Unifying quantum mechanics with Einstein’s general relativity
Norma G. Sanchez

To cite this version:

HAL Id: insu-02543814
https://insu.hal.science/insu-02543814
Submitted on 22 Apr 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
The question of whether light is a wave or a particle has baffled physicists since the 17th century. The problem first emerged when Isaac Newton developed his ‘corpuscle’ theory, which described particles of light which must only travel in straight lines; as seen in the reflection in a mirror. At the same time, however, other physicists including Christiaan Huygens and Thomas Young proposed that light must propagate as a wave, as it displays properties like diffraction and interference.

In fact, neither of these theories are necessarily ‘wrong’, since both of them are consistent with experimental observations when the right context is applied. On quantum scales, light travels in packets which we now call photons, but also reliably follows Maxwell’s equations, which describe the dynamics of classical electromagnetic waves. To explain how both theories can be correct at the same time, physicists needed a way to unify both classical electrodynamics and quantum physics into a deeper, more all-encompassing theory. Known among physicists as ‘quantum electrodynamics’, the theory was by no means simple to develop, but nonetheless, it has been done.

GENERALISING CLASSICAL PHYSICS

At around the beginning of the 20th century, several physicists began work on revolutionary theories to explain why matter appears to behave differently on extremely small scales. In the subsequent decades, the resulting field of quantum mechanics resolved many questions which classical physics didn’t have the means to answer. Ultimately, the success of the theory stemmed from the fact that quantum theory is a ‘generalised’ theory, of which classical physics is just one specialised branch.

This means that while physics appears to be non-classical on quantum scales, classical behaviours emerge on larger scales, where quantum processes become far less relevant overall. Ultimately, therefore, quantum mechanics unites...
explanations for physical behaviours which are observed on a variety of scales. Yet despite the successes of quantum theory, physicists have realised for some time that even quantum mechanics is not general enough to explain all of the physics we have observed in the universe.

THE INCOMPLETENESS OF GRAVITY
Again, first described by Newton, the effects of gravity can be accurately described in many situations using classical physics alone. However, these theories are unable to fully explain all phenomena ever observed by astronomers. Albert Einstein famously resolved this issue through his theory of general relativity. His equations generalised gravity to a more all-encompassing theory; this time, to a geometric model which unites space and time, named spacetime.

Yet although Einstein’s theory has been watertight enough to hold up to even the latest astronomical observations, it appears to be completely incompatible with quantum mechanics. For physicists, this calls for an even deeper generalisation, which has been preemptively given the name ‘quantum gravity’. In her research, Dr Sanchez aims to realise such a theory, in which both quantum mechanics and general relativity are particular branches which are contained on their appropriate scales. To do this, she has incorporated physical theories which have emerged since Einstein first drew out his famous equations. The key point in her approach is that instead of starting from gravity and quantizing it, she starts from quantum theory and extends it to the high energy scales where gravity and quantum effects are of the same importance.

Dr Sanchez uses ‘semi-classical’ gravity as a standard theory, which emerges from her own theories in particular situations.

BUILDING ON AN INTERMEDIATE THEORY
Later on in the 20th century, a wide variety of intriguing discoveries about the nature of our universe began to emerge. These included Stephen Hawking’s celebrated explanations for how black holes decay through radiation, as well as Cosmic Microwave Background radiation – a faint source of light found across the entire sky, which indicates the density structure of the entire universe.

These theories are united in the approximation that matter displays quantum behaviour, but moves around according to a classical description of spacetime. Known as ‘semi-classical’ gravity, this model acts as a useful bridge between the separated theories of quantum mechanics and general relativity, and a unified theory of quantum gravity. Because of this, Dr Sanchez uses it as a standard theory, which emerges from her own theories in particular situations.

EXTENDING CLASSICAL-QUANTUM DUALITY
While previous theories which incorporate semi-classical gravity have described vast astronomical structures, Dr Sanchez brings it down to quantum scales in her research. To describe how gravity could work in this regime, she starts from the classical-quantum duality of quantum theory and extends it across and beyond the Planck scale. This is where a unification of three fundamental physical constants occurs: Planck’s constant, originating from quantum mechanics; Newton’s gravitational constant from classical gravitation; and the speed of light, which Einstein proved to be constant through general relativity.
cones, which are, in fact, hyperbola-shaped instead of pointed. Quantum properties then emerge within this space, in the region of time and space immediately surrounding the flash. On larger scales, where quantum effects are no longer relevant, the classical light cone re-emerges; ultimately allowing both previous theories to work in harmony with each other.

CLASSICAL-QUANTUM DUALITY IN BLACK HOLES

Finally, Dr Sanchez has applied her theory of classical-quantum duality to black holes, whose inner workings are masked by an ‘event horizon’ from which light cannot escape. So far, this has meant that the physical nature of black hole interiors has completely eluded astronomers.

According to Dr Sanchez, the outer regions of black holes are either classical or semi-classical, while the behaviours of their interiors are totally governed by quantum mechanics. The event horizon disappears at the quantum level, a ‘quantum border’ emerges at which the interiors and exteriors of black holes become the same on quantum scales. Moreover, the classical space-time central singularity – the point at the centre of a black hole at which curvature had been theorised to become infinite, is avoided in this case.

According to Dr Sanchez, the singularity must disappear at the quantum level, to remain consistent with the smearing of singularities on quantum scales.

A TRANSFORMATION IN UNDERSTANDING

Over the past decades, potential solutions to quantum gravity and several types of mathematical dualities have been hotly debated, and it has remained uncertain whether or not our fundamental understanding of physics needs to be completely rethought. But Dr Sanchez understood that is the physical and universal wave-particle duality of quantum physics which is at the root of the solution. Ultimately, a unified idea of the quantum nature of astronomical-scale phenomena could transform our understanding of how the universe works, and would set the stage for an exciting new era of theoretical physics and cosmology.
Behind the Research
Prof Dr Norma G. Sanchez

E: Norma.Sanchez@obspm.fr T: +33 (1) 40 51 23 03 W: https://lerma.obspm.fr/~sanchez/

Research Objectives

Prof Dr Norma Sanchez’s theory unifies quantum mechanics with Einstein’s general relativity.

Detail

Norma G. Sanchez
CNRS-LERMA, Observatoire de Paris - PSL Université, Sorbonne Université
77, avenue Denfert-Rochereau
75014 Paris
France

Bio

Prof Dr Norma G. Sanchez is director of research at the French National Centre for Scientific Research and director of the International School Daniel Chalonge – Hector de Vega. Her first work was on the scattering and absorption theory by black holes and Hawking radiation, she obtained for the first time the whole absorption spectrum of the back hole, (French These d’Etat, 1978), connected Einstein equations to other known non-linear theories and their solutions, developed new approaches to quantum fields and strings in curved space-times and found new physical effects. Norma does research in Physical Cosmology, Theoretical Physics, The Standard Model of the Universe from the early to the late universe, with Inflation, the CMB and primordial gravitons, Warm Dark Matter, Dark Energy and quantum physics.

References

The present article is one from a trilogy published by the author in 2019 on the subject, and from which much more developments are going on:

Personal Response

What do you find most inspiring about your work?

"The fact that it is a creative, endless work with total freedom, motivated by true advance and discovery beyond current knowledge."