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A B S T R A C T

Study region: India
Study focus: India boasts the largest irrigated agricultural system in the world relying on
groundwater. To address the strong linkages between the natural groundwater and the anthro-
pogenic irrigated system requires innovative hydrological modeling geared at informing national
policies on groundwater management and future development of irrigated agriculture. For this,
we developed a predictive, integrated hydrological and groundwater use model and evaluated
the model using total water storage (TWS) data from the Gravity Recovery and Climate
Experiment (GRACE). The utility of the model was demonstrated in a case study in which the
model was applied to project the groundwater balance in northwest India under four RCP
(Representative Concentration Pathways) scenarios.
New hydrological insights for the region: The model shows good identifiability to GRACE data in
northwest India and with incorporated groundwater irrigation simulation module the model can
adequately replicate the declining trend in TWS over this region. It is concluded that by assuming
a unchanged pattern of agricultural water use climate change is likely to help reduce the mag-
nitude of the groundwater deficit, but the beneficial effect is insufficient to halt the trend of
groundwater depletion. This result provides new evidence for the importance of groundwater
conservation through changes in cropping patterns and improved groundwater governance.

1. Introduction

Hydrological research traditionally focuses on physical processes, but the importance of investigating linkages between the an-
throposphere and the hydrosphere has been well recognized (Wagener et al., 2010). In this paper, we developed a model that
integrates groundwater use for irrigation into a national-scale hydrological simulation system of India, where the anthropogenic
influence of groundwater irrigation has dramatically changed the country’s water resource base. India boasts one of the largest
irrigated agricultural systems in the world, with more than 60 million hectares equipped for irrigation (FAO AQUASTAT). Fur-
thermore, more than 60 % of the irrigated area is fed by groundwater (FAO AQUASTAT). The heavy use of groundwater for irrigation
has created extensive concerns about overdraft and depletion and has made India a global hotspot for water resources studies (Kumar
et al., 2007; Foster et al., 2008). Any hydrological model of India that is developed or used for decision-support will therefore need to
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be able to quantify the impact of groundwater irrigation.
We developed the model using the Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998) and publicly available data, in

particular total water storage (TWS) variation data from the Gravity Recovery and Climate Experiment (GRACE) (Tapley et al., 2004)
against which model performance was evaluated. GRACE TWS data provide observations of terrestrial total water storage anomalies
that integrate variations of all vertical components of water storages and have been applied for groundwater resources assessments in
India at a national scale by Rodell et al. (2009); Tiwari et al. (2009); Chen et al. (2014); Long et al. (2016) and Asoka et al. (2017) etc.
They were also used by Barik et al. (2017) to examine the food-water-energy nexus in India over recent time periods. What dis-
tinguishes our study from these studies is that past applications of GRACE TWS data in India focused on using trends derived from the
GRACE TWS data to estimate historical groundwater depletion rates while our study developed a predictive model with enhanced
representation of linkages between groundwater irrigation and groundwater storage. Modules representing anthropogenic water use
have been developed and incorporated into a number of large-scale hydrologic simulation models (Cai and Rosegrant, 2002; Alcamo
et al., 2003; Hanasaki et al., 2008; Wada et al., 2012; Döll et al., 2014; Pokhrel et al., 2015; Wada et al., 2016), and GRACE data have
been used in the validation of some of these models (f. ex. Döll 2012 and 2014). However, these models have global coverage and did
not include detailed results, discussion and information on model uncertainty for individual countries.

In this study, we also tested the feasibility of applying process-based crop simulation techniques in the development of a large-
scale, integrated hydrological-water use model in a country with varying climate and intensive agricultural water use. Simulation of
irrigation water demand and irrigation water use in global models is primarily based on the FAO-56 crop coefficient approach (Allen
et al., 1998; Döll and Siebert, 2002; Wada et al., 2014), which links consumptive water use of crops to climate variables through a
series of coefficients. SWAT, originally designed as a meso-scale river basin model, incorporates algorithms from the EPIC (Erosion-
Productivity Impact Calculator) crop simulation model (Williams et al., 1989) and therefore is capable of simulating plant water
uptake and irrigation water application processes in much greater detail. The size of study river basins in SWAT applications typically
range from tens to several thousand square kilometers, but in recent years the model has also been applied at national and continental
levels (Schuol et al., 2008; Xie et al., 2012).

Moreover, as described in section 3, with the incorporation of the groundwater irrigation simulation module, the model can
adequately replicate the declining trend in TWS in northwest India. In section 4, we applied the model developed in this study to
provide a “partial” analysis of the impact of climate change on groundwater balances in northwest India as a demonstration of the
utility of the model. The prospects of extending the model to provide fuller analysis to inform policy making for groundwater
management and groundwater-fed irrigated agriculture under changing climate and socioeconomic conditions are also discussed.

2. Data and method

2.1. SWAT and watershed delineation

SWAT is a semi-distributed river basin model. Using digital elevation data from the HydroSHEDS (Hydrological data and maps
based on SHuttle Elevation Derivatives at multiple Scales) (Lehner et al., 2008) database, the study region was partitioned into 677
subbasins (Fig. 1). The area modeled is 3.9 million km2 and, in addition to India, covers Nepal, Bangladesh, Bhutan as well as parts of
China, Myanmar and Pakistan.

2.2. HRU definition

Within a subbasin, hydrologic response units (HRUs) can be defined. An HRU in a subbasin is a land segment consisting of areas
with the same soil, land cover/use and land management practices. The definition of HRUs helps reflect the heterogeneity of soil, land
cover/use and land management practices within a subbasin (Winchell et al., 2007).

For this study, we defined HRUs for the main crops under groundwater irrigation. To this end, we harmonized land use/cover data
from the GLC (Global Land Cover) 2000 database (Bartholome and Belward, 2005) and downscaled crop harvested area data by crop
and by production system from the SPAM (Spatial Production Allocation Model) database (You et al., 2006). GLC is a comprehensive
global land cover and land use database containing land cover/land use data classified under the FAO Land Cover Classification
System that covers the complete range of land cover and land use from natural vegetation to anthropogenic land uses. In GLC2000,
pixels with dominant land use for agriculture are classified as irrigated agriculture, intensive irrigated agriculture and rainfed
agriculture. More precise and detailed estimates of irrigated agricultural area by crop are obtained from the SPAM database. In the
production of the SPAM database, national or sub-national statistics are downscaled to a 5 arc-minute (approximately 10 km × 10
km) grid. The SPAM 2000, version used in this study, contains estimated harvested areas for 20 major crops around 2000 on a 5 arc-
minute grid in four production systems: irrigated, rainfed-high input, rainfed-low input and rainfed-subsistence. The irrigated har-
vested area by crop in the study region reported by SPAM is summarized in Table 1. We defined groundwater irrigated HRUs for the
five key groundwater irrigated crops in the country: rice, wheat, cotton, sugarcane and maize (Fig. 2). They account for 84 % of total
irrigated harvested area in the study region. The harvested area of each of the five crops under groundwater irrigation in each
subbasin was further estimated using data on area equipped with groundwater irrigation from a global groundwater irrigation
inventory developed by Siebert et al. (2010) (Fig. 3). We calculated:

= ∙A A fGW C Total C r GW, , . (1)

where AGW C, is groundwater irrigated harvested area for crop c in a subbasin, ATotal C, is total irrigated harvested area of crop c in the
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Fig. 1. Watershed delineation in the SWAT-India model. (This map shows the boundary of territory controlled by India. The depiction and use of
boundaries, geographic names and related data shown on maps and included in tables of this article do not necessarily imply official endorsement or
acceptance by the International Food Policy Research Institute or partnered/associated organizations. Data on groundwater basin/aquifers were
obtained from the World-wide Hydrogeological Mapping and Assessment Programme -WHYMAP).

Table 1
Irrigated harvested areas by crop in the study region.

Crop Irrigated harvested area (million ha) Percentage (%)

Rice 26.1 36.9
Wheat 24.7 34.9
Cotton 3.4 4.8
Sugarcane 3.8 5.4
Oil (other) 3.0 4.2
Pulse (other) 1.8 2.5
Maize 1.5 2.1
Beans 1.4 2.0
Groundnuts 1.4 2.0
Other 3.6 5.1
Total 70.7 100
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subbasin, and fr GW. is the share of irrigated area equipped with groundwater irrigation in the subbasin (0–1) derived from the
groundwater irrigation inventory data developed by Siebert et al. (2010). Moreover, among the five crops, sugarcane is a perennial
crop, maize and cotton are mainly Kharif (summer) season crops while the cultivation of wheat mainly occurs in the Rabi (winter)
season. For these crops, a single growing season is assumed in each year in the model with planting dates and length of the growing

Fig. 2. Cropping density of major irrigated crops in India (source of data: SPAM2000, You et al., 2006).
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season estimated by Sacks et al. (2010) and the physical irrigated areas in each growing season are equal to the annual harvested
irrigated areas. As for rice, India features up to three rice-growing seasons: Kharif, Rabi and pre-Kharif. The physical areas of irrigated
rice in each season were estimated using data on rice cropping patterns compiled by Frolking et al. (2006).

It is worth noting that in this study we limited our effort to simulating groundwater irrigation and viewed this as a step toward
developing a more full-fledged national hydrological model of India. Simulation of irrigation from surface water is linked to modeling
storage variations and water conveyance and allocation processes in man-made surface water infrastructure. However, there is a lack
of data to support such simulations. Although global hydrological modeling studies simulate assumed water infrastructure operation
rules for modeling human water uses including surface water irrigation (f. ex. Hanasaki et al., 2006; Döll et al., 2012), such ap-
proaches are less justifiable at the national level. The unaccounted surface water irrigation has implications for modeling ground-
water balances (see the discussion for Eq. 6), and this constitutes a major limitation of our study. Omitting the water storage variation
from man-made water infrastructure, which is a component of the TWS variation detected in GRACE, also implies greater uncertainty
in GRACE data-based model evaluation. In fact, there is uncertainty originating from unvalidated model performance in simulating
whole surface water system. However, national river discharge data are difficult to obtain for India. In this study, we left the model
uncalibrated/unvalidated in terms of its performance in modeling surface water hydrology.

The soil data used in this study were obtained from the WaterBase (George and Leon, 2008). This data set is developed based on
the FAO/UNESCO Soil Map of the World and contains derived soil properties required for SWAT modeling. A dominant soil type was
identified in each subbasin and used for HRU definition.

Fig. 3. Share of groundwater irrigated area by subbasin (source of data: Siebert et al., 2010).

H. Xie, et al. Journal of Hydrology: Regional Studies 29 (2020) 100681

5



2.3. Irrigation and groundwater storage simulation

SWAT operates at a daily time step. The simulation algorithms in the model are described in detail in (Neitsch et al., 2011). Only
those components that are relevant to simulating irrigation and groundwater balance are discussed here. Modifications were made to
address limitations in the SWAT model in simulating irrigation for paddy rice and groundwater storage variation.

2.3.1. Irrigation simulation in SWAT
The crop simulation algorithm in SWAT originates from the EPIC (Erosion-Productivity Impact Calculator) model (Williams et al.,

1989). On each day during a growing season, the model keeps track of root, leaf and biomass development of crops and calculates
crop water demand as well as the amount of water the plant can actually uptake from the soil. SWAT provides functions to simulate
irrigation events. For this study, the auto-irrigation scheme was used to simulate irrigation activities related to the production of
cotton, maize, sugarcane and wheat. Under this auto-irrigation scheme, irrigation can be triggered automatically based on water
stress experienced by crops or irrigation water is applied whenever the water stress of the crop exceeds a specified threshold. Crop
water stress is calculated as:

= −wstr E
E

1 a

t (2)

where wstr is water stress on a given day with a value ranging from 0 to 1. Et is the potential transpiration or water demand of a crop
on a given day (mmH2O), and Ea is the amount of water actually taken up or transpired by the plant (mmH2O). Once auto-irrigation is
invoked, soil moisture will be restored to soil field capacity.

While the auto-irrigation algorithm in SWAT is suitable to simulate irrigation for upland crops, the model has limitations in
simulating irrigated rice production. Pothole module in SWAT is often used as an option in modeling rice paddy, which is designed to
simulate hydrology in closed depressions with ponded water. However, the module cannot adequately simulate infiltration in sa-
turated soils underlying paddy fields and tends to underestimate percolation losses (Sakaguchi et al., 2014). Furthermore, the auto-
irrigation algorithm with crop water stress as a trigger is no longer applicable as the key decision variable for irrigated rice is ponded
water depth. In this study, we adopted the modifications proposed by Kang et al. (2006); Xie and Cui (2011) and Sakaguchi et al.
(2014) to improve the capacity of the SWAT pothole module in simulating water balances and irrigation for irrigated rice production.
We assumed a constant daily percolation rate for the water balance calculation when the field is flooded (Kang et al., 2006, and
Sakaguchi et al., 2014). Second, we implemented the irrigation simulation algorithm for paddy proposed by Xie and Cui (2011). In
this algorithm, the water depth in paddy varies between a predefined minimum fitting depth and a maximum ponding depth.
Irrigation occurs when the water depth drops below the minimum fitting depth, and the objective of the irrigation operation is to fill
the paddy field with water to the maximum fitting depth (minimum fitting depth<maximum fitting depth<maximum ponding
depth). The values of the three critical water depths vary by the growth stage of rice (Table 1 in Xie and Cui, 2011).

Using the simulation algorithms described above, the pumping rate of groundwater for irrigation was first estimated as soil
moisture deficit with respect to soil field capacity (for crops other than paddy rice) or ponded water depth deficit with respect to
maximum fitting depth of paddy fields and then adjusted for water losses in irrigation application, which are unaccounted for in the
simulation (e.g., water conveyance losses), by an irrigation efficiency coefficient (Santhi et al., 2005).

=Q
Q

γirr
irr
'

(3)

where Qirr is the estimated groundwater pumping rate for irrigation (mmH2O), ′Qirr is the irrigation water demand estimated without
consideration of unaccounted-for-water losses in irrigation (mmH2O), and γ is the irrigation efficiency coefficient. The volume of
pumped groundwater for irrigation was also constrained by the water storage in aquifers. Irrigation stops when aquifer water is
depleted.

2.3.2. Groundwater balance simulation in SWAT
SWAT uses the Soil Conservation Service curve number method (Soil Conservation Service (SCS, 1972) to calculate surface runoff,

and the model simulates infiltration, evaporation, plant water uptake and interflow generation processes in the soil profile.
Groundwater aquifers are recharged by water infiltrating through the soil.

In SWAT, for each HRU groundwater storage is partitioned into two components: one represents shallow aquifer and the other
deep aquifer. Either component can be assigned as the water source for irrigation from which groundwater is abstracted. Moreover,
both components can contribute to baseflow. Groundwater baseflow from each component is calculated as

= ∙ − ∙ + ∙ − − ∙−Q Q α t Q α texp( Δ ) [1 exp( Δ )]gw i gw i gw rchrg i gw, , 1 , (4)

where Qgw i, is the groundwater flow on a given day i (mm H2O), −Qgw i, 1 is the groundwater flow on the preceding day i-1(mmH2O),
αgw is the baseflow recession coefficient (day−1), tΔ is the time step (1 day), and Qrchrg i, is the amount of recharge entering aquifer on
day i (mmH2O).

Water in shallow aquifers can also be removed by the “revap” process, which is defined in SWAT to account for water removed
from shallow aquifers through the capillary fringe that separates saturated from unseparated zones. “Revap” occurs when water
storage in shallow aquifers exceeds a certain threshold, and the amount of water removed by the “revap” process on a given day
Qrevap max, (mm H2O) is calculated as:
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= ∙Q β Erevap max revap, 0 (5)

where βrevap is the revap coefficient, and E0 is the potential evapotransipration for the day (mm H2O).
In this study, we substituted a new groundwater module for the module in SWAT. The water balance for groundwater storage in

the new module is:

= − −S Q Q QΔ rchrg gw irr (6)

where SΔ is groundwater storage change on a given day (mmH2O),Qrchrg is the recharge (mmH2O),Qgw is groundwater flow out of the
storage on a given day (mmH2O), and Qirr is the amount of water abstracted for irrigation, or pumping rate (mmH2O). We chose to
omit the “revap” process since the effect of the “revap” process tends to be confounded with the effect of irrigation water withdrawal:
a large “revap” coefficient can lead to similar declines of groundwater storage as irrigation water withdrawals, and data to describe
the “revap” process is lacking.

Aquifer formations in India generally fall into two groups (Central Ground Water Board (CGWB, 2012): unconsolidated and
consolidated/semi-consolidated. Unconsolidated aquifers underlie the Indo-Gangetic and Brahmaputra plains in northern India
(MacDonald et al., 2016) (Fig. 1). They serve as large underground reservoirs to support the intensive irrigated agriculture in the
region. By contrast, aquifers in central and southern India are predominantly consolidated/semi-consolidated with limited water
storage capacity. In the new module, we distinguish between these two types of aquifers. For subbasins with unconsolidated aquifers
as the dominant formation, the groundwater storage is still partitioned into two components although the two components are
referred to as “active” and “inactive” instead. In the simulation, only the active storage contributes to groundwater baseflow and
when irrigation occurs water is first abstracted from the active storage. As water in the active storage component is depleted, no
further baseflow will be discharged from the aquifer to streams and water will start to be abstracted from the inactive component. The
initial storage in the active component is established through a spin-up (see section 2.5). Unlimited groundwater storage is assumed
in unconsolidated aquifers. A large positive value was thus assigned as initial storage of the inactive component of groundwater
storage.

The baseflow from the active storage of the aquifer is calculated as:

=Q kQgw active (7)

where k is the groundwater flow recession constant, and Qactive is the volume of water in the active component of groundwater storage
(mmH2O). This equation has been extensively applied in hydrologic modeling to estimate groundwater flow (f.ex. Chapman, 1999;
Fenicia et al., 2006; Beck et al., 2013). The motivation of replacing Eq. (4) with Eq. (7) is to better reflect the impact of irrigation
water withdrawal on groundwater flow. There is a lack of response in groundwater baseflow calculated using Eq. (4) to changes in
groundwater storage caused by irrigation (Zeng and Cai, 2014).

For river basins with consolidated/semi-consolidated aquifers, the entire storage was assumed to be active with baseflow being
calculated using Eq. (7).

The recharge termQrchrg in Eq. (6) includes contributions from precipitation and “return flows” from groundwater irrigation in our
model. In reality, groundwater can also be replenished by water from surface water irrigation which includes not only percolation
from fields irrigated with surface water but also seepage from irrigation canals during water conveyance (MacDonald et al., 2016;
Singh, 2011). Irrigation canals are typically built as components of large-scale surface water irrigation projects. The seepage rate of
water from irrigation canals is a function of canal length, lining materials, water residence time and wetted perimeter, and effective
hydraulic conductivity of the channel alluvium (Santhi et al., 2005). As noted above, considering limited data availability, recharge
from surface water irrigation was omitted, and this is a primary source of uncertainty in our study.

The pumping rate, Qirr , was estimated using the irrigation simulation algorithm described in section 2.3.1.

2.4. GRACE data and comparison of SWAT- and GRACE-based TWS variation data

The GRACE TWS data used for this study were obtained from CNES-GRGS (Centre National d'Etudes Spatiales-Groupe de
Recherches de Géodésie Spatiale), RL3-v3 product, which provides an improved temporal resolution (10-day means) with high
spatial resolution. The Stokes coefficients were truncated at degree 50 (i.e. ∼400 km spatial resolution) to address the issue of
decreasing signal to noise ratio with increasing spatial resolution. Spherical harmonic data were recombined and projected on a 0.5°
latitude/longitude grid following Wahr et al. (1998).

For model identification, we compared the GRACE-based and SWAT-simulated TWS variations during 306 10-day intervals be-
tween July 29, 2002 and June 2, 2011 (GRACE TWS variation data are missing for 18 10-day intervals during the periods from
November 26, 2002 to February 23, 2003, May 25, 2003 to July 3, 2003, January 20, 2004 to January 29, 2004, and December 24,
2010 to February 1, 2011). The strategy applied to compare GRACE- and SWAT-based TWS variations is discussed in detail in Xie
et al. (2012) and is summarized below:

Firstly, we computed basin-wide TWS variations for each 10-day interval and disaggregated them on a 0.5 degree grid based on
daily SWAT simulation results.

Secondly, regional model outputs were “nested” in a global model. Simulated TWS variations from the Noah land surface model
(Ek et al., 2003) in NASA’s Global Land Data Assimilation System (GLDAS) (Rodell et al., 2004) were used as prior information to fill
the regions outside the SWAT simulated area. The global TWS data were then projected on spherical harmonics using SHTOOLS
(https://shtools.oca.eu/shtools/). The projection converted the model-based TWS variation fields to GRACE resolution and allowed a
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comparison of the two data sets (Güntner, 2008).

2.5. Climate data and spin-up

SWAT provides three options for estimating potential evapotranspiration (Neitsch et al., 2011): the Priestley-Taylor method
(Priestley and Taylor, 1972), the Penman-Monteith method (Monteith, 1965), and the Hargreaves method (Hargreaves and Samani,
1985). The Penman-Monteith method was selected. For this option, climate data for precipitation, temperature, solar radiation,
relative humidity and wind speed data are required in the SWAT simulation. The gridded One-Degree Daily (1DD) data from 1997
through 2011 of these variables covering the GRACE TWS data period were obtained through the agroclimatology portal of the NASA
Prediction of Worldwide Energy Resource (POWER) Project; original data sources include the Global Precipitation Climate Project
(GPCP), the Goddard Earth Observing System model version 4 and version 5 (GEOS-4 & GEOS-5), the Release 3 of the NASA/GEWEX
Surface Radiation Budget (GEWEX SRB 3.0) project, and the NASA’s Fast Longwave And SHortwave Radiative Fluxes (FLASHFlux)
project. During model development, the subbasin-wide estimates of these climatic variables were calculated by averaging gridded-
based climate data using fractions of area covered by different climate data grid cells as weights (Schuol and Abbaspour, 2007).

In SWAT modeling, initial conditions of hydrologic state variables, including active groundwater storages, are unknown and are
established through spin-up simulations. Given the need to initialize active groundwater storage, a long spin-up period, 1910–2001,
was used. Climate data obtained from ISI-MIP, which were downscaled from the NorESM1-M model, were used for simulation during
the spin-up period. Groundwater based irrigated agriculture in India started to take off during the 1960s as part of the Green
Revolution. Groundwater irrigation activities during 1950–2001 were simulated in the spin-up simulation, in which sizes of
groundwater irrigated crop HRUs in each subbasin were adjusted dynamically by a ratio derived from historical data on state-wise
groundwater irrigated area reflecting the actual pathways of groundwater-driven irrigation expansion (Bhaduri et al., 2006; Gandhi
and Namboodiri, 2009).

3. Results of model identification

Figs. 4–6 present simulation results using a set of selected/default values of model parameters (water percolation rate in paddy
rice = 8 mm H2O/day, threshold of upland crop water stress triggering irrigation = 0.7, Irrigation efficiency = 0.7, soil evaporation
compensation factor = 0.95, groundwater recession coefficient = 0.05). The map in Fig. 4(a) shows the model quality on a grid basis
obtained from simulation that does not consider groundwater irrigation. The agreement between the observed and simulated TWS
data series was measured by the Nash–Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970). NSE is a coefficient extensively used in
hydrologic modeling for model evaluation. Its value ranges from − ∞ to 1 and equals unity when model output and observations are
identical. Fig. 4 partitions India into three regions: the northwest (region I), the northeast and east (region II) and the central and
southern region (region III). The northwest region defined in this study covers an area of 0.9 million km2 and stretches across seven

Fig. 4. A comparison of model fit between cases of (a) no simulation of groundwater irrigation and (b) groundwater irrigation simulation included
(region I: northwest; region II: northeast & east; region III: central and south; the default values of five parameters included in the GLUE analysis to
produce results shown in this figure, Figs. 5 and 6 are: water percolation rate in rice paddy = 8 mm H2O/day, threshold of upland crop water stress
triggering irrigation = 0.7, Irrigation efficiency = 0.7, soil evaporation compensation factor = 0.95, groundwater recession coefficient = 0.05).
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Indian states: Punjab, Haryana, Delhi, Himachal Pradesh, Uttar Pradesh, Rajasthan and Jammu and Kashmir. This region accounts for
40 % of irrigated area of the country (the northeast and east region for 28 % and the central and southern region for 32 %). Moreover,
approximately 70 % of the irrigated area in the northwest region is irrigated by groundwater (the shares are 61 % and 63 % in the
northeast and east region and the central and southern region, respectively). As evident in the map, the model fit is very good in the
northeast and east region of India and good in the central and southern region of the country. However, poor values of NSE can be
found in northwest India indicating that the simulated TWS values deviate substantially from GRACE observations. The reasons

Fig. 5. Linear trends in observed and simulated TWS series.

Fig. 6. A comparison of model fit between (a) without simulation of groundwater irrigation and (b) with simulation of groundwater irrigation (blue
line: GRACE TWS variation; red line: TWS variation simulated by SWAT using parameters with default values; green lines: ensemble of TWS
variation simulated by SWAT using identified behavioral parameter sets) (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article).
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behind the displayed model misfit over the region are revealed in Fig. 5(a) and (b) and the aggregated TWS time series plots in
Fig. 6(a). Fig. 5(a, b) shows the trends in gridded TWS data from GRACE and the model simulation (in filtered space without
simulated groundwater use for irrigation), respectively. Large-scale depletion trends (up to 70 mm H2O/yr) in northwest India can be
seen in the trend map based on GRACE data (Fig. 5a), whereas such patterns cannot be seen when groundwater irrigation simulation
is turned off (Fig. 5b). Fig. 6(a) shows the aggregated GRACE-based and simulated TWS data series over northwest India. The map
also shows a downward trend in the GRACE-based TWS data series while such a trend is lacking in the simulated TWS data series.

When simulations include groundwater irrigation activities, model fit improves significantly in the northwest region of India and
the model successfully replicates TWS trends in GRACE data, as indicated by the gridded NSE map in Fig. 4(b) and the corresponding
gridded TWS trend maps in Fig. 5(c) (at GRACE resolution) and Fig. 5(d) (at full resolution) and the aggregated model-based TWS
data series in Fig. 6(b).

Encouraged by the promising results obtained from the initial model evaluation, further analysis was performed with quantifi-
cation of parametric uncertainty in the simulation. The analysis was conducted using the conceptual framework of generalized
likelihood uncertainty estimation (GLUE) (Beven and Binley, 1992). Five model parameters were included in the analysis. These
parameters and their value ranges used for the analysis are shown in Table 2. In addition to those parameters defined to characterize
groundwater use processes for irrigation and groundwater flow (PRRP-water percolation rate in rice paddy, WSTR-threshold of
upland crop water stress triggering irrigation, γ - irrigation efficiency, and k - groundwater recession coefficient), we also took the soil
evaporation compensation factor (ESCO) into account. Soil moisture variability is a major source of the simulated TWS variation, and
ESCO is a key parameter defined in SWAT for modeling soil moisture variation. The implementation of GLUE involved Monte Carlo
sampling of uncertain parameters. Two hundred random samples were drawn uniformly from the specified parameter value space.
Plots in Fig. 7 provide a comparison of pair-wise NSE values calculated using aggregated GRACE-based and simulated TWS data series
over three regions within India in cases with and without simulated groundwater irrigation. Consistent with observations from
Figs. 4–6, groundwater use for irrigation is the main process influencing TWS trends in northwest India in the SWAT simulation; by
contrast, NSE values for the other two regions only vary slightly after groundwater irrigation is incorporated into the simulation.

GLUE is designed to accommodate parametric uncertainty in the model simulation, referred to as equifinality, arising from the
existence of multiple “behavioral” parameter sets. All “behavioral” parameter sets enable the model to fit the observation data
acceptably well. Fig. 8 presents dotted plots showing correspondence between sampled parameter values and the resultant NSE
values which indicates model fit over the northwest region of India, obtained from Monte Carlo sampling. Based on these results and
following the spirit of the GLUE method, an NSE cutoff value of 0.8 was selected, and 83 out of 200 sampled parameter sets associated
with NSE values greater than 0.8 were accepted as behavioral. The strong equifinality revealed in the GLUE analysis leads to large
uncertainty in the simulated water balance and TWS. The ensemble of TWS variations over northwest India simulated using the
identified behavioral parameter sets are shown in Fig. 6(b). The distributions of estimated groundwater recharge, groundwater
baseflow, irrigation water withdrawal and annual average groundwater depletion are displayed in Fig. 9. Modeled groundwater
depletion over the region ranges from 14 km3 H2O/yr to 29 km3 H2O/yr, with a mean value of 23.9 km3 H2O/yr and the mode at 24.3
km3 H2O/yr.

Note that the uncertainty CNES-GRGS GRACE TWS trend is -27 ± 2 km3 from weighted least-square regression that lays within the
uncertainty interval derived from the GLUE analysis. We also considered capturing GRACE uncertainty using a wider range of GRACE
products (Farinotti et al., 2015). When using the full range of GRACE products, namely official products (CSR, GFZ, JPL, release 5)
and alternative products processed by TU GRAZ release 2016 (Mayer-Gürr et al., 2016), HuaZhong University of Science and
Technology release 16 (Zhou et al., 2017), Tongji University release 2 (Chen et al., 2016) and the Astronomical Institute from Univ.
Bern release 2, the estimated trend is -29 +/- 2.5 km3, which still partially overlaps with the GLUE interval. In the GLUE analysis,
model fit to GRACE TWS data was measured by the Nash–Sutcliffe efficiency, which incorporates the effect of seasonal variation of
TWS. It might be possible to use the information on uncertainty of the GRACE TWS trend to further narrow down the selection of the
“behavioral” parameters in future work when more “certain” estimates for uncertainty bounds of GRACE TWS trends become
available. As the variability in the different estimates for GRACE TWS trend uncertainty is not fully understood, we did not use such
information in the GLUE analysis in this study.

4. Assessing impacts of climate change on groundwater storage in northwest India

The validity of the developed hydrological-agricultural groundwater use model in simulating groundwater storage variation in
northwest India was established through the results of validation analysis presented in the preceding section. As a demonstration of
the predictive skill of the model, we extended the simulation to 2050 to simulate future groundwater storage/groundwater irrigation

Table 2
Feasible value ranges in GLUE parameters.

Parameter Range of feasible values

Water percolation rate in rice paddy (PRRP, mm H2O/day) 2 ∼ 12
Threshold of upland crop water stress triggering irrigation (WSTR) 0.5 ∼ 0.9
Irrigation efficiency (γ) 0.5 ∼ 0.9
Soil evaporation compensation factor (ESCO) 0 ∼ 1
Groundwater recession coefficient (k) 0 ∼ 1
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in northwest India under changed climate conditions. The model developed in this study takes data on crop mix in groundwater-fed
irrigated agriculture as an input. Groundwater irrigation is expected to increase in the future in line with income and population
growth, and because groundwater is considered to be the most productive component of the agricultural production system. At the

Fig. 7. A comparison of model fit obtained from simulations with paramter values generated in Monte Carlo sampling for uncertainty analysis (a few
data points in Panel (a) with NSE values below zero on the vertical axis are not displayed).
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same time, concerns about groundwater depletion are counteracting factors and may lead to policies and regulations to curb the
development of groundwater-based irrigated agriculture. India is also a major player in global agriculture markets. As a result, policy
options and interventions, which may result in major changes in food production, might affect global food security and need to be
carefully evaluated in the context of global agriculture trade. For these reasons, any future crop pattern changes would be part of a
complex decision-making process. A tradeoff analysis that considers food security and groundwater sustainability as objectives and
includes future cropping pattern as a decision variable would therefore be needed to inform a thorough discussion about policies for
groundwater management and groundwater-fed irrigated agriculture under changing climate and socioeconomic conditions, and
more integrated modeling system that couples the hydrological-groundwater use model with food production-agricultural economic/

Fig. 8. Correspondence between sampled parameter values and the resultant NSE values indicating model fit over the norwest region of India
obtained in Monte Carlo sampling. (Note: PRRP = water percolation rate for paddy rice; WSTR = treshold of upland crop water stress triggering
irrigation ; γ =irrigation efficiency; ESCO = soil evaporation compensation factor; k = groundwater recession coefficient).
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trade modeling tool needs to be applied to support the tradeoff analysis.
The paper focuses on presenting the development of a hydrological model with improved representation of agricultural

groundwater use processes. Instead of providing a full tradeoff analysis, in this case study we considered a special case in which the
cropping pattern of irrigated agriculture, and irrigation efficiencies, were kept constant. The case study provides insights that could
be used to inform policy discussions qualitatively on the direction and urgency of shifting agricultural groundwater use patterns.

The projection analysis used climate change data downscaled by the Inter-Sectoral Impact Model Intercomparison Project (ISI-
MIP) (Hempel et al., 2013). ISI-MIP offers a framework for consistently assessing the impacts of climate change across sectors. A large
collection of food and agricultural trade models used these data (Nelson et al., 2014). The ISI-MIP climate data are downscaled from
outputs of five general circulation models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5): GFDL-ESM2M,
HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM−CHEM and NorESM1-M generated under four Representative Concentration Pathways
(RCP) scenarios: RCP2.6, RCP4.5, RCP6.0, and RCP8.5 (Moss et al., 2010). The five GCMs were selected by ISIMIP because pro-
jections from these GCMs span a wide range of the space of projected global mean temperature change and relative precipitation
changes (Warszawski et al., 2014). Studies evaluating the performance of GCMs over India, for example, Saha et al. (2014), revealed

Fig. 9. Estimated annual averages of components of the groundwater balance in northwest India (July 2002-June 2011).
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that the majority of CMIP5 GCMs failed to simulate the decreasing trend of the Indian monsoon in historical experiments. In a more
recent study (Gusain et al., 2020), improvement was found to be made in CMIP6 models, which can capture Indian monsoon
characteristics reasonably well. At the time of this study, the full set results from CMIP6 were not available. We therefore choose to
only report results from NorESM1-M scenarios. NorESM1-M is a top-rated model among a collection of CMPI5 GCMs based on its
performance in simulating present-climate characteristics of Indian summer monsoon (Sharmila et al., 2015).

Changes in annual precipitation and average daily temperature between base period (2002–2011) and the last decade of the
projection period (2041–2050) indicative of trends of climate change over northwest India projected by the NorESM1-M are shown in
Table 3. The extent to which climate change will influence groundwater balances also depends on the changes of other climate
variables (solar radiation, humidity and wind speed) and temporal and spatial variability of these variables within the time horizon of
the projection analysis and within the spatial extent of the study region. The model developed in this study helps translate these
trends and variabilities associated with climate change into quantitative estimates for the magnitude of impact on groundwater
storage under the presence of intensive of agricultural groundwater water use.

Box plots indicating distributions of projected annual average groundwater depletion rates during the projection period
(2012–2050) are shown in Fig. 10 (a). The model behavioral parameter sets identified through the GLUE analysis were used to
generate these projections. The projected groundwater depletion rates vary over a wide range. Compared to the estimated
groundwater storage depletion rates in the base period, slightly accelerated groundwater depletion rates were projected under the

Table 3
Projected changes of precipitation and mean daily temperature in northwest India (averages during 2041-2050 compared to averages in 2002-
2011).

RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5

Precipitation (mm H2O/yr) 4.0 % −7.8% 2.0 % 1.1 %
Mean daily temperature (°C) 0.7 1.5 0.7 1.4

Fig. 10. Projected annual average groundwater depletion rates in northwest India (2012-2050) under alternative climate change scenarios and
changes in depletion rates compared to base period.
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RCP 4.5 scenario while decreased depletion rates were found under the other three scenarios. The histogram in Fig. 10 (b) further
summarizes the differences between groundwater depletion rates in the projection and base periods. Model realizations associated
with all identified behavioral parameter sets and under all RCP scenarios were combined to construct the histogram, and all reali-
zations were assigned equal probability. According to the histogram, there is a 84 % chance that the groundwater depletion rate
would be lower, with a reduction of up to 10 km3 H2O/yr. The projected increases in precipitation under climate change (Table 3)
may lead to an anticipation that there could be amelioration in groundwater depletion. The simulation results in this projection
analysis confirmed the likely existence of the ameliorating effect. However, in all cases the depleting trend will continue. Even with
the most optimistic forecast, there will still be a deficit of 9 km3 H2O in the annual groundwater storage budget (Fig.10a). The model
results are therefore certainly not a call to sit back and relax but instead a call for more systematic efforts to measure, monitor and
manage the important groundwater resources of India with a focus on arresting depletion trends. The variability of results across RCP
scenarios furthermore highlights the challenges of managing groundwater resources in the face of uncertainty brought about by
climate change.

5. Conclusions and discussions

India is a country with intensive groundwater-fed irrigated agriculture; and the large extraction of groundwater for food pro-
duction has created concerns about the sustainability of groundwater resources for both current and future citizens. In this paper, we
incorporated groundwater use processes for irrigation into a national-scale SWAT model of India. The development of the model was
based on publicly available data, and the model was evaluated and calibrated using GRACE TWS data. The results of the model
identification confirm that the integrated hydrologic-groundwater use model can capture groundwater storage depletion in northwest
India and therefore can serve as a promising predictive modeling tool to quantify the anthropogenic impact of irrigation on
groundwater resources in the region.

The utility of the developed model is demonstrated in a case study presented in section 4, in which the model was applied to assess
the impact of climate change on groundwater storage in northwest India under four RCP scenarios. The assessment results suggest
that, without consideration of the effect of changes in cropping patterns and irrigation water use efficiency, it is well possible that
climate change will ameliorate the groundwater deficit in northwest India. However, the beneficial effect is not strong enough to
reverse depletion trends.

Mathematical models provide simplified representations of real-world systems and processes and the modeling exercises in-
evitably involve uncertainties. Discussions of some key uncertainties and limitations arising from model development and applica-
tions have been provided in the previous sections. They are summarized here with a few more added.

Firstly, in this study we used the GLUE approach to treat parametric uncertainty in the modeling. As an additional remark from
the GLUE analysis, while GRACE TWS data prove to provide highly-informative information on spatial patterns of vertically-in-
tegrated water storage variations and are of great value for understanding agricultural groundwater use processes in northwest India,
the large remaining uncertainty in the model parameters, which were indicated by the wide ranges of estimated groundwater
depletion rates, suggests that it is desirable, when possible, to introduce observations on other hydrologic variables to provide further
constraints in model identification.

In addition to the parametric uncertainty, there are also uncertainties arising from other sources. As already noted, a major
limitation in our study is the omission of surface water irrigation, which may bias estimates for those variables in the groundwater
balance. Additional uncertainty related to the CO2 effect of plant evaporation exists in projections of the impact of climate change on
groundwater balances. It is well known that plant growth can benefit from CO2 enrichment that helps improve the water use
efficiency of plants. SWAT incorporates an algorithm to simulate the effects of atmospheric CO2 enrichment. However, the algorithm
was formulated based on data obtained in a controlled experimental environment (Stockle et al., 1992) on which experiments from
open-air field conditions (Long et al., 2006) cast uncertainty. Given this uncertainty, the CO2 effect was not simulated in this study.
Lastly, there is also uncertainty associated with input data (f. ex. on irrigated crop area and climate) and GRACE TWS data processing,
which are exemplified by the existence of multiple data products in each category (Sakumura et al., 2014; Anderson et al., 2015;
Gehne et al., 2016). Choosing different data products may have implications for model identification and simulation results.

Finally, as indicated in section 4, the projection analysis presented in this paper is partial because potential cropping pattern
changes in groundwater-fed irrigated agriculture were not considered. There is a need to build more integrated modeling systems to
support more comprehensive analysis for better national polices on groundwater management and development of groundwater-fed
irrigated agriculture. We will endeavor to investigate these uncertainties and limitations in future work.
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