (HHQ/hP )2 = ρP (ΛHQ/λP ) (5.20)

From which it follows that:

ρHQ =
ρH

[ 1 + ρH/ρP ]2
=

ρQ
[ 1 + ρQ/ρP ]2

, (5.21)

which satisfies

ρHQ (ρH) = ρHQ (ρQ) = ρHQ (ρ2
P/ρH),

For small and high densities with respect to the planck density ρP , the QH density ρQH

behaves:

ρQH (ρH << ρP ) = ρH [ 1− 2(ρH/ρP ) ] +O (ρH/ρP )2 (5.22)

ρQH (ρH = ρQ = ρP ) =
1

4
ρP : (planck scale density) (5.23)

ρQH (ρH >> ρP ) = ρQ [ 1− 2(ρQ/ρP ) ] +O (ρQ/ρP )2, (5.24)

corresponding to the classical/semiclassical de Sitter regime (and its quantum correc-

tions), planck scale de Sitter state and highly quantum transplanckian de Sitter density.

The complete QH de Sitter magnitudes (LQH , HQH , MQH), [and their constant planck scale

values (lP , hP ,mP ) only depending on (c, ~, G)], allow to characterize in a precise way the

classical, semiclassical, planckian and quantum (super-planckian) de Sitter regimes:

• LQH = LQH(LH , LQ) ≡ LQH(H, ~) yields the whole (classical/semiclassical, planck

scale and quantum (super-planckian) de Sitter universe.

• LQH = LH = LQ yields the planckian de Sitter state, (planck length de Sitter radius,

planckian vacuum density and planckian scalar curvature): LH = lP , H = hP , λP =

3 h2
P , R = rP = 4 λP , lP =

√
(~G/c3)

• LQH = LH >> LQ, ie LH >> lP , H << hP , yields the classical de Sitter space-time.

• LQH = LQ >> LH , ie LH << lP , H >> hP , (high curvature R >> rP = 4ΛP ),

yields a full quantum gravity transplanckian de Sitter phase (inside the Planck domain

0 < LH ≤ lP ).

• LQH >> LQ ie LQH → ∞ for LH → ∞, ie H → 0 ie Λ → 0, (zero curvature) yields

consistently the classical Minkowski space-time, equivalent to the limit LQ → 0 ie

lP → 0 (~→ 0).
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The three de Sitter regimes are characterized in a complete and precise way:

• (i) classical and semiclassical de Sitter regimes: (inflation and more generally the

whole known -classical and semiclassical- universe is within this regime):

lp < LH <∞, ie 0 < LQ < lP , 0 < H < hP , mP < MH <∞.

• (ii) planck scale de Sitter state with planck curvature and planck radius:

LH = lP , LQ = lP , H = hP = c/lP , MH = mP .

• (iii) quantum planckian and trans-planckian de Sitter regimes: 0 < LH ≤ lP ,

ie ∞ < LQ ≤ lP , hP ≤ H <∞, 0 < MH < mP .

VI. DE SITTER UNIVERSE AND THE HARMONIC OSCILLATOR

As is known, the Einstein Equations in the presence of a constant vacuum energy (cos-

mological constant) are

Gµν + Λgµν = 8πGTµν , (6.1)

and the energy-momentum tensor corresponding to the vaccum energy density ρ and pressure

p is

Tµν = pgµν = −ρgµν , (p = wρ, w ≡ −1) (6.2)

the vacuum energy being equivalent to a cosmological constant: ρΛ = Λc4/(8πG).

As known, de Sitter space-time has constant scalar space-time curvature:

R = 12 H2 = 4 Λ, Λ = 3 H2, (D = 4)

We restrict to D = 4. Recall the energy-momentum tensor for massive particles of density

ρ plus vacuum constant energy (or cosmological constant) Λ is:

T µν = Λ δµν + ρ δµ0 δν0 , T ≡ T µµ = 4 Λ + ρ (6.3)

The corresponding Einstein equations are

Rµ
ν = 8π G

(
T µν −

δµν
2
T

)
, 0 ≤ µ, ν ≤ 3 (6.4)

and for non relativistic matter its pressure is neglected with respect to its rest mass.
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In the weak field limit:

g00 = 1 + 2 V , gik = −δik R0
0 = ∇2V ,

V being the gravitational potential, Einstein’s Eqs.(6.4) become

∇2V = 4π Gρ− 8π GΛ (6.5)

V ( ~X) = Vρ(X)− 4π GΛ

3
X2 , (6.6)

For a distribution of rest particles of mass m, ρ( ~X) = m
∑

i δ(
~X − ~Xi), the gravitational

potential V ( ~X), gravitational field G and potential energy U of the system are:

V ( ~X) = V ( ~X)m −
4π GΛ

3
X2, V ( ~X)ρ ≡ V ( ~X)m = −G

∑
i

m

| ~X − ~Xi|
.

~G( ~X) = −∇V ( ~X) = ~Gm +
8π GΛ

3
~X (6.7)

U = Um −
4π GΛ

3
m
∑
i

X2
i (6.8)

Therefore, the Hamiltonian is equal to:

PiP
i

m2
+ U =

PiP
i

m2
− 4π

3
GΛm X2

i (6.9)

The cosmological constant energy contribution to the potential energy U decreases for

increasing values of the particle distances ri to the center of mass. The gravitational ef-

fect of the vacuum zero point energy or cosmological constant push particles outwards and

equivalently, the last term of the gravitational field Eq.(6.7) points outward (the repulsive

cosmological constant effect). The Hamiltonian Eq.(6.9) is like that of a harmonic oscillator

for a particle of mass m and oscillator constant ω2m. We analyze it below.

VII. THE HARMONIC OSCILLATOR AND THE COSMOLOGICAL

CONSTANT

For simplicity and physical insight we consider the case of just one particle, Eqs.(6.8) and

(6.9) yield:

~̈X =
8π GΛ

3
~X (7.1)
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This is an harmonic oscillator equation with imaginary frequency and oscillator constant

κoscill:

~̈X = −κoscill ~X, κoscill = ω2m, ω =

√
8πGΛ

3m
, (7.2)

with the solution,

~X(t) = ~X(0) coshHt+
1

H
~̇X(0) sinhHt , (7.3)

where

H ≡
√

(8π GΛ)/3

The particle runs away exponentially fast in time. The Hubble constant H2 is the constant

of the oscillator

κosc = H2, H = ω
√
m (7.4)

the oscillator length losc being

losc =
√

3/(8πGΛ), H = c/losc = κ ≡ surface gravity

The length of the oscillator is the Hubble radius and the Hubble constant is the surface

gravity of the universe (similar to the black hole surface gravity, the inverse of the black

hole radius).

The non-relativistic or weak field newtonian results reproduce very well the full space-

time relativistic effects in the presence of the cosmological constant. The exact solution of

the Einstein equations for the energy-momentum tensor eq.(6.3) with ρ = 0 is the de Sitter

universe. It must be stressed that the non-relativistic trajectories Eq.(7.3) exhibit the same

exponential runaway behaviour of the exact relativistic geodesics in de Sitter space-time.

The non-relativistic approximation keeps the essential features of the particle motion in de

Sitter space-time [31], [32], [33].

We summarize in the following our main results allowing to describe de Sitter (and Anti

de Sitter) space-time as a classical and quantum harmonic oscillator:

• The motion of a particle in an harmonic oscillator potential corresponds to the particle

motion in the non-relativistic limit of a constant curvature space-time. The harmonic

oscillator with an imaginary frequency, namely the inverted oscillator for Λ > 0 cor-

responds to de Sitter space-time; the real frequency normal oscillator Λ < 0 describes

anti-de Sitter space-time, and the free motion is flat Minkowski space-time Λ = 0.
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• The constant of the oscillator is the cosmological constant, as shown by Eq.(7.2), which

is the Hubble constant H2 or surface gravity squared Eq.(7.4).

• For the classical harmonic oscillator, the phase space is the classical one, and the

algebra of the (X,P ) variables or (X,T = iP ) variables is commuting. The classical

Hamiltonian is 2Hosc = X2 + P 2 = or in light-cone variables 2Hosc = 2UV = 2V U .

The light-cone structure X2 − T 2 is the classical known one, there is no difference

with the Minkowski light-cone structure of special relativity. Upon the identification

P = iT the classical commuting (X,T ) variables of Minkowski space-time and its

invariant distance s2 = X2 − T 2 correspond to a classical phase space (X,P ) and

Hamiltonian s2 = 2Hosc = X2 + P 2 which is the harmonic oscillator hamiltonian.

• The non relativistic approximation describes very well the essential properties of the

constant curvature -de Sitter or anti de Sitter- geometries and captures its physics.

Thus, the classical non-relativistic de Sitter invariant space-time, or the anti-de Sitter

space-time, and the Minkowski Poincare-invariant space-time all three describe special

relativity. We see that this reaches from another approach and motivation, the fact

that a constant curvature space-time describes special relativity, as refs [34] [35], or

the so called ”triply relativity” Λ > 0, Λ < 0 and Λ = 0.

• For the quantum harmonic oscillator, the quantum zero point energy bends the light

cone generators into the planck scale hyperbolae X2−T 2 = 1 and therefore the space-

time is curved: de Sitter (or anti de Sitter) space-time. And, as it is known, the

non-relativistic and relativistic de Sitter space-times are very similar.

• Upon the identification T = iP , the classical non commuting coordinates (X,T ) of

Minkowski space-time and its distance s2 = X2 − T 2 are the classical non commuting

phase space (X,P ) and classical quadratic form 2Hosc = X2 + P 2 → s2, which is

the harmonic oscillator Hamiltonian. And this is too the Hamiltonian of a particle in

a constant curvature (cosmological constant) de Sitter or anti de Sitter space (in its

non-relativistic limit).

• Explicitely: The (a, a+) creation and annihilation operators are the light-cone type

quantum coordinates of the phase space (X,P ): a = (X + iP )/
√

2, a+ = (X −

iP )/
√

2. The temporal variable T in the space-time configuration (X,T ) is like the
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(imaginary) momentum in phase space (X,P ). The identification P = iT yields:

X = (a+ + a)/
√

2, T = (a+ − a)/
√

2 , [a, a+] = 1 with the algebra:

2Hosc = (X2 − T 2) = 2 (a+a+
1

2
), (X2 + T 2) = (a2 + a+2), (7.5)

[2Hosc, T ] = X, [2Hosc, X] = T, [X,T ] = 1, (7.6)

a+ a = N being the number operator.

• In other words: The non-relativistic cosmological constant (de Sitter or Anti de Sitter)

space-time, the harmonic oscillator phase space and Minkowski space - time are in

correspondence one into another. The line element in Minkowski space-time in D

space-time dimensions s2 = X2 − T 2 + X2
j is equal to the (non relativistic) harmonic

oscillator Hamiltonian 2Hosc = X2 + P 2 + X2
j . Thus, there are the three possibilities

for special relativity. The interesting point in our studies is that the quantum harmonic

oscillator algebra describes the quantum non-commuting space-time structure.

• Upon the identification T = iP , the de Sitter hyperboloid Eq.(4.1) yields :

X2 + P 2 +X2
j + Z2 = L2

QH , j = 2, 3, ...(D − 2) (7.7)

corresponding to a harmonic oscillator (X,P ) embedded in a Minkowski space of

(D− 2 + 1) = (D− 1) spatial dimensions, ie a Minkowski space-time of D space-time

dimensions.

VIII. QUANTUM DISCRETE LEVELS OF THE UNIVERSE

Let us go beyond the classical-quantum duality of the space-time recently discussed and

promote the space-time coordinates to quantum non-commuting operators. As we have seen,

comparison to the harmonic oscillator (X,P ) variables and global phase space is enlight-

ing: The phase space instanton (X,P = iT ) describes the hyperbolic quantum space-time

structure and generates the quantum light cone. The classical Minkowski space-time null

generators X = ±T dissapear at the quantum level due to the relevant [X,T ] conmutator

which is always non-zero. A new quantum planck scale vacuum region emerges. In the case

of the Rindler and Schwarzshild-Kruskal space-time structures, The four Kruskal regions

merge inside a single quantum planck scale region [1], [3]



23

The quantum space-time structure consists of hyperbolic discrete levels of odd numbers

(X2 − T 2)n = H2
oscn = (2n+ 1) (in planck units ), n = 0, 1, 2.... (8.1)

(Xn, Tn) and the mass levels being
√

(2n+ 1), n = 0, 1, 2....

The planck scale hyperbolae (T 2 − X2)(n = 0) = ±1 delimitate the external space-

time regions from the new internal ones. (T 2 − X2)(n = 0) = ±1 are the fundamental

(n = 0) level from which the space-time levels go to the quantum (low n) levels and to the

semiclassical and classical (large n) levels. Asymptotically, for very large n the space-time

becomes continum.

The internal region to the four quantum Planck scale hyperbolae (T 2−X2)(n = 0) = ±1

is totally quantum and deep inside the Planck scale domain: this is the quantum vacuum or

”zero point” planckian and transplanckian energy region.

In terms of variables (xn±, tn±), covering only one: pre-planckian or post planckian phase,

the space-time discrete levels read:

xn± = [
√

2n+ 1±
√

2n ] (8.2)

tn± = [
√

2n+ 1±
√

(2n+ 1) + 1/2 ], (8.3)

xn=0 (+) = xn=0 (−) = 1 : planck scale

The low n, intermediate, and large n levels describe respectively the quantum, semiclassi-

cal and classical behaviours, interestingly enough the (±) branches consistently reflect the

classical-quantum duality properties.

(Xn, Tn), (xn, tn) are given in planck (length and time) units. In terms of the global

quantum gravity dimensionless length L = LQH/lP and mass M = MQH/mP , Eqs. (5.14)

or the local ones x = m/mp, translate into the discrete mass levels:

Ln =
√

(2n+ 1) =Mn n = 0, 1, 2, .... (8.4)

LQHn n>>1 = lP [
√

2 n +
1

2
√

2 n
+O(1/n3/2) ] (8.5)

MQHn n>>1 = mP [
√

2 n +
1

2
√

2 n
+O(1/n3/2) ] (8.6)

The above Eqs for LQHn, MQHn yield the levels for LHn± and MHn±:

LHn± = [ LQHn ±
√
L2
QHn − l2P ] (8.7)
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MHn± = [ MQHn ±
√
M2

QHn −m2
P ] (8.8)

The condition LQHn ≥ lP , MQHn ≥ mP consistently corresponds to the whole spectrum

n ≥ 0, the lowest level n = 0 being the planck mass and length:

LHn± = lP [
√

2n+ 1±
√

2n ] for all n = 0, 1, 2, ... (8.9)

MHn± = mP [
√

2n+ 1±
√

2n ] for all n = 0, 1, 2, ... (8.10)

The mass and radius of the universe MH , LH have discrete levels LHn±,MHn±, from the

most fundamental one (n = 0), going to the semiclassical (intermediate n), to the classical

ones (large n) which yield a continumm classical universe as it must be. This is clearly seen

from the mass level MHn± expressions (and similarly for the radius levels). Explicitely:

MH(n=0)+ = MH(n=0)− = MQH(n=0) = mP , n = 0 : planck mass (8.11)

MHn+ = mP [ 2
√

2 n − 1

2
√

2n
+ O(1/n3/2) ], large n : branch (+) : masses > mP

(8.12)

MHn− =
mP

2
√

2 n
+ O(1/n3/2), large n : branch (−) : masses < mP (8.13)

Large n levels are semiclassical tending towards a classical continuum space-time. Low n

are quantum, the lowest mode (n = 0) being the planck scale. Two dual (±) branches are

present in the local variables (
√

2n+ 1±
√

2n) reflecting the duality of the large and small

n behaviours and covering the whole spectrum: from the largest cosmological masses and

scales in branch (+) to the quantum smallest masses and scales in branch (−) passing by

the planck mass and length.

IX. QUANTUM DISCRETE LEVELS OF THE HUBBLE CONSTANT

Eqs.(8.4) yields the (dimensionless) quantum levels for the total: Hubble constant, vac-

uum energy and constant curvature:

Hn =
1√

(2n+ 1)
, Λn =

1

(2n+ 1)
, Rn =

1

(2n+ 1)
n = 0, 1, 2, ... (9.1)

n = 0 : H0 = 1, Λ0 = 1, R0 = 1 : planck scale (dimensionless) (9.2)

HQH (n=0) =
c

lP
= hP , ΛQH (n=0) = λP RQH (n=0) = 4λP : planck scale values (9.3)



25

And for the gravitational entropy:

Sn = (2n+ 1) in planck units sP = 4π

The lowest n = 0 level corresponds to the fundamental planck scale values (hP , λP , 4λP , sP )

for the Hubble constant, cosmological constant, constant curvature and gravitational entropy

respectively. Let us analyze now the implications of these results and the general picture

which they arise.

In the post-planckian universe tP ≤ t ≤ ttoday = 1061tP : We see that the physical

magnitudes as the Hubble radius, vacuum energy density, constant curvature, entropy start

at the planck scale: the zero level (n = 0). As n increases, the universe radius, mass and

entropy increase, the Hubble constant, curvature and vacuum energy consistently decrease

and the universe classicalizes. The decreasing with n of these quantities is given by Eq.(9.1),

and for large n, Hn, Λn and Rn classicalize as:

Hn>>1 =
c

lP
√

2n
[ 1−O (

1

2n
) ] << 1 (9.4)

Λn>>1 =
3 c2

l2P (2n)
[ 1−O (

1

2n
) ] << 1 (9.5)

Rn>>1 =
12 c2

l2P (2n)
[ 1−O (

1

2n
) ] << 1, (9.6)

precisely accounting for the low classical values of H and Λ in the universe today which is a

classical, large and dilute universe. The present universe values Htoday = 10−61, ρΛ = 10−122

correspond to a large n-level n = 10122 ≡ ntoday.

More generally, in the post-planckian universe: tP ≤ t ≤ ttoday = 1061tP , Eq.(9.1)

yields the quantum n-levels:

n =
1

2
(H−2

n − 1) : t(n=0) = tP ≤ tn ≤ tn today = 1061tP (9.7)

Thus, the more characteristic evolution values from the planck time tP till today:

hP , ..., Hinf , ..., Hcmb, ..., Hreion, ..., Htoday , (9.8)

corresponds to the n-levels:

n = 0, 1, 2, ...ninf = 1012, ...ncmb = 10114, ...nreoin = 10118, ...ntoday = 10122 (9.9)
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and the discrete Hn, Λn and Sn values:

Hn = 1, 0.577, ...Hn,inf = 10−6, ...Hn,cmb = 10−57, ...Hn,reoin = 10−59, ...Hn,today = 10−61

(9.10)

Λn = 1, 0.333, ...Λn,inf = 10−12, ...Λn,cmb = 10−114, ...Λn,reoin = 10−118, ...Λn,today = 10−122

(9.11)

Sn = 1, 3, ...Sn,inf = 1012, ...Sn,cmb = 10114, ...Sn,reoin = 10118, ...Sn,today = 10122 (9.12)

In the pre-planckian or precursor phase, namely, the trans-planckian phase:

10−61tP ≤ tn ≤ tP (n = 0), (9.13)

the quantum n-levels for HQn, ΛQn, SQn Eqs (4.6) are:

HQn =
√

2n+ 1 , ΛQn = (2n+ 1) , SQn =
1

(2n+ 1)
, n = 0, 1, 2, .... (9.14)

Thus:

n =
1

2
(H2

Qn − 1), 10−61tP ≤ tn ≤ tP (n = 0) (9.15)

and the more characteristic values in this phase, namely:

hP , ...HQinf , ...HQcmb, ...HQreion, ...HQtoday ≡ Hfar past, (9.16)

correspond to the n - level values:

n = 0, 1, ...nQinf = 1012, ...nQcmb = 10114, ...nQreoin = 10118, ...nQtoday ≡ nfar past = 10122

(9.17)

And the HQn, ΛQn and SQn levels have the values:

HQn = 1, 1.732, ...HQinf = 106, ...HQcmb = 1057, ...HQreoin = 1059, ...HQtoday = 1061 (9.18)

ΛQn = 1, 3, ...ΛQinf = 1012, ...ΛQcmb = 10114, ...ΛQreoin = 10118, ...ΛQtoday = 10122 (9.19)

SQn = 1, 0.333, ...SQinf = 10−12, ...SQcmb = 10−114, ...SQreoin = 10−118, ...SQtoday = 10−122

(9.20)

Figure 1 shows the whole picture, including both the pre-planckian and post-

planckian phases, and the complete discrete spectrum of levels from the far past to today

level. The universe pre- planckian phase, namely the quantum precursor phase is the set-

ting of the physically meaningful quantum trans-planckian energies. In the post-planckian
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(semiclassical and classical) eras, no trans-planckian energies are present: only mathemati-

cally or artificially (non physical) trans-planckian energies could be generated in the present

universe. However, signals or observables from the quantum precursor phase are present

in the classical and semiclassical universe, the most known being inflation and the present

dark (vacuum) energy.

Consistently, the pre-planckian phase covering 10−61tP ≤ t ≤ tP , provides too the two

dual: (+) and (−) branches, as it must be:

Hn± = hP [
√

2n+ 1±
√

2n ] n = 0, 1, 2.... (9.21)

Hn=0 = hP : planck scale value (9.22)

Hn+, n>>1 = hP [ 2
√

2 n − 1

2
√

2n
+ O (1/n3/2) ] >> 1 large n: branch (+) (9.23)

Hn−, n>>1 =
hP

2
√

2 n
+ O (1/n3/2) << 1 large n : branch (-) (9.24)

And for the universe radius levels LHn:

LH(n=0)+ = LH(n=0)− = LQH(n=0) = lP n = 0 : planck length (9.25)

LHn+, n>>1 = lP [ 2
√

2 n − 1

2
√

2n
+ O(1/n3/2) ] >> 1 large n : branch (+) (9.26)

LHn−, n>>1 =
lP

2
√

2 n
+ O(1/n3/2) << 1 large n : branch (-) (9.27)

The same expressions hold for the mass levels MHn(±); the vacuum levels Λn(±) and the

gravitational entropy Sn(±) levels follow from them.

The quantum levels cover all the range of scales from the largest cosmological scales and

time 1061tP today to the smallest one 10−61lP in the extreme past 10−61tP of the precursor

or trans-planckian phase, passing through the planck scale (lP , tP ), covering the two phases:

post and pre planckian phases respectively. The quantum mass levels are associated to the

quantum space-time structure. Quantum mass levels here cover all masses 10−61mP ≤Mn ≤

1061mP of the universe phases. The two dual mass branches (±) correspond to the larger

and smaller masses with respect to the planck mass mP respectively, they cover the whole

mass range from the planck mass in branch (+) until the largest cosmological masses, and

from the smallest masses in branch (−), the pre-planckian phase, til near the Planck mass.

As n increases, masses in the branch (+) increase (as 2
√

2n). Masses in the branch (−),

the very quantum one, decrease in the large n behaviour, precisely as 1/(2
√

2n), large n are

very excited levels in this branch, consistently being the dual of branch (+).
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X. THE SNYDER-YANG ALGEBRA AND QUANTUM DE SITTER

SPACE-TIME

The space-time coordinates in the planckian and super-planckian domain are no longer

commuting, but they obey non-zero commutation relations: The concept of space-time is

replaced by a quantum algebra. The classical space-time is recovered from the quantum

algebra as a particular case in which the quantum space and time coordinate operators

become the classical space-time continumm coordinates (c-numbers) with all commutators

vanishing and the discrete spectrum becomes the classical continumm space-time.

Here the quantum space-time description is reached directly from the quantum non-

commuting space- time coordinates and not through the quantization procedure of the clas-

sical gravitational field. This is so because the gravity field is itself a classical concept which

loose meaning at the planck scale. The space-time (the arena of events) is a classical concept

which is more direct to extend to, or to replace by, a quantum algebra of space-time position

and momenta

[Xi, Xj] = iMij

The Snyder algebra is a Lorentz covariant deformation of the Heisenberg algebra, where

the position operators are non-commuting and have discrete spectra [36] soon extended by

Yang [37] to include one more length parameter. It describes a non-commutative discrete

space-time compatible with Lorentz-Poincare symmetry. The discrete position spectra, rep-

resentations of the algebra imply a discrete space description of space.

• The Snyder algebra is precisely a description of a 4D constant curvature space of

momenta, this corresponds to a de Sitter hyperboloid embedded in a 5D Minkowski

momentum space. In the space of 5D momenta pA, this includes precisely the motion

of a particle of mass m and momentum on the de Sitter momentum hyperboloid

ηABpApB = m2.

• In geometric terms, the Snyder quantized space-time is a projective geometry approach

to the phase space or momentum de Sitter space in which the space-time coordinates’s

are identified with the 4-translation generators of the SO(1, 4) de Sitter group (and

are therefore non-commutative), and with other operators as angular momentum in

SO(1, 3).



29

• In projective or Beltrami coordinates, the Euclid, Riemann and Lobachevsky spaces

[39] corresponding to zero, positive and negative spatial curvature respectively, are

upon Wick rotation the Minkowski, de Sitter and Anti de Sitter space-times with the

invariance groups ISO(1, 3), SO(1, 4), SO(2, 3) respectively.

In D dimensions, the Lorentz-covariant Snyder-Yang quantum algebra follows from the

Inonu-Wigner [38] group contraction of the SO(D − 1, 1) algebra with the generators:

ΣAB = i(qA∂qB − qB∂qA), (10.1)

ΣAB live on the (D + 2) parameter space qA (hyperboloid) which satisfies

− q2
0 + q2

1 + ...+ q2
D−1 + q2

a + q2
b = L2 (10.2)

A = (µ, a, b); (µ = 1, 2, ...D); (a, b)being extra space dimensions, and q0 ≡ qD. (10.3)

The D-dimensional operators (Xµ, Pµ,Mµν): space-time operator Xµ, momentum operator

Pµ, angular momentum operators Mµν and the completing operator Nab are all defined by

the generators Σµa Eq.(10.1) as following:

Xµ ≡ lPΣµa, Pµ ≡ (~/L)Σµb, Mµν ≡ ~Σµν , Nab ≡ (lP/L)Σab. (10.4)

This set of operators (Xµ, Pµ,Mµν , N) satisfy the contracted algebra of SO(D+1, 1), namely

the quantum Yang-Snyder space-time algebra:

[Xµ, Xν ] = −i(l2P/~)Mµν , [Pµ, Pν ] = −i(~/L2)Mµν , (10.5)

[Xµ, Pν ] = −i~Nδµν , [Xµ, N ] = i(l2P/~)Pµ, [Pµ, N ] = −i(~/L2)Xµ (10.6)

And the operators Mµν satisfy angular momentum’s type relations:

[Mµ,Mν ] = −i(l2P/~)Mµν (10.7)

Classical-quantum duality in the Snyder-Yang algebra: The Snyder-Yang algebra

contains two parameters (a, L): small scale parameter a and large scale parameter R which

in our context are naturally the planck length lP and the universe radius LH . Our complete

(classical and quantum) radius LQH Eq.(5.1) contains intrinsically the both lengths, the
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classical LH and its quantum dual LQ (Compton radius of the universe), and provides a

basis for a framework naturally free of infrared and ultraviolet divergences:

a ≡ lP , L ≡ LQH = LH + LQ = lP (
LH
lP

+
lP
LH

) (10.8)

We see that the Snyder-Yang algebra with the complete length LQH(lP , LH) as a parameter

provides a quantum operator realization of the complete (classical and quantum) de Sitter

universe, including the quantum early and classical late de Sitter phases duals of each

other. This provides further description of the pre-planckian and post-planckian de Sitter

phases, within a group-theory realization of the quantum discrete de Sitter space-time and

of classical-quantum gravity duality.

Finally, let us mention as an example the cosmological vacuum energy, the most direct

candidate to the dark energy today , [6],[7],[8],[4],[5],[9],[10], for which the observed value is:

ρΛ = ΩΛρc = 3.28 10−11(eV )4 = (2.39 meV )4, meV = 10−3eV (10.9)

corresponding to h = 0.73, ΩΛ = 0.76, H = 1.558 10−33eV . The CMB data yield the

values [10]:

H = 67.4± 0.5 Km sec−1 Mpc−1, ΩΛh
2 = 0.0224± 10−4 (10.10)

and

ΩΛ = 0.6847± 0.0073, ΩΛh
2 = 0.3107± 0.0082, (10.11)

which implies for the cosmological vacuum today:

Λ = (4.24± 0.11) 10−66 (eV )2 = (2.846± 0.076) 10−122 m2
P (10.12)

The density ρΛ associated to Λ Eq.(10.9) is precisely:

ρΛ = Λ/8πG = ρP (Λ/λP ) , (10.13)

where the planck scale values ρP , λP are: ρP = λP/8πG, λP = 3h2
P . The quantum

vacuum value expected from microscopic particle physics is evaluated to be ΛQ ≈ 10122.

Crossing the planck scale. The two values: (Λ,ΛQ), refer to the same concept of

vacuum energy but they are in two huge different vacuum states and two huge different

cosmological epochs: classical state and classical dilute epoch today for Λ observed today

with the most classical levels, and quantum state and quantum very early epoch with the
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most excited levels for the quantum mechanical transplanckian value ΛQ. The classical value

today Λ = 3H2 corresponds to the classical universe today of classical rate H and classical

cosmological radius LH = c/H. The quantum mechanical value ΛQ = 3H2
Q corresponds to

the early quantum universe of quantum rate HQ and quantum radius LQ = l2P/LH = ~/MHc

which is exactly the quantum dual of the classical horizon radius LH : LQ is precisely the

quantum compton length of the universe for the gravitational mass MH = LHc
2/G.

Two extremely different physical conditions and gravity regimes. This is a

realistic, clear and precise illustration of the physical classical-quantum duality between the

two extreme Universe scales and gravity regimes through the planck scale: the dilute state

and horizon size of the universe today on the one largest known side, and the transplanckian

scales and highest density state on the smallest side: size, mass, and their associated time

(Hubble rate) and vacuum energy density (Λ, ρΛ) of the universe today are truly classical,

while its extreme past at 10−61 tP = 10−105 sec deep inside the transplanckian domain

of extremely small size and high vacuum density value (ΛQ, ρQ) are truly quantum and

trans-planckian. This manifests the classical-quantum or wave-particle duality between the

classical macroscopic (cosmological) gravity physical domain and the quantum microscopic

particle physics and transplanckian domain through the crossing of the planck scale, planck

scale duality in short.

An unifying picture: Starting from the earliest past quantum era from 10−61 tP to

tP , with the quantum excited level n = 10122, the entropy SQn increases in discrete levels

sP/(2n + 1) from its extreme small value SQ = 10−122 sP at the earliest time 10−61 tP till

for instance its quantum inflation value 10−12 sP , (nQinfl = 1012), at time 10−6 tP , to its

planck value (n = 0) : SQ = sP = πκB at the planck time tP , the crossing scale, after

which it goes to its semi-classical and classical levels (2n + 1)sP , e.g. inflationary value

SΛ inflation = 1012 sP , (n = 1012) at the classical inflationary stage at 106 tP and it follows

increasing and classicalizes till the most classical level today n = 10122: SΛ = 10122 sP at

the present time 1061 tP . And as far as the universe will continue expanding its horizon as

lP
√

(2n+ 1), SΛn will continue increasing as (2n+ 1).

The total QΛ gravitational entropy (for the whole history) is the sum of the three values

above discussed corresponding to the three regimes: classical Λ, quantum Q and planck

values (subcript P ). In the past remote and more quantum (Q) eras: 10−61 tP ≤ t ≤ tP ,

the planck entropy value (n = 0): sP = πκB dominates SQ. In the classical eras: tP ≤ t ≤
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1061tP , the today entropy value (n = 10+122) : SΛ = 10+122sP dominates.

The whole picture is depicted in figure (1), where: Λ refers to the cosmological

constant (or associated Hubble-Lemaitre constant H) in the classical gravity phase. Q means

quantum, P means planck scale, planck’s units, natural to the system, greatly simplify the

history. (The complete history is a theory of pure numbers). Each stage is characterized by

the set of main physical gravitational quantities: (Λ, density ρΛ, size LΛ, and gravitational

entropy SΛ). In the quantum trans-planckian phase, levels are labeled with the subscript

Q. Total means the whole history including the two phases or regimes. The present age of

the universe 1061, (with Λ = ρΛ = 10−122 = 1/SΛ) is a lower bound to the future universe

age and similarly for the present entropy level SΛ. The past 10−61, (with ΛQ = 10122 =

ρQ = 1/SQ is an upper bound to the extreme past (origin) of the universe and quantum

initial entropy, (arrow of time). [Similarly, the values given in Fig.1 (in planck units) for

the CMB are the classical CMB age (3.8 105yr = 1057tP ) and the set of gravitational

properties of the universe at this age, and their corresponding precursors in the quantum

preceding era at 10−57tP . SΛ constitute also un upper bound to the entropy of the CMB

photon radiation.] Figure caption: The quantum discrete levels of the universe from

its early trans-planckian era to today classical vacuum energy (dark energy), namely, the

standard model of the universe completed back in time with quantum physics in terms of

its vacuum history. The universe is composed of two main phases: after and before the

planck scale (planck time tP and planck units). The complete history goes from 10−61tP

to 1061tP : In the pre-planckian (trans-planckian) phase 10−61tP ≤ t ≤ tP ≡ tplanck the

quantum levels are: HQn =
√

(2n+ 1), ΛQn = (2n+ 1)/3, SQn = 1/(2n+ 1), n = 0, 1, 2, ...,

Q denoting quantum. The n-levels cover all scales starting from the past highest excited

trans-planckian level n = 10122 with finite curvature RQ = 10122, ΛQ = 10122 and minimum

entropy SQ = 10−122, as n decreases: SQn increases, (HQn,ΛQn) decrease passing the planck

level (n = 0): Hplanck = 1 = Λplanck = Splanck and entering the post-planckian phase e.g.

n = 1, 2, ..., ninflation = 1012, ..., ncmb = 10114, ..., nreoin = 10118, ..., ntoday = 10122. In the post-

planckian universe tP ≤ t ≤ 1061tP the levels are: Hn = 1/
√

(2n+ 1),Λn = 3/(2n+1), Sn =

(2n + 1): As n increases, radius, mass and Sn increase, (Hn,Λn) decrease and consistently

the universe classicalizes. The present age of the universe 1061tP with its most classical value

Htoday = 10−61, Λtoday = 10−122 = 1/Stoday is a lower bound to the future universe age and

similarly for the present entropy level Sn. The far past 10−61tP , (with ΛQ = 10122 = 1/SQ)
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FIG. 1. The quantum discrete levels of the universe from its early trans-planckian era

to today dark energy. In the pre-planckian (trans-planckian) phase 10−61tP ≤ t ≤ tP ≡ tplanck
the quantum levels are (in planck units): HQn =

√
(2n + 1), ΛQn = (2n + 1)/3, SQn = 1/(2n +

1), n = 0, 1, 2, ..., Q denoting quantum. The n-levels cover all scales from the past highest excited

trans-planckian level n = 10122, passing the planck level (n = 0) and entering the post-planckian

phase e.g. n = 1, 2, ..., ninflation = 1012, ..., ncmb = 10114, ..., nreoin = 10118, ..., ntoday = 10122. In the

post-planckian universe tP ≤ t ≤ 1061tP the levels are: Hn = 1/
√

(2n + 1),Λn = 3/(2n + 1), Sn =

(2n + 1): as n increases, radius, mass and Sn increase and consistently the universe classicalizes.

See the complete figure caption in the text at the end of Section X.
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is an upper bound to the extreme known past (”origin”) of the universe and quantum initial

entropy, (arrow of time).

XI. CONCLUSIONS

We have accounted in the introduction and along the paper the main results and will not

include all of them here. We synthetize below some conclusions and remarks.

• The standard model of the universe is extended back in time with planckian and trans-

planckian physics before inflation in agreement with observations, classical-quantum

gravity duality and quantum space-time. The quantum vacuum energy bends the

space-time and produces a constant curvature de Sitter background. We find the

quantum discrete cosmological levels: size, time, vacuum energy, Hubble constant and

gravitational (Gibbons-Hawking) entropy and temperature from the very early trans-

planckian vacuum to the classical today vacuum energy. The n-levels cover all scales

from the far past highest excited trans-planckian level n = 10122 with finite curvature,

ΛQ = 10122 and minimum entropy SQ = 10−122, n decreases till the planck level

(n = 0) with Hplanck = 1 = Λplanck = Splanck and enters the post-planckian phase e.g.

n = 1, 2, ..., ninflation = 1012, ..., ncmb = 10114, ..., nreoin = 10118, ..., ntoday = 10122 with

the most classical value Htoday = 10−61, Λtoday = 10−122, Stoday = 10122. We implement

the Snyder-Yang algebra in this context yielding a consistent group-theory realization

of quantum discrete de Sitter space-time, classical-quantum gravity duality symmetry

and a clarifying unifying picture.

• A clear picture for the de Sitter background and the whole universe epochs emerges,

both for its classical (post-planckian) and quantum (pre-planckian) regimes, depicted

in Fig (1). This is achieved by considering classical-quantum gravity duality, trans-

planckian physics, quantum space-time and quantum algebra to describe it. Con-

cepts as the Hawking temperature and the usual (mass) temperature are precisely the

same concept in the different: classical gravity (post-planckian) and quantum gravity

regimes respectively. Similarly, it holds for the Bekenstein-Gibbons and Hawking en-

tropy. An unifying clarifying picture has been provided in terms of the main physical

gravitational intrinsic magnitudes of the universe: age, size, mass, vacuum energy,
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temperature, entropy, covering the relevant gravity regimes and cosmological stages:

classical, semiclassical and quantum planckian and trans-planckian eras. The total or

global mass levels are Mn = mP

√
2n+ 1 for all n = 0, 1, 2, .... Two dual branches

mn± = mP [
√

2n+ 1 ±
√

2n ] do appear for the usual mass variables, covering the

whole mass range: from the planck mass (n = 0) until the largest cosmological ones

in the post-planckian branch (+), and from the smallest masses till near the planck

mass in the pre-planckian branch (−).

• The quantum space-time structure arises from the relevant non-zero space-time com-

mutator [X,T ], or non-zero quantum uncertainty ∆X∆T . The quantum light cone is

generated by the quantum planck hyperbolae X2−T 2 = ±[X,T ] due to the quantum

uncertainty [X,T ] = 1. Inside the planck hyperbolae there is a enterely new quantum

region which is purely quantum vacuum or zero-point planckian and trans-planckian

energy and constant curvature. The quantum non-commuting coordinates (X,T ) and

the transverse commuting spatial coordinates X⊥j generate the quantum two-sheet

hyperboloid X2 − T 2 + X2
⊥j = ±1. The quantum de Sitter space-time is described

through the relevant quantum non-commutative coordinates and the quantum hy-

perbolic ”light cone” hyperbolae. They generalize the classical de Sitter space-time

and reduce to it in the classical zero quantum commutator coordinates. Interestingly

enough, de Sitter space-time turns out to be discretized in quantum hyperbolic levels

X2 − T 2 +XjXj + Z2 = (2n+ 2), n = 0, 1, 2, ....

• In the post-planckian domain, the quantum de Sitter space-time extends in discrete

levels from the planck scale hyperbolae (n = 0) and the quantum (low n) levels to the

quasi-classical and classical levels (intermediate and large n), tending asymptotically

for the very large n to a classical continuum space-time. Consistently, these levels

have larger gravitational (Gibbons-Hawking) entropy Sn, lower vacuum density Λn

and lower Hubble rate Hn. In the pre-planckian trans-planckian domain, quantum de

Sitter extends from the planck scale hyperbolae (n = 0) to the lengths and time smaller

than the planck scale, the quasi-quantum transplanckian levels (small and medium n),

until the deep extreme highly excited transplanckian levels (very large n) which are

those of smaller entropy SQn, higher vacuum density ΛQn and higher HQn.
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• Cosmological evolution goes from the pre-planckian or trans-planckian quantum phase

to the planck scale and then to the post-planckian universe: semiclassical accelerated

de Sitter era (field theory inflation), then to the classical phase until the present diluted

de Sitter era. This evolution between the different gravity regimes could be view as a

mapping between asymptotic (in and out) states characterized by the sets UΛ and UQ,

and thus as a Scattering-matrix description: The most early quantum trans-planckian

state in the remote past being the ”‘in-state”, and the very late classical dilute state

being the far future or today ”‘out-state”’.

• Inflation is part of the standard cosmological model and is supported by the CMB data

of temperature and temperature-E polarisation anisotropies. This points to 10−6mP ,

(or 10−5MP for the reduced mass MP = mP/
√

8π) as the energy scale of Inflation

[19],[20], safely below the planck energy scale mP of the onset of quantum gravity.

This implies that Inflation is consistently in the semiclassical gravity regime. This

in turn implies that the preceding phase of Inflation corresponds to a planckian and

pre-planckian quantum phase. Inflation being a de Sitter, (or quasi de Sitter) stage,

it has a smooth space-time curvature without any physical space-time singularity.

• Integrating the above results, and because the earliest stages of the universe are de

Sitter (or quasi de Sitter) eras, it appears that there is no singularity at the universe’s

origin. First: the so called t = 0 Friedman-Robertson Walker mathematical singularity

is not physical: it is the result of extrapolation of the purely classical (non quantum)

General Relativity theory, out of its domain of physical validity. The planck scale is

not merely a useful system of units but a physically meaningful scale: the onset of

quantum gravity, this scale precludes the extrapolation until zero time or length. This

is precisely what is expected from quantum trans-planckian physics in gravity: the

smoothness of the classical gravitational singularities. Second: Inflation (classical or

quantum) in the very past (106tP or 10−6tP ) is mainly a de Sitter or quasi de Sitter

smooth constant curvature era without any curvature singularity. Third: the

extreme past (at 10−61tP ) is a trans-planckian de Sitter state of high bounded trans-

planckian constant curvature and therefore without singularity. This paper is not

devoted to the singularity issue but our results here and the whole picture emerging

from this paper and [2] indicate the trend and insight into the problem.
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• Further couplings, interactions and background fields can be added. The conceptual

results here will not change by adding further couplings or interactions, or further

background fields to the background here. Of course, this is just a first input in

the construction of a complete physical theory and understanding in agreement with

observations. Besides its conceptual and fundamental physics interest, this framework

reveals deep and useful clarification for relevant cosmological eras and its quantum

precusors and for the cosmological vacuum. This could provide realist insights and

science directions where to place the theoretical effort for cosmological missions and

future surveys such as Euclid, DESI, WFIRST, LSST-Vera C. Rubin Observatory

and Simons Observatory for instance,[27], [28], [29], [42], [43] and for the searching

of cosmological quantum gravitational signals for e-LISA [11] for instance, after the

success of LIGO [12],[13]

• The exhibit of (c,G, h) helps in recognizing the different relevant scales and physical

regimes. Even if a hypothetical underlying ”theory of everything” could only require

pure numbers (option three in [40]), physical touch at some level asks for the use of

fundamental constants [41],[30]. Here we used three fundamental constants, (tension

being c2/G). It appears from our study here and in ref [1], that a complete quantum

theory of gravity would be a theory of pure numbers.

• We can similarly think in quantum string coordinates (collection of point oscillators)

to describe the quantum space-time structure, (which is different from strings prop-

agating on a fixed space-time background). This yields similar results for the string

expectation values X2− T 2 and other related operators and yields too a quantum hy-

perbolic space-time width bending for the characteristic lines and light cone generators,

or for the space-time horizons [1] Moreover, the
√
n quantization is like the string mass

quantization Mn = ms

√
n, n = 0, 1, ... with the planck mass mP instead of the string

mass ms, that is to say, with the gravitational constant G/c2 instead of the string

constant α′.
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