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P L A N E T A R Y  S C I E N C E

Iron isotope evidence for very rapid accretion 
and differentiation of the proto-Earth
Martin Schiller1*, Martin Bizzarro1,2, Julien Siebert2,3

Nucleosynthetic isotope variability among solar system objects provides insights into the accretion history of 
terrestrial planets. We report on the nucleosynthetic Fe isotope composition (54Fe) of various meteorites and 
show that the only material matching the terrestrial composition is CI (Ivuna-type) carbonaceous chondrites, 
which represent the bulk solar system composition. All other meteorites, including carbonaceous, ordinary, and 
enstatite chondrites, record excesses in 54Fe. This observation is inconsistent with protracted growth of Earth by 
stochastic collisional accretion, which predicts a 54Fe value reflecting a mixture of the various meteorite parent 
bodies. Instead, our results suggest a rapid accretion and differentiation of Earth during the ~5–million year disk 
lifetime, when the volatile-rich CI-like material is accreted to the proto-Sun via the inner disk.

INTRODUCTION
Terrestrial planet formation is thought to occur in stages, where 
first-generation bodies of a few hundred kilometer radii form rap-
idly by streaming instabilities, followed by growth dominated by 
gas drag–assisted accretion of millimeter-sized particles onto these 
bodies (1) to form Mars-sized planetary embryos during the proto-
planetary disk stage. In the inner solar system, these embryos are in-
ferred to have formed from thermally processed and, hence, dry 
and reduced solids. After dissipation of the gas, the terrestrial plan-
ets are assembled over several tens of millions of years via large col-
lisions between embryos (2), many of which will have differentiated 
into metal cores and silicate mantles. In these models, water and 
other volatile elements are inferred to have been delivered to Earth 
and oxidized its mantle during the last phase of accretion after core 
formation, possibly by volatile-rich, outer solar system bodies scat-
tered inward by the outward migration of Jupiter (3–5). However, a 
recent study of the isotope composition of the siderophile element 
ruthenium in solar system objects, including Earth and the parent 
bodies of chondrite meteorites, suggests that Earth’s volatile element 
budget may have been acquired much earlier (6), perhaps during its 
main accretion phase. Moreover, new planet formation models 
based on the rapid accretion of pebbles onto asteroidal seeds sug-
gest that Earth’s main accretion phase may have been completed 
within the ~5–million year lifetime of the protoplanetary disk (1). 
Elucidating the accretion history of Earth, including the timing of 
addition of volatile elements, is critical for a full understanding of 
the timescales of terrestrial planet formation.

Mass-independent isotope variability of nucleosynthetic origin 
among early solar system objects can be used to track the source and 
nature of the material precursor to the terrestrial planets. In particular, 
iron is a redox-sensitive, siderophile major element whose parti-
tioning between mantle and core is a proxy of the overall oxidation 
state of a planet. Iron readily oxidizes in the presence of water, subs-
tantially lowering its partitioning into the metal core (7, 8). Therefore, 
if Earth became more oxidized during accretion and core forma-
tion, the mass-independent Fe isotope composition of Earth’s man-

tle is predicted to be dominated by that of the late accreting material. 
The existence of nucleosynthetic Fe isotope variability in solar sys-
tem objects can thus provide a powerful tool to fingerprint the source 
of the material responsible for the delivery of water to Earth and the 
subsequent oxidation of Earth’s mantle.

RESULTS
CI chondrites are believed to best represent the bulk solar system 
composition for most elements and, hence, that of the Sun (9). 
Thus, CI chondrites best approximate the average composition of 
the molecular cloud material that collapsed to form the Sun and its 
planets. To evaluate the nucleosynthetic iron isotope variability in 
the solar system, we have subjected the Ivuna CI chondrite to a step-
wise leaching procedure that provides a crude chemical separation 
of its various mineralogical components (10). This experiment re-
veals the existence of two main carriers of Fe nucleosynthetic vari-
ability, expressed as the 54Fe value (see Materials and Methods), each 
comprising about half the total iron budget in this meteorite (Fig. 1A 
and Table 1). Labile phases dissolved in the early dissolution steps 
(L2 to L7) exhibit elevated 54Fe values of around +46 parts per million 
(ppm) with respect to Earth’s mantle, which we interpret as reflect-
ing the average composition of phases isotopically homogenized 
during parent body processes. Later dissolution steps (L8 to L12) 
contain both negative and positive 54Fe values that range from −82 
to +273 ppm in dissolution steps L8 and L11, respectively. This provides 
evidence for the presence of presolar carriers of nucleosynthetic Fe 
isotope heterogeneity. Hence, variable incorporation of these carriers 
in disk solids, including asteroidal and planetary bodies, could im-
part resolvable solar system–wide iron isotope heterogeneity.

 To determine the 54Fe composition of the disk material that 
may have contributed to the growth of terrestrial planets, we mea-
sured the 54Fe value of various classes of chondrites and their main 
constituents, namely, individual chondrules, as well as that of mete-
orites originating from differentiated parent bodies (Fig. 1B and 
Table 2). Apart from CI chondrites, which have a 54Fe indistinguish-
able from Earth’s mantle, all chondrites are characterized by resolv-
able excesses in 54Fe ranging from +6.4 ± 0.7 ppm to +28.8 ± 4.4 ppm 
relative to Earth’s mantle. Similarly, samples of differentiated bodies 
represented by iron meteorites record 54Fe excesses, in agreement 
with an earlier report (11). The ordinary and CR2 chondrite chondrules 
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are also all variably enriched in 54Fe comparable to their host mete-
orites, where the two CR2 chondrules exhibit the highest 54Fe val-
ues of the analyzed samples (Fig. 1). Collectively, our data establish 
that apart from CI chondrites, none of the meteorites analyzed here, 
including all main chondrite groups, match the terrestrial composi-
tion. A CI-like composition of Earth’s mantle is not observed for 
other siderophile nucleosynthetic tracers such as Mo and Ru. How-
ever, these elements are much more siderophile than Fe and, as such, 
their compositions can be easily modified by late accretion events 
such as the Moon-forming impact and/or addition of the later ve-
neer material. Unlike Fe, which records the dominant source of the 
material that accreted to Earth after the onset of core formation, Mo 
and Ru are understood to only track the last ~10% of the terrestrial ac-
cretion. Hence, the observation that the bulk of the Fe in the terres-
trial mantle is indistinguishable from CI chondrites has far-reaching 
implications for understanding the accretion history of Earth. 

DISCUSSION
Earth’s main accretion phase is understood to have occurred via 
stochastic collisional accretion of embryos and planetesimals over 
several tens of millions of years (2, 12). In this model, oxidation of 
Earth’s mantle occurs toward the end of the accretion by increased 
addition of oxidized, outer solar system impactors, once the initially 
more reduced proto-Earth has differentiated and reached approxi-
mately 80% of its current mass (3–5, 13–15). Thus, if Earth’s mantle 
iron content was derived from the accretion of oxidized outer solar 
system bodies, the 54Fe composition of the terrestrial mantle should 
be dominated by an average carbonaceous chondrite-like composi-
tion. However, the only chondrite group that matches the terrestrial 
composition is CI chondrites. Apart from the metal-rich carbona-
ceous chondrites, which may have accreted beyond the orbits of the 
gas giants, most carbonaceous chondrites are believed to have formed 
near the snow line beyond Jupiter or, alternatively, in the outer asteroid 
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Fig. 1. 54Fe data of a stepwise dissolution experiment of the CI chondrite Ivuna 
and bulk silicate Earth, stony and iron meteorites, chondrites, and chondrules. 
(A) Plot of 54Fe values measured in steps of increasing acid strength (L2 to L12) of a 
dissolution experiment of ~3 g of the CI chondrite Ivuna (10). Width of spheres indicates 
the relative proportion of iron in dissolution steps. Uncertainties for individual mea-
surements are typically smaller than the symbols and not shown (Table 1). (B) Average 
54Fe values for each group of samples from distinct solar system reservoirs (Table 2), 
where n denotes the number individual samples measured. The uncertainties shown for 
individual data points reflect either two times the SE (2 SE) of the average of the mean 
of the analyses or the 2 SE of the sample analysis if the group only consists of one sam-
ple without replicate analyses. The vertical dotted line and shaded area represent the 
mean value for terrestrial standards (10 individual analyses) and the 2 SE of these data.

Table 1. Mass-independent 54Fe and mass-dependent 56Fe values 
for sequential dissolution steps of the CI chondrite Ivuna. The 
combined average iron isotope signature of the individual dissolution 
steps is consistent with the whole rock data. The number of repeat 
analyses of each dissolution steps is indicated by n. 

Dissolution step
54Fe ± 2 SE 

(ppm)
56Fe ± 2 SE 

(‰) %Fetotal n

L2 71 ± 4.1 −0.95 ± 0.02 0.37 10

L3 49.1 ± 6.1 −0.41 ± 0.02 25.57 10

L4 59.4 ± 4.2 −0.58 ± 0.03 4.89 10

L5 43.3 ± 4.4 −0.20 ± 0.02 6.26 10

L6 42.1 ± 5.6 −0.06 ± 0.03 16.01 10

L7 21.0 ± 3.4 −0.33 ± 0.03 2.94 10

L8 −81.5 ± 3.2 0.54 ± 0.03 39.54 10

L9 9.3 ± 2.9 −0.16 ± 0.02 4.24 10

L10 39.6 ± 4.4 0.44 ± 0.05 0.10 10

L11 272.5 ± 7.6 0.24 ± 0.02 0.05 5

L12 −23 ± 14 0.52 ± 0.03 0.01 5

Average/sum −5.9 0.04 100.00
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belt (16). Thus, it is highly improbable that scattering of outer solar 
system bodies by the inward migration of Jupiter would result in the 
selective delivery of only one type of the outer solar system material 
to Earth’s feeding zone, namely, CI chondrites. Alternatively, the 
bulk of the iron in Earth’s mantle could originate from the impact 
of a single body with a CI-like composition such as, for example, the 

Moon-forming impact. However, using the most conservative estimates 
for the 54Fe composition and iron concentration of the proto-Earth 
as well as that of the impactor (see Materials and Methods), mass 
balance arguments require at least a body with a mass of approxi-
mately 15 to 20% of that of the proto-Earth, which corresponds to a 
planetary embryo. As planetary embryos are understood to grow by 
the combined effect of pebble and planetesimal accretion (1), it is 
unlikely that this process will result in a purely CI-like 54Fe com-
position given the extent of nucleosynthetic diversity that exists 
among outer solar system bodies (Fig. 1). Thus, the CI chondrite 
composition of Earth’s mantle is inconsistent with the idea that 
Earth’s main accretion phase before the Moon-forming impact was 
dominated by stochastic collisional accretion of planetesimals and 
planetary embryos. Moreover, a CI-like Moon-forming impactor as 
the origin of the CI-like composition of Earth’s mantle is also in-
consistent with the titanium and calcium isotopic similarity of Earth 
and Moon (17, 18). Current giant impact models cannot achieve the 
very high degree of isotopic equilibration between the two bodies 
required in the case of a carbonaceous impactor (19). Thus, we con-
clude that the CI-like composition of Earth’s mantle cannot result 
from a carbonaceous, outer solar system Moon-forming impactor.

The only epoch in the history of the solar system when the CI-like 
material is readily available within the terrestrial planet–forming 
region is during the lifetime of the protoplanetary disk. This period 
represents the time when the in-falling envelope material of CI com-
position is channeled through the disk to fuel the growth of the proto-Sun 
and is estimated to have lasted approximately 4.8 ± 0.3 million years 
(Ma) (20). It has been suggested that the nucleosynthetic variability 
of the lithophile element calcium (48Ca) observed among inner solar 
system bodies, including Mars and proto-Earth, reflects the pro-
gressive admixing of the in-falling CI-like material during the disk’s 
lifetime (18). In this framework, the dry and reduced material is 
rapidly locked into sizeable asteroidal bodies and planetary embryos, 
which continue to grow by the accretion of pebbles with a CI-like 
composition. Thus, the 48Ca isotope composition of terrestrial planets 
reflects mixtures of two reservoirs, namely, the thermally processed 
(and reduced) inner disk material and the pristine, volatile-rich CI-
like envelope material. In this model, ureilite meteorites, which are 
characterized by the lowest 48Ca values among bulk solar system 
materials, are our best proxy for the isotope composition of the re-
duced, thermally processed inner disk material before admixing of 
the volatile-rich CI material (18). This mixing relationship between 
the CI-like material and ureilites is broadly consistent with that de-
duced from other lithophile nucleosynthetic tracers (see the Supple-
mentary Materials). In Fig.  2, we show that the 48Ca and 54Fe 
systematics of the inner solar system material that avoided core for-
mation like ordinary and enstatite chondrites as well as individual 
ordinary chondrite chondrules are coupled and form a simple mix-
ing line. This observation is consistent with the idea that their com-
positions primarily result from binary mixing. However, given the 
distinct geochemical behavior of Fe and Ca, core formation occur-
ring early in the accretion history of a planetary body, especially during 
accretion under reducing conditions, will result in decoupling of 
the 48Ca-54Fe systematics. Notably, the mantle 48Ca-54Fe sys-
tematics of Vesta (the parent body of howardite-eucrite-diogenite 
meteorites) and Mars are not decoupled, considering the level of 
precision of our data. This is consistent with the accretion of Mars 
under oxidizing conditions, where iron is more lithophile, and the 
very early and fast accretion of Vesta such that little accretion occurred 

Table 2. Iron isotope compositions of bulk meteorites and chondrules.  
Summary of the mean mass fractionation–corrected (54Fe) and 
mass-dependent (56Fe) iron isotope composition of cores and mantles of 
asteroidal and planetary bodies, chondrites, and individual chondrules. 
The number of individual analyses including distinct samples or repeat 
analyses of the same sample is indicated by n. Results for individual 
analyses can be found in table S1. 

54Fe ± 2 SE  
(ppm)

56Fe ± 2 SE  
(‰) n

Planetary mantles

 Earth −0.8 ± 1.9 0.04 ± 0.04 10

 Mars 6.5 ± 1.5 0.00 ± 0.04 4

 Vesta 11.7 ± 2.4 0.05 ± 0.06 5

 Ureilites 13.9 ± 2.8 0.02 ± 0.02 8

Irons

 IC 6.4 ± 4.8 0.07 ± 0.01 1

 IIIAB 9.6 ± 0.4 0.00 ± 0.05 2

 IVB 28.7 ± 7.0 0.03 ± 0.01 2

 IIC 31.5 ± 3.1 0.00 ± 0.03 2

Chondrites

 OC 10.5 ± 2.6 −0.03 ± 0.01 9

 R 6.4 ± 0.8 −0.02 ± 0.01 1

 EC 6.4 ± 0.7 0.06 ± 0.07 4

 CR 28.8 ± 4.4 0.05 ± 0.07 3

 CM 22.9 ± 4.2 0.00 ± 0.01 3

 CO 12.8 ± 7.6 −0.01 ± 0.00 2

 CH 15.5 ± 6.6 −0.04 ± 0.01 1

 CK 26.0 ± 6.1 −0.01 ± 0.05 2

 CV 22.1 ± 3.6 −0.06 ± 0.01 1

 CI −2.0 ± 2.7 0.06 ± 0.03 9

Ordinary chondrite chondrules

 2-C1 16.7 ± 3.0 0.70 ± 0.04

 5-C2 12.9 ± 3.9 1.39 ± 0.02

 5-C10 10.7 ± 4.5 1.38 ± 0.03

 D-C3 14.7 ± 6.7 0.12 ± 0.03

 5-C4 8.7 ± 4.6 −0.23 ± 0.03

 3-C5 11.6 ± 6.1 0.00 ± 0.05

 11-C1 12.4 ± 7.3 −0.19 ± 0.01

 11-C2 11.2 ± 5.7 0.05 ± 0.01

 3-C2 13.4 ± 3.4 0.04 ± 0.08

CR2 chondrite chondrules

 1-C2 37.4 ± 5.9 0.04 ± 0.01

 2-C4 42.4 ± 8.5 0.04 ± 0.02
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after segregation of its core (Figs. 2 and 3). In contrast to 48Ca, the 
54Fe value of the terrestrial mantle is dominated by a CI composi-
tion. This observation points to substantial decoupling of the terres-
trial 48Ca-54Fe systematics and requires that the bulk of the iron 
in the proto-Earth was already partitioned into a metallic core be-
fore the admixing of the CI-like material.

Earth’s mantle CI-like iron isotope composition also constrains 
the timing of the Earth’s oxidation, as it implies that the iron budget 
of the mantle was established during the lifetime of the protoplane-
tary disk when pebble accretion could operate. The proto-Earth 
accreting under more oxidizing conditions than today (21–23), 
however, is not compatible with the CI-like iron isotope composition 
of Earth’s mantle (Fig. 3). Although the 48Ca-54Fe systematics do 
not rule a constant oxidation state throughout Earth’s accretion, this 
would require early and instantaneous core formation, followed by 
the accretion of only the CI-like material (Fig. 3), making this sce-
nario unlikely. An initially more reduced proto-Earth relaxes these 
constraints and only requires that Earth oxidized (i.e., acquired 
most of its mantle iron budget) by the accretion of CI-like dust. 
Water is the key ingredient for oxidation (7, 8), and as such, our results 

are consistent with the accretion of a component of Earth’s water 
and other volatile elements during the protoplanetary disk’s lifetime. 
This may be achieved via the direct accretion of water adsorbed to 
dust (24, 25) or reflects the fact that the snowline will be inside of 
Earth’s orbit toward the end of the protoplanetary disk’s lifetime 
(5), allowing direct accretion of ice during this stage. Early accretion 
of a fraction of Earth’s water budget is in excellent agreement with 
the detection of primordial water in Earth’s deep mantle (26).

Our proposed timescale for the main phase of Earth’s accretion 
and differentiation is shorter than typically inferred from 182Hf-182W 
model ages of core formation (27). However, these ages are primari-
ly controlled by the last reequilibration of the mantle during the 
Moon-forming impact event and are highly susceptible to model as-
sumptions (28). Critically, the rapid timescales proposed here can be 
reconciled with Earth’s mantle 182W isotope composition if the 
Moon-forming impact occurred at least 40 Ma after the main accre-
tion and differentiation of the proto-Earth (29). A late Moon-forming 
impact is supported by radiometric age dating of lunar anorthosites, 
which indicate that the crystallization of the lunar magma ocean 
occurred between 4.34 and 4.37 billion years ago (30).

MATERIALS AND METHODS
Iron isotope analyses
Whole rock samples weighing a few to hundreds of milligrams were 
digested using Savillex beakers with concentrated HF-HNO3 mixtures 
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on a hotplate at 130°C. To ensure complete dissolution of enstatite 
and carbonaceous chondrite samples, they were further digested in 
Parr bombs at 210°C. Iron isotope composition of individual chon-
drules was determined using aliquots from which Zn (31) and Ca 
(18) have been previously separated. For the individual dissolution 
steps of Ivuna, iron was extracted from dissolution steps from which 
previously Sr (32), Cr (33), Mg (10), and Ca (10) have been separated 
and measured for their isotopic composition. The detailed dissolu-
tion procedure is fully described in (10).

Iron was separated from the matrix following published methods 
(34) using AG1-X4 anion exchange resin. Each iron separate typi-
cally consisted of several tens to hundreds of micrograms of iron, 
whereas procedural blanks are magnitudes lower, making blank correc-
tion inconsequential for our results. The Fe isotope compositions 
were measured using the Thermo Fisher Neptune Plus MC-ICP-MS 
(Multicollector–inductively coupled plasma mass spectrometry) at 
the Natural History Museum of Denmark in the medium-resolution 
mode. Samples were introduced to the plasma source using a stable 
introduction system (SIS, wet plasma) or an ESI Apex HR sample 
introduction system with an uptake of 25 l min−1 and analyzed at 
signal intensities of 0.30 to 0.45 nA on mass 56 for ~10-ppm iron 
solutions. Iron isotope data were acquired in static mode using four 
Faraday collectors setup as follows: 58Fe and 57Fe in the high-2 and 
high-1 collector on the high mass side of the axial Faraday, respec-
tively; 56Fe in the axial collector; and 54Fe in the low-2 collector on the 
low mass side of the axial Faraday. Alongside the iron signal, the 60Ni 
and 53Cr beams were measured in the high-4 and low-4 collectors, 
respectively, to correct for direct isobar interferences on 54Fe and 58Fe 
from 54Cr and 58Ni, respectively. All Faraday cups collecting iron sig-
nals were connected to amplifiers with a 1011-ohm feedback resistors, 
whereas the Faraday cups collecting the 60Ni and 53Cr signals were 
connected to amplifiers with 1012-ohm feedback resistors. Measure-
ments were made in the medium-resolution mode (M/M > 5000 
as defined by the peak edge width from 5 to 95% full peak height) to 
resolve potential molecular interferences on the high-mass side (e.g., 
40Ar16O+). We report our data relative to the IRMM-014 Fe isotope 
standard in the -notation, where the reported data represent the 
mean and SE of 10 individual standard-bracketed sample analyses, 
each comprising 25 ×16.7 s of on-peak baseline measurement and 
100 × 16.7 s of sample measurement for all whole rock samples and 
stepwise dissolution steps where sufficient iron was available. The 
54Fe notation refers to the deviation in the 54Fe/56Fe ratio when 
corrected for natural kinetic mass fractionation using a 57Fe/56Fe 
ratio of 0.023261 (35). In table S1, we also report the 57Fe/56Fe ratio 
normalized using a 54Fe/56Fe ratio of 0.062669 (35), which results 
in isotope variations and their uncertainties that are systematically 
halved but otherwise exhibiting the same relative variations, demon-
strating that the choice of isotope ratio does not influence the inter-
pretation of our results. Although the 58Fe signal was monitored, 
we do not report the data, as the typical signal intensities during our 
analysis do not allow us to measure this isotope markedly above the 
noise level threshold of our 1011-ohm feedback resistors. Moreover, 
the precision of the 58Fe data is further compromised by a time vari-
ant interference correction from 58Ni, which is introduced from 
the measured signal on 60Ni. The 54Cr signal contributing to the 
total 54Fe signal was typically less than 1 ppm and, thus, negligible. 
On the basis of repeat analyses of processed iron separated from 
peridotite olivine (J12), DTS-2b and BHVO-2b standards (n = 10 
including repeat analyses; 2 SD = 5.9 ppm) and intergroup isotopic 

variability between ureilites (n = 8 including repeat analyses; 
2 SD = 7.9 ppm), ordinary chondrites (n = 9; 2 SD = 7.7 ppm), and CI 
chondrites (n = 9 including repeat analyses; 2 SD = 8.2 ppm), we 
estimate the external reproducibility of a single 54Fe measurement 
to be better than ±8.2 ppm (2 SD) (table S2).

Some mass-dependent fractionation of iron during planetary 
differentiation may occur by a nonkinetic process (i.e., equilibrium 
fractionation), and as such, our mass independent data for achon-
drites may include apparent nucleosynthetic variability arising from 
inappropriate mass fractionation correction, as we assume that mass- 
dependent fractionation occurred via kinetic processes. For example, 
Elardo and Shahar (36) suggested that iron isotope fractionation 
during core formation on terrestrial planets resulted in isotopically 
light mantles, which may have affected the mass bias–corrected iron 
isotope signatures determined for the mantles of Earth, Mars, Vesta, 
and the ureilite parent body determined here. Notably, Elardo and 
Shahar (36) argue that the terrestrial mantle is not fractionated rel-
ative to chondrites, and as such, their proposed mechanism cannot 
account for the CI-like iron isotope signature of Earth. We also note 
that average 56Fe compositions of noncarbonaceous achondrites 
reported here vary by only 0.07‰, which equates to a possible effect 
of less than 2 ppm, if the difference in mass-dependent isotope sig-
nature was solely due to equilibrium fractionation effects. This iso-
tope effect is not resolvable given the current precision of our data 
and, critically, much smaller than the 54Fe variability of 14.6 ppm 
for the same samples. Hence, we conclude that nonkinetic mass 
fractionation cannot account for the vast majority of the observed 
54Fe variability and is best understood as being primarily of 
nucleosynthetic in origin.

Calculation of hypothetical CI chondrite impactor mass
Growth via planetary collisions is the traditionally assumed mecha-
nism of terrestrial planet growth. Only CI chondrites match the 
iron isotope signature of Earth’s mantle. Thus, this isotope similar-
ity may imply that most of the iron in the Earth’s mantle today was 
delivered via a late impactor with CI chondrite composition after 
Earth’s core had formed. To provide a conservative estimate of the mass 
of such a hypothetical impactor, we first determined the required 
minimum contribution of CI chondrite-like iron to Earth’s mantle iron 
budget via a mixing calculation between CI (54Fe = −2.0 ± 2.7 ppm) 
and EL chondrites (54Fe  =  +6.4  ±  0.7  ppm). EL chondrites are, 
apart from CI chondrites, the meteorite group that is isotopically 
most similar to composition of Earth’s mantle for 54Fe and, thus, 
serve as conservative proxy of the pre-impact mantle composition. 
Using these two end-members, we derived that approximately 70% 
of the iron in Earth’s mantle today had to originate from the CI chon-
drite impactor. To estimate the relative mass of a hypothetical CI 
chondrite impactor based on the required iron contribution to the 
mantle, we assumed that 67% of the current mass of Earth is in the 
mantle and contains 6.26% iron (37). For the CI chondrite impactor, 
we used an iron abundance of 18.66% (9). Using these constraints, 
we calculated that the CI impactor was at least Mars sized but may 
have been substantially larger if the impactor metal did not fully 
equilibrate with the mantle.

Mixing calculations for continuous accretion
We calculated the isotopic evolution of an accreting Earth via addi-
tion of CI-like solids to an already formed planetesimal seed with 
iron and calcium isotope signatures akin to ureilites. For simplicity, 
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we assumed a constant iron concentration in the mantle and core 
during accretion. Accretion was simulated by adding material with 
a CI chondrite composition (9) to the growing Earth incrementally, 
and full isotopic equilibration between mantle and the accreted ma-
terial was assumed in each step. Mixing calculations either consider 
a constant D(Fe)metal/silicate of 5.5, 13.66, or 27.4 to simulate Earth’s 
accretion under more oxidizing, similar or more reducing conditions 
than that of Earth today. We also partitioned nickel (Ni) into the core 
assuming a constant D(Ni)metal/silicate = 26.5. Given that calcium does 
not partition into the core, we used 48Ca isotope data from (18) to 
calculate the evolving 48Ca isotope signature of the accreting terres-
trial mantle parallel to the 54Fe signature. A terrestrial 48Ca value (= 0) 
indicates that the mass the hypothetical Earth has accreted and, thus, at 
this point the calculated 54Fe signature should also match that of the 
Earth’s mantle today (= 0). Thus, this model provides a test for the ap-
proximate lower limit of D(Fe)metal/silicate of Earth during its accretion 
via addition of CI-like solids. Without ongoing core formation before 
and during the accretion of the CI-like material, the iron and calcium 
isotope compositions would evolve along a linear mixing line between 
ureilites and CI chondrites and cannot generate an isotopic match in 
54Fe-48Ca space for Earth. Our approach allows us to constrain the 
major end-members that contributed to the growing Earth based on 
their isotopic signature, whereas their actual bulk chemical compo-
sition (e.g., C, N, and H2O) may have been somewhat distinct from 
that preserved in the meteoritic record today. Hence, our model 
describes a general process rather than a precise chemical recipe.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/7/eaay7604/DC1
Supplementary Text
Table S1. Mass-independent 54Fe and 57Fe and mass-dependent 56Fe values for terrestrial 
and extraterrestrial materials relative to IRMM-14.
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