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ABSTRACT

Context. The gravitational strong equivalence principle (SEP) is a cornerstone of the general theory of relativity (GR). Hence, testing
the validity of SEP is of great importance when confronting GR, or its alternatives, with experimental data. Pulsars that are orbited by
white dwarf companions provide an excellent laboratory, where the extreme difference in binding energy between neutron stars and
white dwarfs allows for precision tests of the SEP via the technique of radio pulsar timing.
Aims. To date, the best limit on the validity of SEP under strong-field conditions was obtained with a unique pulsar in a triple stellar
system, PSR J0337+1715. We report here on an improvement of this test using an independent data set acquired over a period of 6
years with the Nançay radio telescope (NRT). The improvements arise from a uniformly sampled data set, a theoretical analysis, and
a treatment that fixes some short-comings in the previously published results, leading to better precision and reliability of the test.
Methods. In contrast to the previously published test, we use a different long-term timing data set, developed a new timing model and
an independent numerical integration of the motion of the system, and determined the masses and orbital parameters with a different
methodology that treats the parameter ∆, describing a possible strong-field SEP violation, identically to all other parameters.
Results. We obtain a violation parameter ∆ = (+0.5 ± 1.8) × 10−6 at 95% confidence level, which is compatible with and improves
upon the previous study by 30%. This result is statistics-limited and avoids limitation by systematics as previously encountered.
We find evidence for red noise in the pulsar spin frequency, which is responsible for up to 10% of the reported uncertainty. We
use the improved limit on SEP violation to place constraints on a class of well-studied scalar-tensor theories, in particular we find
ωBD > 140 000 for the Brans-Dicke parameter. The conservative limits presented here fully take into account current uncertainties in
the equation for state of neutron-star matter.
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1. Introduction

Among the fundamental interactions of nature, gravity is unique
in attracting all material objects with the same acceleration, at
least within current observational precision. This feature of grav-
ity (the universality of free fall, UFF below) was thought by
Newton to be a cornerstone of Newtonian mechanics (Newton
1687). Indeed, in the Newtonian theory of gravity, this universal
acceleration implies that the inertial mass of a body is always in a
fixed proportion to its passive gravitational mass, and is indepen-
dent of the mass, chemical composition, or the detailed internal
structure of the gravitating object. This was presented as an ob-
served physical principle, without a deeper explanation. Newton

? Email: guillaume.voisin@manchester.ac.uk or as-
tro.guillaume.voisin@gmail.com

and many later experimentalists have conducted different exper-
iments to verify UFF, no deviations have been found that are
larger than 1.3 × 10−14 (Touboul et al. 2019). This equivalence
between the inertial and passive gravitational masses for test par-
ticles (defined here as objects with negligible gravitational self-
energy) is the so-called weak equivalence principle (WEP).

When thinking about a new theory of gravity that incorpo-
rates the laws of special relativity (SR), Einstein had the insight
that the gravitational field appears to be absent for a freely falling
observer. This was later described by Einstein as the ‘most for-
tunate thought in my life’ (Renn 2007). This idea, that gravity
is equivalent to acceleration, naturally explains the WEP. If the
relativity principle applies to this situation, then any observers
in a sufficiently small room in a free-falling reference frame are
not only unable to determine whether the room is in motion or
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at rest relative to distant bodies, but they are neither able to de-
termine its rate of acceleration in the gravitational field. This im-
plies that, in the vicinity of the observer the laws of physics are
(in very good approximation) given by SR, which means that
the Lorentz invariance of SR is obeyed locally (this is the local
Lorentz invariance, LLI) and furthermore, that it does not mat-
ter where or when an experiment is made (this is known as lo-
cal position invariance, LPI). The combination of the WEP with
LLI and LPI is now known as the Einstein equivalence principle
(EEP, Will 2018b). Schiff’s conjecture states that the WEP im-
plies the full EEP for any consistent theory of gravity, for which
a strong plausibility argument can be made (see e.g. Will 2018b).

This generalisation of the relativity principle to reference
frames in free fall guided Einstein towards general relativity
(GR, Einstein 1915). GR and other metric theories of gravity
fulfil the EEP in a natural way: in these theories the gravita-
tional attraction is seen as a result of spacetime curvature, which
itself originates from the energy, stress and momentum of the
masses in a system, determined by the field equations of the
theory. This curvature changes the trajectories of test particles
moving within the spacetime (their ‘geodesics’) in a unique way
that does not depend of the detailed nature of the particles them-
selves, hence the validity of the WEP. Furthermore, for spa-
tial scales that are small compared to the radius of curvature,
the geometry of spacetime necessarily approximates the ‘flat’
Minkowski geometry, hence the LLI and LPI automatically ap-
ply to non-gravitational experiments. To rephrase, the EEP is a
consequence of a universal coupling between matter and gravity
(Damour 2012).

The qualification of ‘non-gravitational’ is key here. If the
EEP can be fully extended to gravitational experiments, like
the Cavendish experiment, and to objects with large self-
gravitational energy, then we have the strong equivalent principle
(SEP). This is a crucially important distinction because, while
all metric theories of gravity fulfil the EEP, there are suggestive
arguments that GR is the only gravity theory in four spacetime
dimensions that fully embodies the SEP (Di Casola et al. 2015;
Will 2018b)1.

Therefore, if we are looking for phenomena beyond GR, a
promising avenue would be to look for instances of SEP viola-
tion. This has an added advantage: if no SEP violation is found,
the results of such an experiment can in principle constrain all
alternative theories of gravity.

Just as the EEP consists of the WEP, LLI and LPI, the SEP
must additionally include gravitational versions of these. Any vi-
olations of the LLI and LPI of the gravitational interaction (e.g.,
the existence of a preferred frame of reference or the location de-
pendence of gravity) have been strongly constrained using pulsar
experiments (Shao & Wex 2012; Shao et al. 2013; Shao & Wex
2013). In what follows, we focus on the gravitational version of
the WEP (GWEP, Will 2018b), which states that the UFF ap-
plies not only to test particles, but also to any objects where the
gravitational binding energy is important.

For alternative theories of gravity, the gravitational proper-
ties of objects generally depend on their amount of self-gravity.
This means that at Newtonian level we have a body-dependent
effective gravitational constant, Gab, meaning the acceleration of
a body a in the gravitational field of a body b is given by

ẍa = −Gabmb
rab

‖rab‖
3 + O(c−2) , (1)

1 Nordström’s conformally-flat scalar theory, which is also a metric
theory, also fulfils the SEP, however, this is excluded by Solar System
experiments (Deruelle 2011).

where mb denotes the inertial mass of body b, rab ≡ xa − xb their
(coordinate) separation, and c is the speed of light. Gab depends
on the properties of body a and b. In the weak-field limit this can
be interpreted, to a good approximation, as a mismatch between
the inertial and the gravitational masses of the objects:

Gab =

(mP

m

)
a

(mA

m

)
b

GN , (2)

where GN is the Newtonian gravitational constant, as measured
in a Cavendish-type experiment, and mP and mA denote the
passive and active gravitational mass respectively. For semi-
conservative metric theories of gravity that have a conserva-
tion of momentum one has only a single gravitational mass
mG ≡ mP = mA (Will 2018b). For the remainder of the paper
we assume that momentum is conserved in the gravitational in-
teraction, and therefore Gab = Gba.2 More generally, we use the
definition Gab = GN(1 + ∆ab) where we denote ∆ab = ∆ba as the
relative GWEP parameter between two bodies a and b.

If one observes an isolated two-body system without prior
knowledge of the masses, then any violation of the GWEP at
Newtonian order would be indistinguishable from a re-scaling
of the masses due to the symmetry of the equations of motion.
This symmetry is broken in presence of a third body. One can
then compare the rate at which two self-gravitating objects fall
in the field of a third one. This forms the base for a class of
GWEP tests that includes Lunar laser ranging (LLR), tests with
binary pulsars falling in the gravitational field of our Galaxy, and
the test to be discussed in this paper.

In the LLR test, one considers the Earth-Moon system falling
in the gravitational field of the Sun. If GWEP is violated, then
the Earth, which has a larger fractional gravitational binding en-
ergy than the Moon, falls in the Sun’s gravitational field with a
slightly different acceleration than the Moon. This causes a po-
larisation of the Earth-Moon orbit in the direction of the Sun
(Nordtvedt 1968). This so called Nortdvedt effect is the gravita-
tional equivalent of the Stark effect, where a strong electric field
polarises neutral atoms. It manifests itself as an added small or-
bital eccentricity vector that precesses in the sky with a period of
1 year, trailing the Sun. The relative Earth-Moon distance can be
measured with an accuracy of about 10 cm thanks to the reflec-
tors laid on the Moon by a variety of American and Soviet lunar
missions. No Nodtvedt effect has been measured, as predicted
by GR, effectively constraining

∆E� − ∆M� '

(mG

m

)
E
−

(mG

m

)
M

= (−3.0 ± 5.0) × 10−14 (3)

(Hofmann & Müller 2018), which is only about a factor of 10
weaker than the MICROSCOPE limit for WEP, therefore con-
firming to a high degree that gravitational binding energy falls
the same way in an external gravitational field as any other form
of energy.

In this test, all the involved bodies are weakly self-
gravitating, however, this is especially true for the two ‘proof
masses’, the Earth and the Moon: for the Earth εgrav,E ≡

Egrav,E/mEc2 = −4.6× 10−10 (here Egrav,E is the Newtonian grav-
itational binding energy of the Earth), for the Moon εgrav,M =

−0.2 × 10−10. This means that the LLR experiment only tests
the weak-field limit of GWEP. In this limit Eq. (2) implies
∆ab ' ∆a + ∆b, where ∆a ≡ (mG/m)a − 1; furthermore, the grav-
itational binding energy of the bodies relative to their mass is so
2 Shao (2016) investigates the possibility of constraining a difference
in active and passive gravitational mass with the pulsar system under
consideration in this paper.
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small that it can only have a very small effect on ∆a. Within the
parametrised post-Newtonian (PPN) formalism for metric theo-
ries of gravity

∆a = η εgrav,a , (4)

where η is the so called Nordtvedt parameter, a combination of
several PPN parameters (see Will 2018b, for details). The current
limit on the Nordtvedt parameter from LLR is (−0.2±1.1)×10−4.

A violation of GWEP not only affects the dynamics of the
Earth-Moon system, but all self-gravitating masses in the Solar
System are affected according to Eq. (4). A consequence of this
is a shift of the Solar System barycentre (SSB) when modelling
planetary ephemerides. Based on data from the MESSENGER
mission, Genova et al. (2018) have derived η = (−6.6 ± 7.2) ×
10−5.

Equation 4 applies to the weak-field limit, that is, the
Nordtvedt parameter parametrises GWEP violation to leading
order in εgrav,a � 1. This first order approach is no longer ap-
plicable in the strong-field regime of neutron stars. Thus, in the
remainder of this article we consider GWEP violations in terms
of limits directly on ∆ab and not on η.

In the Damour-Schäfer test (Damour & Schäfer 1991), one
verifies whether the two components of a pulsar - white dwarf
system (the first with a very high degree of self-gravity, which
allows the detection of strong-field SEP violation) fall with the
same acceleration in the field of the Galaxy, which acts as the
third body. A violation of the UFF would again cause a polar-
isation of the orbit of the binary pulsar. At the time of that pa-
per (1991), the timing precision and timing baselines of binary
pulsars were relatively small, so the authors proposed a statis-
tical approach to search for this polarising effect in the orbital
eccentricities of the known pulsar - white dwarf systems. Fol-
lowing that method, several analyses of the orbital eccentrici-
ties have constrained ∆ for neutron stars:3 Stairs et al. (2005)
derive |∆| < 5.6 × 10−3, and Gonzalez et al. (2011) derive
|∆| < 4.6 × 10−3 (both being 95 % confidence limits). However,
the latter limit is derived with the inclusion of a binary pulsar,
PSR J1711−4322 that does not fulfil all the necessary criteria
for the Damour-Schäfer test (Wex 2014).

This method has several shortcomings, which are listed and
discussed in detail by Freire et al. (2012a); the two most impor-
tant ones are a) the fact that it cannot detect GWEP violation,
only produce statistical upper limits for it and b) generally, neu-
tron stars with different masses have different values of ∆, this
limits the meaningfulness of a general ∆ for neutron stars (cf.
footnote 25 in Damour 2009).

Apart from the statistical test based on small eccentricities,
Damour & Schäfer (1991) have also proposed a test based on
a direct measurement of the variation of the orbital eccentricity
vector for individual systems, ė, (no matter whether eccentric or
not) that results from the polarisation of the binary orbit by the
Nordtvedt effect. As discussed by Freire et al. (2012a), this test
not only avoids all the shortcomings of the statistical test, but
its precision just keeps improving with the precision of the mea-
surement of ė, which improves with time and with better timing
instruments. Indeed, they estimated that this test should, for the
best timed binaries, yield slightly better ∆ values than the sta-
tistical test by the mid 2010’s. More recently Zhu et al. (2019)
confirmed this by using the ė constraint for the wide orbit of
PSR J1713+0747 to derive |∆| < 2 × 10−3 (95 % C. L). Without
further assumptions, this limit is strictly speaking only for neu-
tron stars around 1.3 M�, which is the mass of PSR J1713+0747.
3 More precisely, the constraint is on ∆pulsar,Galaxy − ∆companion,Galaxy.

Recently, this limit has been used to test the UFF of a neutron
star towards dark matter (Shao et al. 2018).

Although this test can detect any hypothetical large strong-
field deviations of the gravitational properties of neutron stars,
the limits on |∆| are not very constraining because of the weak
gravitational field of the Galaxy, which has accelerations of the
order of 2 × 10−10 m s−2 in the solar vicinity. In the case of the
LLR test, the polarising gravitational field (that of the Sun) is
much stronger (6 × 10−3 m s−2), however, in that case the Earth
and Moon have very small gravitational self energies.

For this reason, Freire et al. (2012a) suggested that the (then)
rumoured pulsar in a triple system would combine the best fea-
tures of both tests. In this experiment, we look for the Nordtvedt
effect in an inner binary system consisting of a pulsar and a white
dwarf; this system is orbited by a third hierarchical component
significantly farther away. As in previous binary pulsar experi-
ments, the pulsar provides the precise tracking and an object with
very strong gravitational self energy; the white dwarf provides a
test mass with a much smaller gravitational self energy, and fi-
nally the third outer component in that system provides a strong
(potentially) polarising gravitational field (1.7 × 10−3 m s−2), as
the Sun does for the LLR experiment. The outer component
would ideally be a neutron star, as this would provide a quali-
tatively different test, however, any type of star would already
yield a much stronger polarising force than the Galactic gravita-
tional field and therefore either a detection of GWEP violation,
or much improved limits on it.

PSR J0337+1715 was discovered in data from the GBT drift-
scan survey (Boyles et al. 2013; Lynch et al. 2013). This is a
2.7-ms pulsar in a 1.6-day orbit with a ∼ 0.2 M� Helium white
dwarf star, this is what we refer to from now on as the inner
binary. The outer ∼ 0.4M� white dwarf orbits the inner binary in
about 327 days in a low-eccentricity (e = 0.035) orbit. This is the
first, and so far the only pulsar confirmed to be in a triple stellar
system (Ransom et al. 2014). The two orbits (inner and outer)
are nearly coplanar, this and the small observed eccentricities
provide important clues for the evolution of the system, which
was described in detail by Tauris & van den Heuvel (2014).

The pulsar has very good rotational stability, as usually mil-
lisecond pulsars (MSPs) do, and is relatively bright, which al-
lows a very good measurement of the times of arrival of the
pulses. This has allowed precise measurements of the varying
orbital parameters, and also extremely precise mass measure-
ments for the pulsar and the two white dwarf stars (Ransom et al.
2014). More importantly, the GWEP test was eventually carried
out for PSR J0337+1715 by Archibald et al. (2018), yielding
|∆| ≤ 2.6 × 10−6 (95% C.L.). This represents an improvement
of three orders of magnitude over previous pulsar tests and con-
firmed the power of a MSP in a triple stellar system for testing
the GWEP.

This measurement represents a tight constraint on alternative
theories of gravity. Archibald et al. (2018) derived constraints
on one of the best studied alternatives to GR, the class of mono-
scalar-tensor theories described by Damour & Esposito-Farèse
(1992, 1993, henceforth DEF gravity). The constraints on the
weak-field coupling parameter for these theories (α0) derived
from PSR J0337+1715 significantly improve upon all previous
experiments for most of their β0 space.

The UFF experiment with the PSR J0337+1715 triple system
and its results are clearly of great importance. It is, at present, the
most powerful test of the GWEP, for either the strong or weak
field limits. It is also extremely sensitive to strong-field devia-
tions in the gravitational properties of neutron stars.
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This test is of special value because, according to a gravi-
tational analogue of Schiff’s conjecture, it is plausible that the
validity of GWEP implies the SEP (Will 2018b); this in turn
strongly suggests, according to the arguments mentioned above,
that GR is the theory of gravity (see also Will 2014a).

For all these reasons, we find it is important to improve both
the precision and reliability of the test. These are the primary
objectives of this work. We use fully independent observational
data, taken with a wholly different observing system (described
in detail in Section 2), a completely independent numerical in-
tegration of the motion of the system and a different implemen-
tation of the determination of the masses and orbital parame-
ters (described in Section 3) than those used by Archibald et al.
(2018). One of the main differences is, however, that the un-
certainties we report are purely statistical; we found no need
to postulate the existence of additional systematic effects that
can bias ∆. Consequently, this parameter can be self-consistently
processed like the others without requiring a special treatment.

The results of our analysis are presented in Section 4. Here
we discuss not only the parameters we obtain, but also anal-
yse the trends observed in the residuals after subtracting the
best model for the system. In Section 5, we interpret the ∆ con-
straint, as well as constraints on the post-Newtonian strong-field
parameters, within the context of a wide framework of alterna-
tive theories of gravity, the Bergmann-Wagoner theories of grav-
ity (Will 2018b). We also derive new constraints on a sub-class
of those theories, the Damour-Esposito Farèse (DEF) theories
(Damour & Esposito-Farèse 1992; Damour & Esposito-Farèse
1993), these new limits are derived in a conservative way that
accounts for uncertainties in our knowledge of the equation of
state (EOS) for neutron star matter. We finally summarise our
findings in Section 6.

2. Observations and data reduction

The pulsar J0337+1715 has been regularly observed since July
2013 every 2 or 3 days with the Nançay radio telescope using its
L-band receiver at a central frequency of 1484 MHz. The Nançay
radio telescope is a meridian Kraus design collector equivalent
to a 94-meter dish able to conduct ∼1 hour observations on any
given source within its declination range each day. The dual lin-
ear polarisation signals are sent to the Nançay Ultimate Pulsar
Processing Instrument (NUPPI, Desvignes et al. 2011), an in-
strument that is able to coherently dedisperse (Hankins & Rickett
1975) a total bandwidth of 512 MHz. It consists of a ROACH1
board (designed by the CASPER group, University of California,
Berkeley) providing 128 baseband data streams of 4MHz band-
width each. The instrument software has many similarities with
GUPPI (Green Bank Ultimate Pulsar Processing Instrument, Du-
Plain et al. 2008) used at the Green Bank Telescope (GBT). A
cluster of four nodes hosting eight GTX280/285 Graphics Pro-
cessing Units (GPUs) is used to coherently dedisperse and fold
the data in real-time.

The real-time folding process uses a pulsar period coming
from a simple model with two non-interacting Keplerian orbits
over short 15-second sub-integrations. A single standard tim-
ing parameter file in tempo format4 containing this pulsar tim-
ing model is used for all the observations. The full frequency
and time resolution daily pulsar profiles are stored in PSRFITS
archives (Hotan et al. 2004)5. A ∼3 Hz pulsed noise diode is fired

4 tempo is a standard pulsar timing software, this can be found at
http://tempo.sourceforge.net.
5 http://psrchive.sourceforge.net.

for ∼10 seconds at the start of each observation to conduct a
simple calibration accounting for gain and phase differences be-
tween the two polarisations, as implemented in the singleaxis
polarisation calibration of psrchive.

Fig. 1. (top) Template pulse profile of PSR J0337+1715 used for tim-
ing. 450 hours of observations conducted with the Nançay Radio Tele-
scope were integrated over the frequency range 1230–1742 MHz. (bot-
tom) Pulse profile obtained on October 4, 2014. When profiles are ToA
uncertainty ranked, this one is at the 10th percentile of the lowest un-
certainties, typical of a good observation.

As the pulsar period model used to fold in real time is not
strictly satisfactory, it is necessary to properly phase-shift all the
archived individual profiles. A posteriori, the drifts within indi-
vidual sub-integrations were statistically smaller than the mean
ToA uncertainty and characterised by an rms of 0.78 µs, thus
validating the parameters of our sub-integrations. In an iterative
way, measured times of arrival are used to derive a pulsar timing
model which is used to improve the times of arrival and so on.
Practically, the numerically derived pulsar timing model is used
to provide ‘theoretical’ barycentric arrival times for each of the
15-second sub-integrations. A code transforms those barycentric
arrival times into a simple daily tempo parameter file with rota-
tion rate described by only a frequency and its first three deriva-
tives around an epoch corresponding to the middle of the obser-
vation (F0, F1, F2, F3 and PEPOCH). This polynomial predicts
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the barycentric rotational phases within 5 ns at maximum. These
daily parameter files are then used to re-align the pulse pro-
files within their corresponding archives. A profile ‘template’,
built with more than one thousand observations (see Fig. 1, top),
is used for determining the topocentric pulse times of arrival
(ToAs) in the following way. After integrating profiles over 128
MHz and 20 minutes, the times of arrival are estimated using
the pat function from psrchive within the Fourier domain with
Markov chain Monte Carlo (FDM) method. The total bandwith
of 512 MHz was thus split in four sub-bands in order to be able to
fit for variations in the dispersion measure (DM) representing the
integrated electron column density along the line-of-sight during
the numerical fit. The ToA uncertainties as reported by pat are
characterised by a mean of 2.15 µs and a median of 1.89 µs. A
pulse profile typical of a good observation, characterised by an
uncertainty of 1.15 µs, is shown in Fig. 1 (bottom). The goodness
of fit as reported by pat can give a sense of the differences be-
tween the template profile and the profiles used to derive ToAs.
The goodness values are characterised by a mean of 1.05 (with
a median of 1.04) and an r.m.s. of 0.12 with 99% of the values
between ±3σ (0.69 to 1.41). The rather low signal to noise ratio
of the PSR J0337+1715 profiles observed at Nançay prevents the
detection of subtle effects of incorrect polarisation calibration on
the ToA determination. In this work, we use a dataset (see foot-
note 7) of 9303 ToAs divided in four 128 MHz bands observed
between MJD 56492 and MJD 58761 (July 2013 and October
2019).

3. NUmerical TIming MOdel: NUTIMO

For the description of the orbits of binary pulsars, timing pro-
grammes such as the aforementioned tempo and also tempo2
(Edwards et al. 2006; Hobbs et al. 2006) rely on existing ana-
lytical models to calculate the times of arrival with nanosecond
accuracy (such as, e.g. the DD and DDGR models, Damour &
Deruelle 1986). These models are built from precise analytical
solutions of the equations of motion (for the examples above
these were derived by Damour & Deruelle 1985). However, no
such solution is yet available for a triple system where the three
masses are of comparable size and experience moderately strong
mutual interactions. Therefore, and similarly to Ransom et al.
(2014) and Archibald et al. (2018), we perform a high precision
numerical integration of the equations of motion, which we sub-
sequently use to calculate the delays.

The equations of motion we use are accurate up to first post-
Newtonian order (1PN), that is, include the first-order terms of
an expansion of GR in the small parameter ε ∼ Gm

ac2 ∼
v2

c2 .

5 × 10−7 where m, v and a are characteristic mass, velocity and
length scales of the system and c the speed of light. These cor-
rections are absolutely necessary because they translate into a
relative acceleration ∆a/a ∼ ε which is of similar magnitude as
a potential SEP violation (see above). In addition, 1PN correc-
tions are responsible for effects that accumulate over time such
as the well-known relativistic precession of periastron. On the
other hand, second order corrections can be safely ignored since
the same line of reasoning predicts that even a cumulative ef-
fect such as gravitational wave radiation cannot account for more
than a nanosecond within the current span of our observations.

We use the 1PN generic strong-field framework of Will
(1993) and Damour & Taylor (1992) which parametrises al-
most the entire class of ‘fully conservative’ Lagrangian-based

theories of gravity (without preferred location effects6) based
on a modified Einstein-Infeld-Hoffmann approach (see details
in Appendix A). In this framework, in the most generic case,
one has three parameters ∆ab at the Newtonian and 12 strong-
field parameters at the post-Newtonian level. All these param-
eters depend on the structure of the individual bodies. The 12
post-Newtonian parameters generalise the parametrised post-
Newtonian (PPN) βPPN and γPPN (Will 1993) to the regime of
strongly self gravitating masses.

In the PSR J0337+1715 system we have only one strongly
self-gravitating body with εgrav ∼ 0.1, the pulsar, while the
two white dwarfs are weak-field objects with εgrav . 10−4.
That generally leads to a significant reduction of the number
of strong-field parameters relevant for the orbital dynamics of
the PSR J0337+1715 system. In fact, on the Newtonian level
there is only one ∆ab, which we simply denote by ∆. Among the
post-Newtonian terms, as we discuss in detail within a theory
based framework in Section 5, there remain three strong field
parameters which are a priori unconstrained by Solar System
experiments and limits on ∆ already imposed by the ‘Newto-
nian’ dynamics: β̄p, β̄pp, β̄p. Since the limits we find for these
parameters in Section 4 are many orders of magnitude weaker
than limits inferred indirectly from binary pulsar experiments, at
least within our theory based framework, we primarily consider a
model where the 1PN strong-field parameters are set to their GR
values that is, zero. This practically corresponds to using priors
arising from a combination of Solar System and binary pulsar
limits at the post-Newtonian level when estimating ∆.

Our specially developed software, nutimo7, solves numeri-
cally the 3-body equations of motion at 1PN (see appendix A.1
and particularly equation (A.2)) before computing propagation
and relativistic delays. All the geometrical delays are taken into
account up to first order in L/d where d is the distance to the
system and L � d is any other length scale of the problem. In
other words, the code computes the so-called Rœmer, Kopeikin
and Shklovskii delays (Shklovskii 1970; Kopeikin 1996), and
adds an extra second order correction, that is, L2/d2, for the lat-
ter (the only second order correction that may become impor-
tant with time, see e.g. Voisin 2017). We note that Kopeikin
and Shklovskii delays were not included in previous works
(Archibald et al. 2018; Ransom et al. 2014). The former allows
us to measure the longitude of ascending node of the outer orbit
and might be important because it accounts for systematic effects
at the Earth orbital frequency which is close to the outer orbital
frequency. We do not expect the latter to significantly affect the
results of the fit but it allows us to derive the intrinsic pulsar
spin parameters which would otherwise absorb this effect (see
below). We caution that the intrinsic spin parameters we report
in Table 2 are still biased by the effect of Galactic acceleration
which amounts to approximately 25% of the Shklovskii correc-
tion (according to the Galactic model of McMillan (2017)). Rel-
ativistic delays include time dilation between the frame of the
pulsar and the frame of the observer, namely the so-called Ein-
stein delay, as well as the deformation of space-time by the pul-
sar companions on the light travel path, the so-called Shapiro
delay, and the aberration of the direction of the radio beam. All
are calculated at 1PN order.

The delays due to interstellar medium propagation described
by the DM as well as the Solar System counterparts of the pre-

6 Preferred location effects are already tightly constrained using pul-
sars by Shao & Wex (2013).
7 Source, data, and results are available at: doi.org/10.5281/
zenodo.3778978
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viously mentioned delays are calculated by the commonly used
software tempo2 (Edwards et al. 2006; Hobbs et al. 2006) which
nutimo integrates as an external library. A thorough description
of the timing model can be found in Chapter 5 of Voisin (2017).

3.1. Parametrisation of the problem

In total, the model must include at least 27 parameters (respec-
tively 30 in the so-called secondary model when the 3 1PN
strong-field parameters are included). One of them is a ToA un-
certainty scale factor (called EFAC in the pulsar timing litera-
ture) which quantifies our ignorance of unmodelled systematic
effects. The other 26 parameters (resp. 29) can be grouped into
four categories:

– pulsar rotation: pulsar spin frequency and its derivative;
– orbital dynamics: six parameters for the inner-binary orbit,

six parameters for the outer-WD orbit, three masses, one SEP
violation parameter (resp. one SEP violation parameter and
three 1PN strong-field parameters);

– astrometry: three position and three proper motion parame-
ters;

– radio propagation: DM and DM derivative.

Each category is essentially uncorrelated with the others (see
Figure 5). The first two are specific to the triple-system problem
and we shall discuss them in some details. On the other hand,
the astrometric parameters, position and proper motion, and DM
are treated using a standard approach and we refer the interested
reader to Edwards et al. (2006), for example.

The intrinsic pulsar parameters are its spin frequency f and
spin-frequency derivative f ′ taken at the reference epoch Tref .
These parameters need to be re-scaled to avoid non-linear corre-
lations with astrometric parameters due to the Shklovskii delay
(see Chapter 5 of Voisin (2017) for details about the delays).
This is a common practice in pulsar timing. In addition, we re-
scaled the spin frequency to include the linear effect (that is, pro-
portional to time) of the Einstein delay, which is approximated
by the second term of Eqn. (5) below. In usual pulsar-timing
models, the term of the Einstein delay responsible for a linear
increase of the delay with time can be calculated exactly and re-
moved from the timing model since its effect is strictly impossi-
ble to separate from a re-scaling of f . However, because here we
calculate numerically the delay, we can only estimate the linear
drift using the initial parameters. As a result of these re-scaling,
the effective fit parameters f̄ and f̄ ′ are connected to the intrinsic
parameters f and f ′ by

f̄ = f
[
1 −

v2 + Ui + Uo

2c2 − µ2
⊥d∆T

(
1 −

3
2

∆Tµd

)]
/c , (5)

f̄ ′ = f ′ − f dµ2
⊥(1 − 3∆Tµd)/c , (6)

where

v = 2π
(

ab

PO
+

ap

PI

)
, (7)

Ui =
Gmi

ap(1 + mp/mi)
, (8)

Uo =
Gmo

ab(1 + (mp + mi)/mo)
, (9)

∆T = Tref − Tpos , (10)

where the symbols correspond to those defined in Table 2. The
use of the two re-scaled parameters above instead of the intrinsic

Fig. 2. Sketch of the orbits of PSR J0337+1715 (not to scale). Note that
the orbits are nearly circular and that the ellipsoidal shape of the orbits
on the left-hand sketch arises purely from projection. The osculating or-
bits of the system can be parametrised by the Keplerian orbital elements
of the pulsar within the inner binary and of the inner binary within the
outer binary (see text). In particular, ap is the semi-major axis of the pul-
sar orbit within the inner binary, ab is the semi-major axis of the inner
binary within the outer binary and eO its eccentricity. Are also shown the
longitude of periastron the outer binary as well as the inner and outer
inclinations with respect to the plane of the sky, iI and iO respectively.
Note that for simplicity the sketch neglects the difference between the
directions of the inner and outer lines of ascending nodes, δΩ, as it is in
practice very small.

ones has proven to be very effective in speeding up convergence
in our MCMC.

The orbital parameters for a triple system are at most 3 ×
6 + 3 = 21 that is, three position coordinates and three velocity
coordinates per body plus the three masses. However we con-
sider the system in the frame of its centre of mass which results
in applying two vector relations to the initial velocities and posi-
tions such that the centre of mass is at rest at coordinates (0, 0, 0).
These relations suppress six degrees of freedom, and we end up
with fifteen independent orbital parameters. Note that, eventu-
ally, the six degrees of freedom corresponding to the centre of
mass appear as the six astrometric parameters.

The orbital parametrisation uses the fact that the system, be-
ing hierarchical, can approximately be described by an inner Ke-
plerian binary containing the pulsar and the inner white dwarf
(WD) itself forming an outer binary with the outer WD (see Fig-
ure 2). Thus, the usual Keplerian orbital elements can be used to
describe the osculating Keplerian orbits to the actual trajectory
of the pulsar and of the inner binary. For eccentricity, we use
the Laplace-Lagrange parametrisation relevant for small eccen-
tricities (Lange et al. 2001) which replaces e, ω, tp, respectively
eccentricity, longitude of periastron and time of periastron pas-
sage, by e cosω, e sinω, and tasc. It is important to note that we
define the transformation tasc = tp − ω/2πP, with P an orbital
period.

Similarly, we fitted for ab sin iO, ab cos iO for the outer orbit,
where ab is the semi-major axis of the inner binary’s orbit around
the centre of mass of the system and iO its inclination relative to
the plane of the sky. For the inner binary we find it better to fit
for ap sin iI and δi = iI − iO instead of ap sin iI and ap cos iI as this
cancels several non-linear correlations in the fit. This is helped
by the fact the two orbits are very nearly coplanar. In the same
way, we fitted for the longitude on the plane of the sky of the
outer orbit, ΩO, as well as for the offset between inner and outer
orbits, δΩ = ΩI − ΩO. We note that only the latter was reported
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in Archibald et al. (2018) while the former was considered im-
possible to constrain with the available data. Interestingly, we
were able to constrain ΩO in this work, perhaps thanks to our
inclusion of Kopeikin’s delays.

The inner binary mass mb = mi + mp as well as the outer WD
mass are derived using Kepler’s third law in the inner and outer
binary respectively. The pulsar mass and the inner WD mass are
derived from mb using the mass ratio mi/mp which is also part of
the fit. In addition, we use the post-Keplerian orbital elements of
Damour & Deruelle (1985) which incorporate the 1PN correc-
tions for relativistic binaries. Using Damour & Deruelle (1985),
one maps the orbital elements to the position and velocity of the
pulsar relative to the inner-binary centre-of-mass (rp/b, vp/b) and
to the inner-binary centre-of-mass position and velocity (rb, vb).
One can then find the position and velocity of the pulsar rel-
ative to the centre of mass of the system, rp = rp/b + rb and
vi = vi/b +vb.8 The position and velocity of the inner WD, (ri, vi),
can then be derived by solving the equations of conservation of
momentum and centre-of-mass position, (A.4) and (A.5) respec-
tively, with P = (H /c2)vb and X = rb. Finally, one solves P = 0
and X = 0 for the outer WD position and velocity, (ro, vo).

3.2. Model accuracy

The main signature of a SEP violation in our pulsar-timing ex-
periment would be a residual signal at the frequency 2 fi − fo
(Archibald et al. 2018), where fi,o are the inner and outer orbital
frequency respectively (see also Figure 9). According to linear
theory, the effect of a violation of the SEP at Newtonian order
primarily results in a sinusoidal variation of the separation of the
inner binary with frequency fi − fo (Nordtvedt 1968). However,
here we measure the distance projected along the line of sight be-
tween the observer and the pulsar and this distance is modulated
by the orbit of the inner binary with the outer WD. It follows that
the main net effect is a modulation at 2 fi− fo as originally pointed
out by Archibald et al. (2018). Using the Newtonian-order lin-
ear theory of Nordtvedt (1968), one can show that |∆| ∼ 10−6

translates into a signal amplitude of ∼ 0.1 s via the Rœmer de-
lay. However, the magnitude that can effectively be detected in
the fit residuals appears to be reduced to only ∼ 50 ns (Archibald
et al. 2018) due to the effect of the many strong correlations of
the ∆ parameter with the other orbital parameters (see Figure
5). Therefore, we aim in this work to achieve nanosecond accu-
racy within our model. This level of accuracy is compatible with
the level aimed at by tempo2 (Edwards et al. 2006; Hobbs et al.
2006).

There are essentially three types of inaccuracies that can af-
fect the output of our model:numerical round-off errors, post-
Newtonian truncation, interpolation precision. The first one, nu-
merical round-off errors, is expected to grow with the num-
ber of floating-point operations performed to obtain the result.
The main source of operations is the numerical integration of
the equations of motion (A.2). The integration is performed us-
ing the Bulirsch-Stoer scheme (Stoer & Bulirsch 2011) imple-
mented in the Odeint module (Ahnert et al. 2011) of the Boost
library 9. In addition our numerical model relies on 80 bit float-
ing point numbers (long double in C) throughout. To assess the

8 Although addition of velocities only applies to Newtonian mechan-
ics, we are here only interested in transforming the orbital elements into
initial conditions for the numerical integrator. Such transformation is
somewhat arbitrary, and we choose to add these velocities for simplic-
ity.
9 Boost library version 1.55.0 www.boost.org

effect of numerical round-off errors, we use the model to gener-
ate fake times of arrival from parameters that fit the data from
PSR J0337+1715. The fake times of arrival are the theoretical
times of arrival that are closest to the actual measurements, and
therefore only differ from those by a few microseconds at most.
We feed this mock data set back into our model such that the
residuals should be exactly zero in absence of numerical round-
off errors. In practice we observe round-off errors at the level of
10−3ns showing that numerical round-off errors are not an issue
given our objective of a 1ns accuracy. Note that this procedure
does not assess any systematic inaccuracy due to the modelling
or the numerical scheme themselves (see below) but it does ac-
count consistently for the entire chain of operations, including
not only the numerical integration but also the Solar-system cal-
culations done by tempo2 and the pulsar system delays. It is also
conservative since the chain of operations is performed twice:
once to create the fakes and once to analyse them.

The main source of systematic inaccuracy due to numerical
approximations lies in the precision of the interpolations of the
timing delays that are calculated in intermediate steps. We use
a cubic-spline interpolation algorithm (Press 1996) for all our
interpolations. There are two parameters than can be tuned: the
number of interpolation points and the width of ‘margins’ at the
beginning and the end of the interpolated range in order to avoid
boundary effects. The latter need only be a few points in prin-
ciple, however the former has a direct and opposite impact on
accuracy and performance and therefore requires a trade-off. To
determine the level of interpolation accuracy required we need
to estimate what is the effect of a 1ns signal on the χ2 value in
order to make sure that this value is computed with the necessary
accuracy. Let us assume that the difference between the data and
the model is ∆ti + δi where the second term explicitly represent
the contribution of a putative ∼ 1ns signal, then the χ2 can be
expanded as follow,

χ2 =

N∑
i=1

∆t2
i

σ2
i

+

N∑
i=1

∆tiδi

σ2
i

+

N∑
i=1

δ2
i

σ2
i

, (11)

where N is the number of data points. Now if N � 1 and the
number of fit parameters is � N, then for the best fit param-
eters ∆ti ∼ σi where {σi}i∈[1,N] are the uncertainties which we
take to be approximately equal to σ = 2 µs. In the present case
N ∼ 10, 000 for only 27 parameters. Thus, the first term in (11)
approximates χ2 ∼ N. The second term in equation (11) can
be as large as Nδ/σ assuming that every term contributes posi-
tively. However it is also possible that the sum averages to zero
if it alternates. The third term is of order ∼ Nδ2/σ2. Taking
δi ∼ δ = 1 ns we see that the second and third term of equa-
tion (11) are respectively . 5 × 10−4χ2 and ∼ 2.5 × 10−7χ2.
We retain the last estimate as a conservative level of accuracy
to achieve. To do so we increased exponentially the number of
interpolation points until the relative variation of the χ2 between
two increments is smaller than 2.5 × 10−7.

The last source of inaccuracy, post-Newtonian truncation, is
intrinsic to the theoretical framework used. Indeed, although the
equations of motion and the various conserved quantities of Sec-
tion A all consistently derive from the same Lagrangian and can
therefore be exactly verified in principle, the method of calculus
by successive approximation does not in practice achieve that
result. Indeed, since the Lagrangian itself is an approximation
to order v2/c2 ∼ 5 × 10−7 of a more general theory, there is no
physical justification for conserving in the subsequent derivation
any term of higher order. It follows that the equations of mo-
tion and the corresponding conserved quantities are only accu-

Article number, page 7 of 22



A&A proofs: manuscript no. output

Fig. 3. Relative error in energy conservation during the numerical inte-
gration of the equations of motion over the 2268 day span of our data.
The envelope of the signal oscillates at the outer binary frequency while
a zoom would show a fast oscillation at the inner binary orbital fre-
quency.

Fig. 4. Three components of the centre-of-mass position variation dur-
ing the integration of the equations of motion over the 2268 day span
of our data. A quadratic component has been fitted out (see text and
legend) which leaves only the oscillatory components. The main visible
oscillation is at the frequency of the outer binary while a zoom would
show a fast oscillation at the inner binary orbital frequency.

rate to first order (1PN) and that systematic ‘residuals’ of order
v4/c4 ∼ 2×10−13 (2PN) are present in the equations themselves.
As a result, we see on Figure 3 that the energy of the system
is conserved up to systematic oscillations at the orbital frequen-
cies accompanied with a linear drift at a level consistent with
the neglected 2PN terms, and numerical noise does not play any
significant role. More interesting regarding the timing accuracy
is to look at the conservation of the centre-of-mass position. In-
deed, a shift in this position immediately transforms into a ge-
ometric delay. We find that, due to the fact that the neglected
2PN terms in the equations of motion do not necessarily gener-
ate residuals which average to zero, the two successive integra-
tions ẍ → ẋ → x leading to the centre-of-mass motion create a
quadratic drift that increases over time. Through the time span
of our observations this results into a drift of less than 10 m,
namely about 3 ns in terms of geometric delay. Such a quadratic
drift can undoubtedly be entirely absorbed in the spin frequency
and spin-frequency derivative as well as by the astrometric pa-
rameters when fitting the data. For example, the linear drift re-
ported on Figure 4 would bias the spin frequency by ∼ 10−14 Hz,
much less than the nevertheless very tight uncertainty on this pa-
rameter. Therefore we conclude that the quadratic drift can only
result in a negligible bias of a few parameters which is why we
subtract this component with a linear-least-square fit on Figure
4. The residuals show that the systematic oscillatory 2PN motion

Table 1. Gaussian priors adopted in MCMC posterior inference.

Parameter Mean Std dev Source
α 3h37m43s.8270 0.37 mas† 1
δ 17◦15′14′′.8178 0.38 mas† 1
d 1.3 kpc 160 pc† 3
µα 4.8 mas yr−1 1 mas yr−1† 1
µδ −4.4 mas yr−1 0.8 mas yr−1† 1

V‖ = µdd 29.7 km s−1 0.9 km s−1∗ 2
†: 2× the uncertainty reported in the source.
∗: 1× the uncertainty reported in the source.

References. (1) Gaia DR2 (Lindegren et al. 2018); (2) Kaplan et al.
(2014); (3) Ransom et al. (2014).

of the centre of mass does not exceed ∼ 0.1 m, or 0.3 ns in terms
of geometric delay, which is well within our tolerance.

In practice, the largest systematic errors may come from un-
modelled effects. In particular, gravitational wave damping in the
inner binary should account for a few nanoseconds after 5 years.
Another effect that might become important for high-precision
timing over time is the effect of the gravitational quadrupole mo-
ment of the inner white dwarf. Indeed this star should be slightly
deformed by the tidal field of the neutron star and by its spin
which would lead to a slight correction to the orbital precession
rate.

4. Bayesian analysis results

Our main goal in this work has been to get a Bayesian estimate
of the uncertainties on each of the parameters of the problem,
or in other words to estimate the posterior probability density
function (PDF) of the parameters θ belonging to model M given
our data D using Bayes’ rule,

P(θ,M|D) =
P(D|θ,M)P(θ,M)

P(D)
. (12)

The prior function, P(θ,M), was chosen flat except for astromet-
ric parameters that benefited from prior knowledge of position
and angular proper motion from the Gaia mission DR2 (Lin-
degren et al. 2018), of distance from photometric observations
of the inner white dwarf (Ransom et al. 2014) and radial ve-
locity from optical spectroscopy of the same star (Kaplan et al.
2014). The Gaia DR2 catalogue does not model orbital motion
which may then contaminate both position and proper motion.
In the present case, given the distance of the source the mag-
nitude of orbital motion is similar to the uncertainties reported
by Gaia DR2. In order to account for potential systematic er-
rors we have multiplied by two these uncertainties before using
them as standard deviations of our Gaussian priors (see Table 1).
We have also applied a factor of two to the uncertainty on the
photometric distance reported in Ransom et al. (2014) in order
to account for potential systematic effects that would bias this
measurement. For instance an inaccurate spectroscopic estimate
of surface gravity (the ‘high log g problem’ in low-mass white
dwarfs, see Tremblay et al. (2015) and references therein) would
in turn bias the stellar radius estimate and therefore the absolute
magnitude of the star. It is worth pointing out that the two com-
monly used free-electron density models for the Galaxy, NE2001
(Cordes & Lazio 2002) and YMW16 (Yao et al. 2017), both pre-
dict a distance of about 800 pc which is significantly smaller that
reported in Tables 1-2. This indicates that the electron density for
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Table 2. Mean values of the MCMC fit with their 68% confidence interval.

Parameter Symbol
Fixed values

Reference epoch (MJD) Tref 56492
Position epoch (MJD) Tpos 57205

Fitted values
Right ascension α 3h37m43s.82703(92)+72

−74
Declination δ 17◦15′14′′.818(43)+36

−35
Distance (kpc) d 1.3(75)+85

−79
Right-ascension proper motion (mas yr−1) µα 5.(01)+17

−18
Declination proper motion (mas yr−1) µδ −(0.85)+0.69

−0.66
Radial proper motion (mas yr−1) µd 4.(58)+30

−30
Dispersion measure (pc cm−3) DM 21.316(49)+15

−15
Dispersion measure variation (pc cm−3 yr−1) DM′ (−6)+34

−34 × 10−6

Rescaled spin frequency (Hz) f̄ 365.9533379022(28)+24
−25

Rescaled spin frequency derivative (10−15 Hz s−1) f̄ ′ −2.35587(76)+70
−69

Orbit of pulsar around centre of mass (CM) of inner binary
Orbital period (days) PI 1.62940(06)+30

−30
Projected semi-major axis (lt-s) ap sin iI 1.21752(80)+11

−11
Inclination offset (◦) δi = iI − iO −0.00(29)+29

−29
Laplace-Lagrange eI sinωI 6.93(65)+19

−19 × 10−4

Laplace-Lagrange eI cosωI −8.5(44)+95
−96 × 10−5

Time of ascending node (MJD) tascI 55917.15(84)+10
−10

Long. of asc. nodes offset (◦) δΩ = ΩO −ΩI 0.00001(74)+34
−34

Orbit of CM of inner binary around CM of the whole system
Orbital period (days) PO 327.255(39)+51

−51
Projected semi-major axis (lt-s) ab sin iO 74.6723(74)+57

−58
Co-projected semi-major axis (lt-s) ab cos iO 91.4(35)+47

−48
Laplace-Lagrange eO sinωO 0.035114(31)+76

−76
Laplace-Lagrange eO cosωO −0.003524(80)+24

−24
Time of ascending node (MJD) tascO 56230.195(11)+41

−41
Longitude of outer ascending node (◦) ΩO −44.(34)+14

−13

Inner mass ratio mi/mp 0.1373(50)+18
−18

SEP ∆ ∆ (4.8)+9.5
−9.4 × 10−7

ToA uncertainty rescaling EFAC 1.31(53)+94
−96

Derived values
Parallel proper motion (km s−1) V‖ 29.(82)+93

−93
Plane-of-sky proper motion (km s−1) V⊥ 3(3.1)+2.8

−2.5
Spin frequency (Hz) f 365.9533630(00)+16

−16
Spin frequency derivative (10−15 Hz s−1) f ′ −2.32(44)+41

−37

Orbit of pulsar around CM of inner binary
Semi-major axis (lt-s) ap 1.924(27)+60

−61
Orbital inclination (◦) iI 39.2(51)+14

−14
Orbital eccentricity eI 6.98(90)+30

−31 × 10−4

Longitude of periastron (◦) ωI 97.0(22)+76
−75

Time of periastron passage (MJD) tpI 55917.59(75)+14
−14

Longitude of asc. node (◦) ΩI −44.(34)+14
−13

Orbit of CM of inner binary around CM of the whole system
Semi-major axis (lt-s) ab 118.0(53)+36

−37
Orbital inclination (◦) iO 39.2(37)+14

−14
Orbital eccentricity eO 0.035290(78)+78

−78
Longitude of periastron (◦) ωO 95.732(19)+27

−27
Time of periastron passage (MJD) tpO 56317.219(76)+52

−52
Pulsar mass (M�) mp 1.44(01)+15

−15
Inner-companion mass (M�) mi 0.197(80)+19

−19
Outer-companion mass (M�) mo 0.410(58)+40

−40

Notes. The error bars apply to the digits between parenthesis. Upper-case indices I,O refer to the inner and outer binary respectively while
lower-case indices p, i, o refer to the pulsar, inner white dwarf and outer white dwarf respectively.
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Fig. 5. Corner plot of the correlations between the fitted parameters of Table 2 and their marginalised distribution (diagonal histograms) sampled
by our MCMC. A high-resolution version is available as online supplementary material.

the given Galactic height (z = −690(40) pc) is overestimated. All
priors are summarised in Table 1. Let us note that our fit for the
radial proper motion µd is unconstraining as the uncertainties re-
ported in Table 2 match the radial velocity prior of Table 1. The
uncertainties of all the other fitted quantities are improved with
respect to their prior.

The high dimensionality of the PDF together with the ne-
cessity to integrate numerically the equations of motion makes
the problem computationally challenging. However our C++
code is able to calculate one PDF value in less than 10 s
on a last-generation laptop, which made it possible to sam-
ple the PDF on a medium-size computer cluster. The sampling

was achieved using a home-made implementation of the affine-
invariant Markov-chain Monte Carlo (MCMC) of Goodman &
Weare (2010) parallelised with the scheme of Foreman-Mackey
et al. (2013). The advantage of this algorithm is to be efficient
in high dimensionality (Allison & Dunkley 2014) and insensi-
tive to any level of linear correlations between the parameters.
This is particularly important as we found ∆ to be highly cor-
related with many orbital parameters (see Figure 5). However,
we also found that non-linear "correlations" between parameters
were preventing convergence within a reasonable time, which
was solved by appropriate re-parametrisation (see Section 3.1).
Convergence was evaluated by requiring that fluctuations of the
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mean and standard-deviation estimators be smaller that 6% of
the full-chain standard deviation for each parameter (see e.g.
Dunkley et al. (2005), Section 4.1 and chain plot in supplemen-
tary online material). We noticed that standard deviations some-
times converge later than means, particularly for ∆, confirming
the importance of monitoring both indicators to ensure reliable
uncertainties.

Due to its very low ecliptic latitude, ∼ 2 deg, the timing of
PSR J0337+1715 is potentially sensitive to a range of effects
occurring in the Solar-system. In particular, we detected in pre-
liminary runs a slight increase in timing residuals of the order
of 1 µs when the pulsar was within 3 deg of the Sun. We at-
tributed this increase to the inaccuracy of the Solar-wind elec-
tron density model used by tempo2 to calculate the related DM.
We mitigated this effect by removing all the ToAs taken within
5 deg of the Sun. Moreover, our periodogram shows a secondary
∼ 0.2 µs component close to the Earth orbital frequency, sign
of possible extra inaccuracies in the Solar-wind model or in the
Solar-system ephemerides. This is likely to affect outer-orbit pa-
rameters since this period is close to 1 year but such a correlation
can only widen posterior uncertainties.

Fig. 6. Left-hand side: Marginalised posterior probability distribution
of the SEP violation parameter ∆ sampled by MCMC and normal law
with the same mean and standard deviation. The upper axis gives the
mean value and the boundaries of the 95% confidence region. Right-
hand side: distribution of distance to GR derived from the left-hand-side
distribution.

Two models M were tested. Our main model includes only ∆
as a free parameter while our secondary model includes the three
additional 1PN-strong-field parameters, β̄p, β̄pp, β̄p, yielding the
following 95% C. L. constraints for them:

∆ = 1.1+4.8
−4.6 × 10−6 , (13)

β̄p = −2+13
−14 , (14)

β̄pp = −0.1+0.9
−1.0 , (15)

β̄p = +0.8+7.2
−6.6 . (16)

In regard to binary-pulsar tests (see Section 5), the above results
on the three β̄ parameters are unconstraining. We used this prior
knowledge to run our main model with β̄p = β̄p = β̄pp = 0 and
obtain our primary SEP limit

∆ = (+0.5 ± 1.8) × 10−6 (95% C.L.), (17)

which translates into |∆| < 2.05 × 10−6 at 95% C. L. (see Figure
6). The full result of the main model is reported in Table 2. Note
that ∼ 8% of the reported uncertainties are due to unaccounted
systematics absorbed in the EFAC parameter (see also Section
4.2). The wider uncertainty obtained in the secondary run is due
to large correlations with the three additional parameters.

4.1. MCMC run and convergence

The affine-invariant algorithm of Goodman & Weare (2010) re-
quires to move N walkers together at each iteration. The gist of
this algorithm is that the walkers within the set are not indepen-
dent from each other while the set as a whole constitutes a single
effective walker in the Markov process sense, namely that it de-
pends only on its previous state. Individual moves within the set
are informed by the positions of other walkers in a way that ren-
ders the algorithm rigorously immune to any linear correlation,
or any affine parameter transformation. However it might be sen-
sitive to correlation of a higher degree, or to non-convexity of the
posterior isosurfaces. Therefore, with this algorithm one should
take care of removing as much as possible any non-linear cor-
relations by choosing an appropriate parameter set (see Section
3.1) but very large linear correlations, as can be seen in Figure
5, are well resolved by the algorithm.

The authors of Goodman & Weare (2010); Foreman-Mackey
et al. (2013) recommend to choose a number of walkers within
the set much larger than the number of parameters. In the present
case we chose to use 288 walkers per set. The only other
tunnable parameter is the unique parameter of the proposal func-
tion, a, which controls the size of the steps that can be attempted.
The authors of Goodman & Weare (2010); Foreman-Mackey
et al. (2013) suggest the value a = 2 in order to keep an ac-
ceptance fraction ∼ 0.4. We found that, as the chain was getting
closer to convergence the acceptance fraction could drop dra-
matically, sign of non-linear correlations or non-convexity. This
drop was largely mitigated by adopting the final parameter set
of Section 3.1, but we still had to choose a smaller step-size pa-
rameter a = 1.6 to keep the acceptance fraction close to the level
mentioned above.

Due to the large parameter space and the computing time
needed to compute one χ2 (about 10 s) we parallelised the
MCMC code using the scheme of Foreman-Mackey et al.
(2013). This allowed us to run the MCMC using 144 cores of
the meso-scale MesoPSL cluster (see acknowledgements) each
calculating 2 walkers (which is the minimum number of walkers
per core given the algorithm used). A few 10,000 steps were typi-
cally necessary to reach convergence. However, it is important to
quantitatively estimate convergence as one cannot afford to run
the MCMC for an unnecessarily large number of iterations. Be-
yond visual inspection of the parameter chains which allows to
discard any obvious burn-in phase, we also monitored the auto-
correlation time of each chain (Goodman & Weare 2010). How-
ever, we found that the most constraining convergence estimator
was to monitor the variation of the mean and standard deviation
of each parameter chain. Formally, one needs to compute the
value of the following estimator on each chain (Dunkley et al.
2005),

r̂ô=m̂,σ̂ =
σ̂ (ô)
σ

, (18)

where σ̂ is a standard-deviation estimator, ô is a statistical es-
timator which here is either the mean m̂ or the standard devia-
tion σ̂, and σ is the standard deviation estimated on the entire
length of the chain. In practice, we recorded the 288 walkers ev-
ery 5 iterations and use the last 69408 recorded elements (241
independent sets of 288 walkers). The standard deviation of ô
was estimated by applying ô on 20 sub-samples of the chain and
then estimating the standard deviation of the set of the values
obtained. The chain was considered converged if both r̂m̂ and r̂σ̂
estimated values are smaller than 0.06. A situation we observed
is when the latter keeps varying significantly while the former
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is stable and under the cutoff. In other words, the chain widens
with constant mean, rendering a mean-based convergence esti-
mator uninformative and possibly leading to an underestimation
of the parameter uncertainties.

4.2. Analysis of the residuals

We have assessed the robustness of our fit by evaluating the pres-
ence of systematic components in the residuals (Figure 7). As
it appears from Figure 8, no significant structure is present at
either the inner or outer orbital period, nor at the Earth orbital
period notwithstanding the sharp cut around the phase of clos-
est approach to the Sun made to prevent any bias induced by
unmodelled DM contributions.

In order to estimate more thoroughly the presence of sys-
tematic modulations we produced a Lomb-Scargle periodogram
(Lomb 1976; Scargle 1982) of the same residuals, Figure 9. It
appears that indeed there is no significant power at the frequen-
cies mentioned above, except for a tentative signal . 0.2 µs at
the Earth orbital frequency. Because of the proximity of this fre-
quency with the outer-binary orbital frequency this might lead
to correlate Solar-system and outer-binary effects and therefore
enlarge uncertainties related to the parameters involved.

The dominant component is the low-frequency peak and its
subsequent harmonics which we interpret as time-correlated red
noise. A number of causes have been proposed in the literature.
The main ones are the intrinsic spin frequency noise (Shannon &
Cordes 2010; Melatos & Link 2014) or magnetospheric fluctua-
tions (Lyne et al. 2010). It has also been proposed that asteroid
belts could result in apparent timing noise (Shannon et al. 2013).
Propagation effects under the form of long-term variations of the
dispersion measure along the line of sight due to turbulence in
the interstellar medium could be the cause in some cases (Keith
et al. 2013). We have tried to split the time span of our observa-
tions into several intervals with different DM values, but the fit
was consistent with an absence of variation discarding this ex-
planation. Red noise can also have a local cause, such as irregu-
larities of the terrestrial time realisation used to time the pulsar
(Hobbs et al. 2020, 2012) or inaccuracies in the planetary masses
used to generate the Solar System ephemeris (Champion et al.
2010; Caballero et al. 2018). However, we use the 2016 realisa-
tion of the BIPM terrestrial time which Hobbs et al. (2012) has
confirmed as suitable for precision pulsar timing. Besides, if the
red noise was caused by any inaccuracy in planetary masses, then
the signature would be at the orbital frequency of the responsi-
ble planet (Champion et al. 2010). The only orbital period in
the Solar System that approaches the 1650 days of the red-noise
signal is the orbital period of the dwarf planet Ceres. However
the uncertainty on its mass in the NASA JPL ephemeris DE430
(Folkner et al. 2014) we use in this work is too small to explain
a signal of that magnitude.

Thus, there is no deterministic model that can be fitted to
that component, but since its frequency is much lower than any
other in the system it is unlikely to bias the parameters. How-
ever, it results in increasing the scale of the ToA uncertainties
(EFAC parameter in Table 2) in order to accommodate this sys-
tematic effect into a reduced χ2 equal to unity. Were the PDF
perfectly Gaussian, that would result into posterior uncertain-
ties increased in exactly the same proportion, which we can here
estimate at ∼ 8%. Therefore, our posterior uncertainties should
be seen as upper limits. Interestingly, because the analysis of
Archibald et al. (2018) focuses on a specific frequency signature
for the SEP, the result quoted in that work should be seen as a

lower limit on the actual uncertainty in the sense of the above
discussion.

Finally, the prominent peak at 1 day−1 and its harmonics on
the periodogram of Figure 9 result from the convolution of the
red noise component with the observing window functions of our
data. Indeed, due to its meridian configuration, the Nançay radio
telescope can only observe the same object during ∼ 1h windows
separated by an integer number of sidereal day. Due to the prox-
imity of the inner orbital frequency with the observing frequency
of ∼ 1day−1 one might be concerned with a potential bias. How-
ever we have checked that the Fourier transform of a comb of
1h window functions results in sharp narrow peaks whose width
does not exceed a few percents of the daily frequency and there-
fore cannot significantly bias signals at the orbital frequencies.

5. Theory dependent tests

The parametrised post-Newtonian (PPN) formalism (see e.g.
Will 2018b), with its ten theory-independent parameters, has
proven to be a powerful tool to quantify and compare tests of GR
and its alternatives in the weak-field environment of the Solar
System. Unfortunately, there is no such framework that generi-
cally extends beyond the weak field approximation of the PPN
formalism and therefore is able to cover gravity experiments
with strongly self-gravitating bodies, like the one in this paper.
One reason is that, unlike in the Solar System, the treatment of
the motion of a neutron star in an external gravitational field
requires the full complexity of a gravity theory (Will 2018a).
To put the UFF test conducted in this paper into context with
other experiments, in particular Solar System tests and gravita-
tional wave tests with binary pulsars, it has been suggested to use
theory-dependent frameworks (see e.g. Damour 2009). Scalar-
tensor theories of gravity have turned out to be particularly use-
ful for this purpose. Apart from being well motivated and well
studied alternatives to GR (Fujii & Maeda 2007), they show
a rich phenomenology in their deviations from GR, including
prominent effects related to the non-linear strong-field regime of
neutron stars (see e.g. Damour & Esposito-Farèse 1993; Damour
& Esposito-Farèse 1996).

In this paper, as a theory-dependent framework we use the
class of Bergmann-Wagoner theories. Bergmann-Wagoner theo-
ries represent the most general scalar–tensor theories with one
scalar field that are at most quadratic in the derivatives of the
fields (Will 2018b). Quite a number of well known scalar-
tensor theories belong to this class, like Jordan-Fierz-Brans-
Dicke (JFBD) gravity (Jordan 1955; Fierz 1956; Brans & Dicke
1961), DEF gravity (Damour & Esposito-Farèse 1993), MO
gravity (Mendes & Ortiz 2016), f (R) gravity (De Felice & Tsu-
jikawa 2010), and massive Brans-Dicke gravity (Alsing et al.
2012). Bergmann-Wagoner theories form a subclass of the class
of Horndeski theories (Horndeski 1974), which is the most gen-
eral class of mono-scalar-tensor theories in four dimensions
whose Lagrangian leads to second order field equations.

In the following we interpret our limits of Section 4 in two
different approaches within the class of Bergmann-Wagoner the-
ories. In the first approach we remain (mostly) generic, in the
sense that make as few assumptions as possible concerning the
details of the theory. In the second approach, we pick a spe-
cific two-parameter scalar-tensor theory, that is, DEF gravity. For
this two-parameter class of theories we can then explicitly cal-
culate the properties of neutron stars for different equations of
state (EOS) and derive constraints on the two-dimensional the-
ory space from the limits presented here.
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Fig. 7. Residuals of the times of arrival using the mean parameters reported in Table 2.

Fig. 8. Residuals of the times of arrival corresponding to the parameters of Table 2 plotted versus the inner-binary orbital phase (top), the outer-
binary orbital phase (middle) and the Earth orbital phase (bottom). The red vertical bars of the first two plots show the phase where the pulsar
(resp. the inner binary) is closer to the Solar System. The red vertical bar on the bottom plot, shows the Earth orbital phase where the line of sight
to the pulsar passes closest to the Sun. We have removed every ToA when the pulsar is less than 5 deg from the Sun, which explains the gap around
that particular phase.

Article number, page 13 of 22



A&A proofs: manuscript no. output

Fig. 9. Lomb-Scargle periodogram of the timing residuals for the solution of Table 2. The periodogram is sampled at fm/5 where fm ' 2268days−1

is the inverse of the full time span. From left to right vertical lines show the frequencies of the red-noise component ( fRN ' 1650day−1, black), the
Earth orbital period ( fE , green), the outer-orbit orbital period ( fO, orange), the inner-binary orbital period ( fI , red) and the SEP violation signature
(2 fI − fO, purple).

5.1. Generic tests within Bergmann-Wagoner scalar-tensor
gravity

In Bergmann-Wagoner theories, the field equations for the (phys-
ical) metric gµν and the scalar field φ are a result of the following
action

S =
1

16πG0

∫
√
−g d4x

(
φR −

ω(φ)
φ

∂µφ∂
µφ − U(φ)

)
+S mat

[
ψA

mat, gµν
]
, (19)

where G0 is the fundamental (‘bare’) gravitational constant, g
the determinant of gµν, R the curvature scalar, ω(φ) is the cou-
pling function, and U(φ) the scalar potential. The physical (New-
tonian) gravitational constant, as measured in a Cavendish-type
experiment, is given by

GN =
G0

φ0(1 − ζ)
, (20)

where φ0 denotes the cosmological background field and ζ ≡
1/(2ω(φ0) + 4). S mat is the action of the matter fields ψA

mat, which
couple universally to the spacetime metric gµν. For our discus-
sion, we assume that U(φ) can be neglected on the scale of the
triple system, that is, U′′(φ) � 1/a2

b. In terms of a massive scalar
field, this means that we assume that the Compton wavelength is
much larger than the extension of the system (see Seymour &
Yagi 2019, on how J0337+1715 can be used to constrain mas-
sive scalar fields).

The effective gravitational constant that enters the N-body
Lagrangian is given by

Gab = GN
[
1 − 2ζ(sa + sb − 2sasb)

]
, (21)

where the sensitivity

sa ≡

(
d ln ma(φ)

d ln φ

)
φ0

(22)

accounts for the dependence of each body on a change in the
ambient scalar field, while the number of baryons remains fixed
(Will 2018b). For neutron stars, sa depends on the EOS. It is typ-
ically of the order of 0.1 but, depending on the details ofω(φ), its
(absolute) value can be very large, as we discuss further below.
For the relative GWEP parameter one finds

∆ab = −2ζ(sa + sb − 2sasb). (23)

Because of the product sasb, in general it is not possible to inter-
pret the quasi-Newtonian equations of motion in terms of inertial
and gravitational masses of the individual bodies in an N-body
system (Will 2018b). For weakly self-gravitating bodies the sen-
sitivity sa is simply related to the fractional gravitational binding
energy εgrav,a via

sa = −(1 + 2λ) εgrav,a + O
(
ε2

grav,a

)
, (24)

where λ ≡ φ0ω
′(φ0)ζ2(1 − ζ)−1. The two Eddington parameters

of the PPN formalism are given by

γPPN = 1 − 2ζ , βPPN = 1 + ζλ , (25)

and the Nordtvedt parameter of equation (4) reads

η = 4βPPN − γPPN − 3 = 2ζ(1 + 2λ) . (26)

For the inner and outer white dwarf we have εgrav,i ' −1.8 ×
10−5 and εgrav,o ' −4.8× 10−5, respectively. Consequently Gio '

GN for the interaction between the two white dwarfs, and Gpi '

Gpo ' GN(1 − 2ζsp) for the interaction between the pulsar and
the white dwarfs. Hence, our result for ∆ in Table (2) leads to a
direct constraint for

ζsp ' −
∆

2
= (−0.2 ± 0.9) × 10−6 (95% C.L.) , (27)
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where ∆ ≡ ∆pb(sb = 0). The above limit can be considered
as generic within the family of Bergmann-Wagoner theories of
gravity, in the sense that it does not require a specification of the
coupling function ω(φ). Later, we use this limit to impose con-
straints on the parameter space of a specific two parameter fam-
ily of Bergmann-Wagoner theories. Before that, we need to dis-
cuss the strong-field modifications at the post-Newtonian level
of the 3-body dynamics.

First post-Newtonian contributions

At the first post-Newtonian (1PN) level (order v2/c2), the PPN
parameters β̄PPN ≡ βPPN − 1 and γ̄PPN ≡ γPPN − 1 need
to be replaced by the body-dependent quantities γ̄ab and β̄a

bc
(see Appendix A for details). These strong-field generalisa-
tions of the PPN Eddington parameters depend on the sensi-
tivities and their derivatives of the bodies in a system. For the
detailed expressions, we refer the reader to Will (1993) and
Damour & Esposito-Farèse (1992). The latter uses the so-called
Einstein-frame representation and gives these terms for multi-
scalar-tensor theories. More generally, in the triple system of
PSR J0337+1715, where two of the bodies are weakly self grav-
itating, one finds for the twelve 1PN-strong-field parameters, to
good approximation,

γ̄io ' γ̄PPN , (28)
γ̄pi ' γ̄po ' γ̄pb(sb = 0) ≡ γ̄p , (29)

β̄i
oo ' β̄o

ii ' β̄PPN , (30)

β̄i
po ' β̄o

pi ' β̄a
pc(sa = sc = 0) ≡ β̄p , (31)

β̄i
pp ' β̄o

pp ' β̄a
pp(sa = 0) ≡ β̄pp , (32)

β̄
p
ii ' β̄

p
io ' β̄

p
oo ' β̄

p
bc(sb = sc = 0) ≡ β̄p , (33)

leaving us with six different parameters at the 1PN level of the
modified Einstein-Infeld-Hoffmann equations of motion, instead
of the two in the weak field limit. Note the following symmetries:
γ̄ab = γ̄ba and β̄a

bc = β̄a
cb.

At this stage, we can further reduce the number of 1PN pa-
rameters, without making more detailed assumptions about the
theory, for instance aboutω(φ). The tight limits on β̄PPN and γ̄PPN
from Solar System tests ∼ 10−5 (Will 2018b), directly put tight
constraints on two of the six 1PN parameters. Furthermore, γ̄p
only depends on terms proportional to ζ and ζsp, the first be-
ing constrained to ∼ 10−5 by Cassini (Bertotti et al. 2003) and
the latter to ∼ 10−6 already by the Newtonian-level dynamics of
the triple system (cf. equation (27); see also limit (13)). Conse-
quently, without loss of generality, γ̄ab, β̄i

oo, and β̄o
ii can be ig-

nored in a self-consistent gravity test with the PSR J0337+1715
system. Besides the ∆ at the Newtonian level, we are left with
the 1PN strong-field parameters β̄p, β̄pp, and β̄p. These three pa-
rameters cannot be constrained without further assumptions, as
we discuss below. Hence we have implemented a model based
on deviations from GR parametrised by (∆, β̄p, β̄pp, β̄

p), which is
called secondary model in Section 3 and 4. Our analysis based
on this model leads to the generic limits (13) and (14) – (16).

In our generic approach, the parameters β̄p, β̄pp can a-priori
only be constrained if we make further assumptions and apply
existing constraints from binary-pulsar systems. The reason is as
follows. The three β̄ parameters have terms, which are propor-
tional to λζ, ζ2s2

p, λζsp, λζs2
p, and ζ2s′p, where

s′a ≡
(

d2 ln ma(φ)
d(ln φ)2

)
φ0

(34)

(see e.g. Will 2018a, for details). Solar System constraints on
βPPN and η put tight constraints (∼ 10−5) on λζ, and ζ2s2

p is
constrained to ∼ 10−12 because of equation (27). However, the
quantities λ, sp, and s′p are unconstrained by above consider-
ations. Consequently, λζsp, λζs2

p, and ζ2s′p are a-priori uncon-
strained. Below, in a more theory specific context, we discuss a
situation in DEF gravity where ζs2

p can be of order unity, even if
ζsp � 1 (spontaneous scalarisation of neutron stars). In such a
highly non-linear strong field regime, sp and s′p can assume very
large values. As a consequence, the β̄ terms can become much
larger than βPPN, even under condition (27). To give an example,
in the regime of spontaneous scalarisation in DEF gravity, one
finds β̄pp/β̄PPN ∼ ζ−1 while β̄pp remains practically unaffected
when ζ → 0 (cf. Damour & Esposito-Farèse 1996).

If we restrict λ to values which are not very large, it can be
shown that β̄p can be considered as small as well, since it only
contains λζsp as an a priori unconstrained term, where ζsp has
to be small according to equation (27).

Further constraints can come from binary pulsar experi-
ments. In particular, dipolar-radiation tests in binary pulsars with
spectroscopic white dwarfs (see e.g. Lazaridis et al. 2009; Freire
et al. 2012b), can in principle provide generic constraints on ζs2

p,
although some additional assumptions are needed, for instance
for U(φ) (cf. Alsing et al. 2012). If U(φ) = 0, the change in the
orbital period of a pulsar-white dwarf binary, Pb, due to dipolar
radiation damping is given by

Ṗdipole
b ' −

GN

c3

16π2

Pb

mpmc

mp + mc

1 + e2/2
(1 − e2)5/2 ζs2

p (35)

(see e.g. equation (12.32) in Will 2018b), where e denotes the
orbital eccentricity, and mp and mc are the masses of pulsar and
white-dwarf companion respectively. To apply constraints from
other pulsar to the PSR J0337+1715 system it also requires some
on the dependence of the sensitivity of the pulsar, sp, on the
pulsar mass. In the strong-field regime of neutron stars this de-
pendence can be highly non-linear (Damour & Esposito-Farèse
1996; Shao et al. 2017). PSR J1738+0333 is a pulsar with a mass
similar to PSR J0337+1715 (mp ' 1.46 M�). The dipolar radia-
tion test by Freire et al. (2012b); Zhu et al. (2019) leads to

ζs2
p = (−0.5 ± 1.7) × 10−6 (95% C.L.) . (36)

As a result, β̄pp can, in general, also be assumed to be small in
the PSR J0337+1715 system.

Imposing a generic constraint on ζ2s′p, and therefore on β̄p,
is somewhat less direct. s′p enters, for instance, the precession
of periastron, ω̇, which is particularly well tested – in combina-
tion with other post-Keplerian parameters – in eccentric short-
orbital-period binary pulsars (Wex 2014; Will 2018b). However,
only the so called Double Pulsar allows for a generic constraint
on deviations from GR in ω̇, which is of the order of 10−3

(Kramer & Wex 2009). However, the masses of the Double Pul-
sar are significantly lower than the mass of PSR J0337+1715.
Nevertheless, the general agreement of all these systems with
GR at least suggests that ζ2s′p, and therefore β̄p can generally be
assumed to be small as well. Moreover, given that the Cassini ex-
periment already imposes ζ2 . 10−10, s′p would have to assume
quite extreme values to lead to a significant β̄p, certainly in view
of the (still) quite weak limit (16).

To summarise, under additional assumptions, which we con-
sider as reasonable for most situations, all three strong-field β̄
parameters are tightly constrained by a combination of equa-
tion (27) with constraints from binary pulsars experiments. The
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limits in equations (14) to (16) are therefore generally not of par-
ticular interest, at least for constraining the class of scalar-tensor
theories considered in this section.

5.2. EOS-agnostic constraints on Damour–Esposito-Farèse
(DEF) gravity

In order to explicitly calculate sp and s′p and therefore ∆ and the
1PN strong-field parameters that enter our equations of motion,
one has to pick a specific theory of gravity, which we do in this
subsection. In the quadratic mono-scalar tensor theory T1(α0, β0)
of Damour & Esposito-Farèse (1993), the coupling function in
the Einstein frame is quadratic in the scalar field, meaning that
the coupling strength between the scalar field and the trace of
the stress-energy tensor becomes field dependent in a linear way.
In the Jordan-frame representation with the physical metric gµν,
which we are using here, the coupling function then reads

ω(φ) =
1
2

 1
α2

0 − β0 ln φ
− 3

 , (37)

where φ0 ≡ 1, without loss of generality (Will 2018b). Further-
more, one finds

ζ =
α2

0

1 + α2
0

, λ =
β0

2(1 + α2
0)
. (38)

The tight constraints on ζ from the Cassini mission imply that
α2

0 . 10−5. Furthermore, from equation (26) one then finds for
the Nordtvedt parameter

η ' 2α2
0(1 + β0) . (39)

The sensitivity sa of a weakly self-gravitating body, like the
WD companions to J0337+1715, can be calculated according
to equation (24):

sa ' −(1 + β0) εgrav,a . (40)

For neutron stars, the absolute value of the sensitivity can
become very large if β0 . −4.5, a fact first discovered
within T1(α0, β0) gravity theories by Damour & Esposito-Farèse
(1993), and generally referred to as ‘spontaneous scalarisation’.
As a result, even for arbitrarily small α0, the quantity α0sa '

ζ1/2sa remains at order unity.10

A special case of T1(α0, β0) is JFBD gravity, for which β0 =
0. In that case λ = 0, and the coupling function is a constant:

ω(φ) =
1

2α2
0

−
3
2

=
1
2ζ
− 2 ≡ ωBD > −

3
2
, (41)

which is called the Brans-Dicke parameter. For ωBD → ∞, that
is, α0 and ζ → 0, JFBD gravity approaches GR. We obtain the
most conservative limits on JFBD when using the stiffest EOS
from our set of viable EOSs (see Fig. 10), that is, BSk22. For
this EOS, in JFBD gravity, the sensitivity of PSR J0337+1715
has the value sp = 0.149. Most importantly, for ζ . 102, this
value is practically independent of ζ (Shibata et al. 2014; Shao
et al. 2017). Hence, equation (27) can directly be converted into
limits on the coupling parameter:

ζ = (−1 ± 6) × 10−6 (95% C.L.) . (42)

10 The effective scalar coupling αA used by Damour & Esposito-Farèse
(1993) is linked to the sensitivity as defined here via αA = α0(1 − 2sA).
Furthermore, α0 ' ζ

1/2 for small α0.

Consequently, using equation (41), while keeping in mind that
according to equation (38) ζ ≥ 0, one finds

ωBD > 140 000 (95% C.L.) . (43)

This limit is more than a factor of three larger, that is, more con-
straining, than the Cassini limit (Will 2018b). When using EOS
H4, which is already disfavoured by the GW170817 LIGO/Virgo
event, we find ωBD > 130 000, which is only marginally weaker
than the above limit. Just to illustrate the EOS dependence of
the limit on JFBD gravity, for the soft EOS WFF1 (outer/left in
Fig. 10), the lower limit for ωBD increases to 180 000.

Fig. 10. Radius-mass diagram for the 12 EOSs used in this paper
to accomplish a good coverage of the range from soft to stiff EOSs,
while still being in agreement with the tidal deformability test in
the GW170817 LIGO/Virgo event (Abbott et al. 2017; Abbott et al.
2018) (black curves). The blue dashed line indicates the mass of
PSR J0337+1715, and the red dotted line corresponds to the most mas-
sive neutron star used in our combined test: PSR J0348+0432 (Anto-
niadis et al. 2013). The black curves correspond to the following EOSs
(from left to right in their intersection with the red dotted line): WFF1,
SLy4, WFF2, AP4, BSk20, ENG, SLy9, AP3, BSk25, BSk21, MPA1,
BSk22 (see Lattimer & Prakash (2001) and https://compose.obspm.fr).
Our stiffest EOS, BSk22, is also in agreement with the (more model
dependent) constraint of Mmax . 2.3 M� by Rezzolla et al. (2018); Shi-
bata et al. (2019). We have included EOS H4 (grey curve), which is dis-
favoured by GW170817, and therefore has not been used in Figs. 11 and
12. All these EOSs also agree with the latest constraints from NICER
(Miller et al. 2019).

While a stiffer EOS gives a more conservative limit for JFBD
gravity, such a general statement is no longer true for the whole
α0-β0 parameter space of T1(α0, β0). In particular for certain neg-
ative values of β0, a softer EOS can be more conservative. For
low and medium mass neutron stars, like PSR J0337+1715, the
β0 range where that is the case is rather small (see Fig. 11). For
high mass neutron stars the situation is quite different. A soft
EOS that has a maximum mass close to the mass of the neutron
star leads to considerably weaker limits for all β0 . −2 (Shibata
et al. 2014; Shao et al. 2017). This is of particular importance
for constraints from pulsars like PSR J0348+0432 (Antoniadis
et al. 2013) (see Fig. 10). Hence for our combined constraints on
the parameter space of T1(α0, β0) theories we used a set of EOSs
that provide a good coverage of the range from soft to stiff. Fur-
thermore, if for a given point (α0, β0), which corresponds to a
specific gravity theory, there is a single EOS from our set with
which all pulsar constraints are fulfilled then this point in the the-
ory space is not excluded. For our joint analysis we have used the
UFF results from this paper in combination with the dipolar ra-
diation tests of PSRs J1012+5307 (Desvignes et al. 2016; Anto-
niadis et al. 2016), J1141−6545 (Bhat et al. 2008), J1738+0333
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(Freire et al. 2012b; Zhu et al. 2019), J1909−3744 (Desvignes
et al. 2016; Arzoumanian et al. 2018), and J2222−0137 (Cog-
nard et al. 2017). Our results are shown in Fig. 12.

Fig. 11. PSR J0337+1715 constraints on the α0-β0 space of scalar-
tensor theories (Damour & Esposito-Farèse 1993; Damour & Esposito-
Farèse 1996) from equation (17): the area under the curve is still al-
lowed by experiments. Two different neutron-star equations of state are
used: a soft one, WFF1 (red curve), and a stiff one, BSk22 (blue curve).
The two solid lines use the SEP constraint of this paper. The grey curves
show the 2σ-limits from Solar-system experiment: Cassini (solid), LLR
(dashed), MESSENGER (dotted). JFBD gravity corresponds to β0 = 0
(thin vertical line).

6. Conclusions

We described in this paper a test of the universality of free fall
(UFF) with the pulsar in a triple star system, PSR J0337+1715.
The result we obtain for the UFF violation parameter for the
MSP is ∆ = (+0.5 ± 1.8) × 10−6 (95% C.L.), which can be
stated as a limit, |∆| < 2.05 × 10−6 (also 95 % C.L.). This rep-
resents 30% improvement over the previous test using the same
pulsar (Archibald et al. 2018). Interestingly, although we obtain
a similar value for ∆, the nature of our limit is different: the un-
certainty reported in this work is statistical, while the result of
Archibald et al. (2018) is largely made of a systematic uncer-
tainty which we did not find necessary in the present analysis.
This particular difference makes our two limits difficult to com-
pare in absence of a physically motivated model for the system-
atic bias, but should also provide an independent verification of
the solidity of the result.

Furthermore, in a generic approach we also provide limits for
three post-Newtonian strong-field parameters of the three-body
interaction, and discuss in detail the relevance of these limits.
In view of other binary pulsar limits, it seems that these limits
might be of interest only in very specific situations.

As for Archibald et al. (2018), our results are fully consistent
with the predictions of GR. This limit strongly constrains SEP
violation and any alternative theories of gravity that predict a vi-
olation of the universality of free fall for self-gravitating masses
(GWEP), particularly for neutron stars with masses similar to
that of PSR J0337+1715. In this paper we explicitly calculate

Fig. 12. Combined EOS-agnostic pulsar constraints on the α0-β0 space
of scalar-tensor theories (Damour & Esposito-Farèse 1993; Damour &
Esposito-Farèse 1996) from equation (17): the area under the curve is
still allowed by experiments. The blue curve is the result of a com-
bination of dipolar radiation tests from six pulsar-WD binary systems
(see text for details). The red curve indicates the improvement when
the constraints from this paper are added to the dipolar radiation tests.
The grey curves show the 2σ-limits from Solar-system experiment:
Cassini (solid), LLR (dashed), MESSENGER (dotted). JFBD gravity
corresponds to β0 = 0 (thin vertical line).

these constraints for a wide class of gravity theories, and as a
part of this derive EOS-independent constraints on the param-
eter space of quadratic mono-scalar-tensor gravity. Specifically,
for the coupling parameter of Jordan-Fierz-Brans-Dicke (JFBD)
gravity we find ωBD > 140 000, which is the so far the tight-
est limit for this scalar-tensor theory. We also present new con-
straints for Damour–Esposito-Farèse (DEF) gravity, a quadratic
extension of JFBD gravity. We combine our limit with limits
from binary pulsar experiments while accounting for uncertain-
ties in our knowledge of the equation of state (EOS) of neutron-
star matter.

In what remains of the paper, we make a detailed compar-
ison of this experiment with the best previous constraints on
GWEP/SEP violation. In Section 6.1 we make a more detailed
comparison with the experiment by Archibald et al. (2018). In
Section 6.2, we compare our experiment to radiative experiments
from binary pulsars, which have also produced strong and com-
plementary constraints on GWEP violation via their strong con-
straints on the emission of dipolar gravitational waves. Further-
more, we compare the present limit with potential future limits
on dipolar radiation from binary neutron-star and neutron star-
black hole mergers.

In all of these experiments, no GWEP violation can be de-
tected; gravity behaves, to within observable precision, as de-
scribed by GR, which is conjectured to be the only viable theory
which fully embodies the SEP.

6.1. Comparison with previous work on J0337+1715

This work distinguishes itself from the Archibald et al. (2018)
on the following points:
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1. Independent data set;
2. Independent timing model including additional effects;
3. Statistics-limited versus systematics-limited accuracy;
4. Tension in the mass measurements and the first measurement

of ΩO;
5. Generic test of those strong-field post-Newtonian parame-

ters, which are a-priori unconstrained, even within a broad
class of scalar-tensor theories.

6. EOS-agnostic constraints on DEF gravity, while accounting
for the latest observational constraints on the range of EOSs.

Point 1) benefits from the well sampled timing data acquired by
the Nançay radio telescope alone (Section 2). All the observa-
tions used here were conducted within the same frequency range
(1.2-1.7GHz) and with the same environmental conditions since
Nançay is a meridian Kraus design telescope. The NUPPI in-
strumentation is also routinely used for long term high-precision
timing providing excellent and stable results. The instrumenta-
tion did not change since its installation in 2011 and there is no
need for any time jump in the whole dataset since 2011.

Point 2) makes use of nutimo (Section 3) which has the
specificity of allowing for a fully self-consistent treatment of
astrometric parameters via the binding with tempo2 and the in-
clusion of Kopeikin and Shklovskii delays in the model. The
model in Archibald et al. (2018) did not include these delays
and used a local linear approximation for astrometric correc-
tions. The argument in favour of such proxy was that any system-
atic effect caused by these approximations should not affect the
main SEP signature which has a different frequency. However,
we observe that the astrometry then found differs significantly
from prior knowledge and in particular Gaia observations which
led Archibald et al. (2018) to acknowledge that the resulting as-
trometry should not be used for other applications. In addition,
nutimo also fits consistently for DM and DM variations and al-
lows to check for local epoch DM variations (DMX parameters
in tempo2) which revealed no fluctuations over time. Note that
Archibald et al. (2018) did fit DM over 1 year time intervals
and marginalised over these parameters using the solution of a
least-square fit. We also included the aberration delay that nei-
ther Ransom et al. (2014) nor Archibald et al. (2018) mention.
This delay has a very small amplitude (sum of ∼ 30 ns sinusoid
at the outer period and a ∼ 0.1 µs sinusoid at the inner period)
and therefore can easily be absorbed by other parameter in a fit,
but still creates a signal of magnitude larger than the expected
SEP sensitivity. In nutimo, potential systematic effects that may
not be accounted for by the model are absorbed in a re-scaling
of the error bars of the times of arrival via the EFAC parameter
which ensures a reduced χ2 equal to unity. This in turns conser-
vatively increases uncertainties on the posterior parameters.

Point 3) arises from the fact that, in Archibald et al. (2018),
most of the total reported uncertainty of ∆ (±0.74 × 10−6 at
68% CL) is associated with systematic uncertainties while in
this work our uncertainty is mostly statistical. We account for
unmodelled systematic effects, mostly a red-noise component,
via the EFAC parameter which is responsible for a modest and
conservative widening of ∼ 8% of the uncertainties. The sta-
tistical uncertainty of Archibald et al. (2018) is estimated us-
ing MCMC sampling similarly as we do in this work and re-
sults in ∆ = (−1.1 ± 0.2) × 10−6 (68% CL). Taken alone, this
would signify a 5-sigma SEP violation. However, the authors
argue that most of the uncertainty comes from unaccounted sys-
tematic effects which could generate a signal at the signature
frequency of an SEP violation. In other words, it is claimed
that the accuracy is systematics-limited while in this work we

are statistics-limited. The physical mechanism of the systemat-
ics being unknown, Archibald et al. (2018) propose to model
systematics using an empirical stochastic model where the ex-
traneous signal is a weighted sum of sine and cosine functions
at frequencies k fi + l fo (k, l being small integers) whose weights
are drawn from a single Gaussian distribution for each particu-
lar realisation. In order to sample the distribution of ∆ caused by
different realisations of the (stochastic) systematics, Archibald
et al. (2018) bootstrapped many sets of synthetic data from the
model, re-fitted the orbital model, and thus obtained a value of
∆ for each synthetic dataset. This estimate heavily depends on
the modelling choices for which no physical justification is cur-
rently available. It also seems unlikely that systematics should
occur at frequencies k fi + l fo if the physical mechanism is unre-
lated to orbital motion (as an SEP violation would be), unless the
signal at these frequencies is the tail (in Fourier space) of a sys-
tematic signal which peaks at a different frequency, but should
then be seen in a periodogram such as Figure 9. In this respect,
Figure 9 does not suggest that we should consider a systematics-
limited regime in the present work. Although some systematics
are present as red noise (see Section 4.2), there is no sign of an
additional signal around the signature frequency.

Point 4) is about comparing the parameter set of Table 2
with the results of Archibald et al. (2018). A direct compari-
son is not straightforward because of i) slightly different defi-
nition of the parameters (see section 3.1) and ii) the fact that
most of the parameters are not constants of motion but are
defined either at the reference time Tref or Tpos. To minimise
the span of numerical computations we do not use the same
reference time as Archibald et al. (2018). However, one can
compare masses which are constants of motion (and, in the
same way, ∆). The values reported in Archibald et al. (2018),
mp = 1.4359(3)M�,mi = 0.19730(4)M�,mo = 0.40962(9)M�11,
whose statistical 68% confidence intervals are about 5 times bet-
ter than ours - similar to the ratio between the uncertainties on
∆ - are in tension with the values we report in Table 2, with
∆mp ' 2.9σ,∆mi ' 2.6σ,∆mo ' 2.4σ where σ is half of the
68% confidence interval reported in this paper, these differences
are much more significant than for ∆. Due to the very large corre-
lation between ∆ and the orbital parameters on which depend the
masses (period and semi-major axis), the systematic uncertainty
estimated in Archibald et al. (2018) for ∆ should be similar for
the masses (but not reported) and partly release the tension.

In addition, we report the first measurement of the outer lon-
gitude of ascending node, ΩO, which was deemed unconstrained
in Archibald et al. (2018) although the dispersion of the fit resid-
uals in Archibald et al. (2018) is smaller than ours. We speculate
that the absence of Kopeikin delay in their analysis prevented
that measurement. However, this parameter is uncorrelated with
∆ and should therefore not affect the SEP test, but its absence
should bias astrometric parameters.

Point 5) is related to our implementation of the first
post-Newtonian equations of motion, derived from the mod-
ified Einstein-Infeld-Hoffmann Lagrangian for strongly self-
gravitating masses (Appendix A). In this we use two different
approaches, a (mostly) generic one where three of the 12 1PN
strong-field parameters are unconstrained by Solar System ex-
periments, and a second approach where, under additional as-
sumptions, all the strong-field 1PN parameters are tightly con-
strained by adopting binary pulsar constraints for the neutron star
sensitivity and its derivative. A detailed motivation for the two

11 The number between brackets gives the uncertainty on the last
digit(s).
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different approaches is given in Section 5. In the first approach
we find generic limits for the remaining three 1PN strong-field
parameters, which however are not very tight, and therefore gen-
erally not of particular interest. Archibald et al. (2018) do not
provide an equally generic analysis as done in our first approach.

Point 6) refers to the constraints of quadratic mono-scalar-
tensor gravity, where Archibald et al. (2018) have used a single
(outdated) EOS. In our combined tests we have fully accounted
for our imperfect knowledge of the EOS of neutron-star matter,
and used a set of modern EOSs that covers the range from soft
to stiff EOSs. A reason for that is the fact that the most conser-
vative pulsar limits do not always come from the stiffest EOS.
Our set of EOSs is in agreement with the latest constraints from
LIGO/Virgo and NICER, and can account for the largest neutron
star masses measured to date (Antoniadis et al. 2013; Cromartie
et al. 2019). We would like to point out, that the recent limits of
Capano et al. (2019) exclude some of the stiffer EOSs used in our
analysis, which consequently leads to even more stringent con-
straints than the ones shown in Fig. 12, in particular for β0 & −1.
In view of this, our limits can be considered as conservative.

6.2. Comparison with radiative tests

In GR, the lowest source multipole moment that generates grav-
itational waves is the quadrupole moment (Thorne 1980). In al-
ternatives to GR, however, one finds lower multipoles, where
for the dynamics of a binary system, the dipole moment is the
most important one. The occurrence of these lower multipoles is
closely related to a violation of the SEP (see e.g. Will 2018b, for
a discussion). In scalar-tensor theories, for instance, an asymme-
try in the sensitivities sa in a binary system gives rise to scalar
dipolar radiation (see equation (35)). While a difference in sen-
sitivity is also the reason for a violation of GWEP, where masses
with different compactness are falling differently in an external
gravitational field (see equation (21)). In a sense, the UFF exper-
iment with PSR J0337+1715 and constraints on dipolar radiation
damping with binary pulsars are exploring two different sides of
the same coin. The limits in Fig. 12 show that currently for a
large part of the parameter space, the test with PSR J0337+1715
is more constraining than dipolar radiation tests from binary pul-
sars. For sufficiently, negative β0, however, gravitational wave
tests with binary pulsars become more constraining, in partic-
ular for small α0. We have a more detailed discussion on this
further below.

Gravitational wave observation of a double neutron-star
merger can also be used to constrain the emission of dipolar
gravitational waves, as has been done for the first LIGO/Virgo
binary neutron-star merger GW170817 (Abbott et al. 2019).
Limits on scalar-tensor theories as discussed here, from
LIGO/Virgo observations, however, are not expected to be com-
petitive with Solar System and pulsar experiments for most of
the parameter space (see Shao et al. 2017). Future ground based
gravitational wave detectors have the potential to improve on
limits presented here, in particular in a β0 range which is dif-
ficult to constrain with pulsar experiments (see Fig. 13). Future
gravitational wave observations of mixed (black hole + neutron
star) mergers, in particular the combination of multiple events or
the combination of ground and space based gravitational-wave
observatories promise significant improvements (see e.g. Carson
et al. 2019).

As a final comment, there is an important difference between
the UFF test conducted with PSR J0337+1715 and dipolar ra-
diation tests. As discussed in the previous subsection, in the
regime of spontaneous scalarisation, the neutron star charge can

Fig. 13. Comparison of the PSR J0337+1715 constraints of this paper
with expected constraints from future gravitational wave observatories
of a single binary neutron-star merger: Cosmic Explorer (CE; blue dot-
ted curve) and Einstein Telescope (ET; blue dashed curve). CE and ET
curves are taken from Fig. 9 in Shao et al. (2017). Like for the CE and
ET curves, the PSR J0337+1715 curve is also based on EOS AP4. Solar
System constraints (grey) are as in Fig. 11. JFBD gravity corresponds
to β0 = 0 (thin vertical line).

become (almost) independent of the parameter ζ in the sense
that ζs2

p ∼ 1 remains practically fixed for ζ → 0. In such a sit-
uation, the effective gravitational constant in the interaction be-
tween a neutron star and a white dwarf becomes indistinguish-
able from GN and the test with J0337+1715 becomes practically
insensitive to such deviations from GR. Dipolar radiation test
with pulsar-white dwarf systems, in contrast, are extremely con-
straining with respect to such scalarisation phenomena, as can
be seen from equation (35). More generally, in situations where
only the strong field of a neutron star can source additional (long-
range) gravitational fields that lead to deviations from GR, the
UFF test with PSR J0337+1715 cannot place any constraints, in
contrast to radiative tests. Hence, both types of tests are comple-
mentary and valuable. Binary pulsar tests have already tightly
constrained the occurrence of spontaneous scalarisation in neu-
tron stars. However, depending on the EOS and mass of the neu-
tron star, spontaneous scalarisation is not yet fully ruled out by
such experiments (Shao et al. 2017).
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Appendix A: Strong-field equations of motion

In our timing model, the motion of the three bodies follows
the equations of motion derived from the post-Galiean-invariant
n-body Lagrangian of the modified Einstein-Infeld-Hoffmann
(mEIH) formalism (Will 1993; Damour & Taylor 1992). The
mEIH equations of motion describe the first post-Newtonian dy-
namics of a n-body system which also contains strongly self-
gravitating masses, under the assumption that the gravitational
interaction is Poincaré invariant. Furthermore, it assumes that
there are no ‘asymmetric’ terms in the Lagrangian, which are
anyway absent in many well motivated theories of gravity (see
the discussion in Nordtvedt 1985; Damour & Taylor 1992). The
mEIH formalsim is a generalisation of the parametrised post-
Newtonian (PPN) equations of motion for fully conservative the-
ories with ξ = 0, in order to include effects related to the strong
internal fields of strongly self-gravitating objects, like neutron
stars. The mEIH Lagrangian can be written as (cf. Damour &
Esposito-Farèse 1992)

L =

n∑
a=1

(
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2
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+
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2
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[
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 , (A.1)

where ma are the inertial masses with coordinate positions xa
and coordinate velocities va, rab = ‖xa − xb‖, va = ‖va‖, and
nab = (xb − xa)/rab. The quantities γ̄ab = γab − 1, β̄a

bc = βa
bc − 1

and Gab are the effective strong-field interaction constants. The
unbarred quantities are the strong-field generalisation of the PPN
parameters γPPN and βPPN (Eddington parameters). The strong-
field parameters satisfy the symmetries Gab = Gba (a , b),
γ̄ab = γ̄ba (a , b), and β̄a

bc = β̄a
cb (a , b, a , c). The body-

dependent effective strong-field interaction constants depend on
the details of the underlying gravity theory as well as the struc-
ture of the individual bodies. Hence, in the most general case of a
three-body system one has three different effective gravitational
constants Gab, three different γ̄ab, and nine different β̄a

cb. In GR,
due to the fulfilment of SEP and the corresponding effacement of
the internal structure (see e.g. Damour 1987), one has Gab = GN
and γ̄ab = β̄a

bc = 0.

One can then use the Euler-Lagrange equations (Will 1993)
to derive the equations of motion for each body:
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In the weak-field limit one can check that this equation does give
the PPN equation of motion (e.g. Soffel 1989; Will 1993).

Conserved quantities are key elements to check the numer-
ical implementation and accuracy of the equations of motion.
We have used the Hamiltonian (conservation of energy), and the
momentum and position of the centre of mass of the system. The
last two are also necessary to derive the initial conditions of the
system.

The Hamiltonian corresponding to equation (A.1) is derived
using the Legendre transform H =

∑
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The momentum of the centre of mass is given by the same
expression as in GR only with the replacement G → Gab, P =∑

a
∂L
∂va

and
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The centre-of-mass position X satisfies (H /c2) dX
dt = P (see

e.g. Will 2014b),

H
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