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Early formation of planetary building blocks inferred
from Pb isotopic ages of chondrules
Jean Bollard,1 James N. Connelly,1 Martin J. Whitehouse,2 Emily A. Pringle,3 Lydie Bonal,4

Jes K. Jørgensen,1 Åke Nordlund,1 Frédéric Moynier,3 Martin Bizzarro1,3*

Themost abundant components of primitivemeteorites (chondrites) aremillimeter-sized glassy spherical chondrules
formed by transient melting events in the solar protoplanetary disk. Using Pb-Pb dates of 22 individual chondrules,
we show that primary production of chondrules in the early solar system was restricted to the first million years
after the formation of the Sun and that these existing chondrules were recycled for the remaining lifetime of the
protoplanetary disk. This finding is consistent with a primary chondrule formation episode during the early high-
mass accretion phase of the protoplanetary disk that transitions into a longer period of chondrule reworking. An
abundance of chondrules at early times provides the precursor material required to drive the efficient and rapid
formation of planetary objects via chondrule accretion.
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INTRODUCTION
The discovery of thousands of exoplanets orbiting Sun-like stars (1)
establishes that planet formation is a ubiquitous process in the galaxy.
In the standard model (2), the formation of planets occurs in stages
where small dust particles coalesce into 10- to 100-km-diameter plan-
etesimals, which collide to form planetary embryos and planets over
time scales of 50 to 100million years (My). However, recent astronom-
ical observations of young protoplanetary disks suggest much more
rapid time scales for the growth of planetary cores. Detailed imag-
ing of the <1-MyHL Tauri protoplanetary disk in the submillimeter/
millimeter domain has revealed the presence of ring structures that are
interpreted to reflect the early stages of planet formation (3). These rapid
time scales are in keeping with newer models of planet formation where
planetary growth is fueled by pebble accretion, that is, the accretion
of centimeter- to meter-sized particles loosely bound to the gas onto
planetesimal seeds (4).

In the solar system, a record of the earliest stages of planet forma-
tion may be preserved in the most primitive meteorites (chondrites),
which are fragments of asteroids that avoided melting and differenti-
ation. The most abundant constituents of chondrites are chondrules,
millimeter-sized glassy spherules formed as free-floating objects by
transient heating events in the solar protoplanetary disk. Recent simu-
lations indicate that themain growth of asteroids can result from the gas
drag–assisted accretion of chondrules (5), a process analogous to pebble
accretion. In these models, the largest planetesimals of a population
with a characteristic radius of ~100 km undergo runaway accretion
of chondrules forming Mars-sized planetary embryos within a time
scale of ~3 My. If chondrules represent the building blocks of plane-
tary embryos and, by extension, terrestrial planets, understanding
their chronology and formation mechanism(s) is critical to determine
at which point during the early evolution of the solar system were
conditions favorable to form planetary bodies.

Of the various radiometric clocks, U-corrected Pb-Pb dating is the
only method that provides a high-resolution assumption-free chro-
nology of the first 10My of the solar system. It is based on two isotopes
of U that decay in a chain to stable Pb isotopes, namely, 235U to 207Pb
with a half-life (T1/2) of ~0.7 billion years (Gy) and

238U to 206Pbwith a
T1/2 of ~4 Gy. Using this approach, it has been recently demonstrated
that chondrule formation started contemporaneously with the con-
densation of the solar system’s first solids—calcium-aluminum–rich
inclusions (CAIs)—at 4567.3 ± 0.16 My and lasted for ~3 My (6).
However, this chronological framework is based ononly five individual
objects such that it is not possible to provide a statistically significant
analysis of the tempo and full duration of chondrule production. To
provide an accurate chronology of chondrule formation based on a sig-
nificant number of objects, we have determined the Pb isotope composi-
tions by thermal ionization mass spectrometry (TIMS) of 17 individual
chondrules from primitive chondrite meteorites (Table 1), including
the NWA 5697 ordinary chondrite and the NWA 6043 and NWA
7655 (CR2) carbonaceous chondrites. CR chondrites are considered
to be one of themost primitive classes ofmeteorites, having experienced
only mild aqueous alteration and showing no evidence for significant
effects of thermalmetamorphism (7).Moreover, analysis of the organic
matter by Raman spectroscopy indicates that NWA 5697 is of petro-
logic type 3.10, that is, among the most pristine ordinary chondrites
(see the Supplementary Materials). The Pb isotope analyses enable
us to derive Pb-Pb dates through the internal isochron approach by
combining multiple fractions obtained by sequential acid dissolution
of individual chondrules. These data are complemented by in situ
analyses of the Pb isotope composition of the various mineral phases
acquired by secondary ionization mass spectrometry for a subset of
these chondrules, which allows us to determine the nature of the carrier
phase of uranium and, hence, radiogenic Pb in these objects. Finally,
usingmultiple-collector plasma sourcemass spectrometry (MC-ICPMS),
we have measured the 238U/235U ratio of seven individual chondrules
(six of which have been Pb-Pb–dated) to test for potential U isotope
heterogeneity, as well as the Zn stable isotope composition of seven
chondrules to assess the thermal history of their precursors.
RESULTS
Pb-Pb isotopic ages of chondrules
The subset of chondrules we investigated comprises all major petro-
graphic classes, including both porphyritic and nonporphyritic tex-
ture types, as well as FeO-rich and FeO-poor varieties (Table 1).
The 238U/235U ratio measured for seven individual chondrules from
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NWA 5697 returns values identical within analytical uncertainty to
the solar 238U/235U value of 137.786 ± 0.013 (Table 1 and fig. S24),
confirming the lack of U isotope variability among individual chon-
drules (6, 8, 9) at the resolution of our analyses. This observation
validates the approach of using the solar 238U/235U value to calculate
Pb-Pb dates of individual chondrules, although for completeness, we
used the measured 238U/235U values to calculate chondrule ages for
which both U and Pb isotope compositions were determined. The
six chondrules with measured 238U/235U ratios define ages that span
from 4567.61 ± 0.54 million years ago (Ma) to 4564.65 ± 0.46 Ma.
This age range is comparable to that of 4567.57 ± 0.56 Ma to
Bollard et al., Sci. Adv. 2017;3 : e1700407 9 August 2017
4563.24 ± 0.62 Ma defined by the remaining 11 objects for which
the solar 238U/235U value is used to calculate the Pb-Pb ages. Using
the bulk 238U/235U of the host chondrites or, alternatively, bulk chon-
drule estimates of the same meteorites returns ages that are within
100,000 years of that obtained using the solar 238U/235U value of
137.786 ± 0.013 (table S7) and, hence, well within the uncertainties
of the final ages we report. To better understand the significance of
our Pb-Pb dates, we have measured the Pb isotopic compositions of
the individual mineral phases for chondrules 1-C2 (NWA 7655) and
3-C1 (NWA 5697) using in situ methods (see the Supplementary
Materials). Our analysis establishes that the radiogenically produced
Table 1. Summary of Pb-Pb dates, petrology, m values, and 238U/235U and Zn isotope compositions of individual chondrules. Pb isotope data for
the Allende and three chondrules from NWA 5697 (C1, C2, and C3) were previously reported by Connelly et al. (6) and are included here for completeness.
P, porphyritic; NP, nonporphyritic; I, type I; II, type II. The 238U/235U uncertainties are propagated in the final age uncertainties. The Pb-Pb isochrons for three
chondrules (5-C1, 5-C4, and 1-C2) project back to a modern terrestrial composition, and thus, accurate m values cannot be calculated for these objects. The
zinc isotope compositions are reported in d notation, which reflects the per thousand (‰) deviations of the 66Zn/64Zn of the sample from the JMC Lyon standard.
Chondrule
 Texture and type
 Pb-Pb age (Ma)
 m
 238U/235U
 d66Zn (‰)
NWA 5697
5-C1
 NP, II
 4567.61 ± 0.54
 137.807 ± 0.033
2-C1
 NP, I
 4567.57 ± 0.56
 33
 137.779 ± 0.022
 −0.38 ± 0.05
5-C2
 NP, II
 4567.54 ± 0.52
 21
 137.756 ± 0.029
 −1.07 ± 0.05
5-C10
 NP, II
 4567.41 ± 0.57
 38
 137.786 ± 0.013
 −1.41 ± 0.05
C1
 NP, I
 4566.67 ± 0.43
 23
 137.786 ± 0.013
D-C3
 P, II
 4566.58 ± 0.57
 51
 137.786 ± 0.013
 −1.12 ± 0.05
5-C4
 P, II
 4566.56 ± 0.53
 137.786 ± 0.013
 −1.15 ± 0.05
3-C5
 P, II
 4566.20 ± 0.63
 28
 137.807 ± 0.026
C3
 NP, II
 4566.02 ± 0.26
 183
 137.786 ± 0.013
11-C1
 NP, II
 4565.84 ± 0.72
 32
 137.779 ± 0.030
C2
 P, I
 4564.71 ± 0.30
 63
 137.786 ± 0.013
11-C2
 NP, II
 4564.65 ± 0.46
 108
 137.755 ± 0.025
 −2.20 ± 0.05
3-C2
 P, II
 4563.64 ± 0.51
 94
 137.786 ± 0.013
 −1.13 ± 0.05
NWA 6043
1-C2
 P, I
 4567.26 ± 0.37
 137.786 ± 0.013
2-C2
 P, II
 4565.06 ± 0.40
 104
 137.786 ± 0.013
2-C4
 P, II
 4564.50 ± 0.70
 93
 137.786 ± 0.013
0-C1
 P, II
 4563.24 ± 0.62
 58
 137.786 ± 0.013
NWA 7655
1-C7
 P, II
 4566.51 ± 0.37
 2
 137.786 ± 0.013
1-C2
 P, I
 4564.54 ± 0.34
 51
 137.786 ± 0.013
1-C6
 P, II
 4564.27 ± 0.49
 9
 137.786 ± 0.013
Allende
C30
 P, II
 4567.32 ± 0.42
 29
 137.786 ± 0.013
C20
 P, II
 4566.24 ± 0.63
 26
 137.786 ± 0.013
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Pb and, hence, U are mainly present in the fine-grained chondrule
mesostasis, whereas the initial nonradiogenic Pb is predominantly
hosted by sulfides enclosed in the mesostasis (fig. S25). The finding
that the radiogenic Pb is present in the mesostasis is in keeping with
partition coefficient data as U typically behaves as an incompatible
element inmost silicates (10). These results also agree with the system-
atics of the sequential acid dissolution approach used to define the Pb-Pb
isochron ages, which reveals that the fractions with the most radiogenic
Pb isotope compositions are released with the use of an acid mixture
that preferentially dissolves nonrefractory silicate phases (see the Sup-
plementary Materials). Thus, we infer that the Pb-Pb isochron ages of
individual chondrules reflect the timing of crystallization associated
with the last chondrule-melting event.

Our chondrule age data set based on the analysis of 22 individual
objects demonstrates that the production and melting of chondrules
began contemporaneously with CAI condensation and melting and
continued for ~4 My (Fig. 1A). In Fig. 1B, we show the Pb-Pb age
distribution of chondrules, which, at face value, indicates a progressive
reduction in chondrule production rate through time. Approximately
50% of the chondrules investigated here formed within the first mil-
lion years of the protoplanetary disk, suggesting that chondrule for-
mation was more efficient in early times. The residence time of
millimeter-sized solids in evolving disks is predicted to be extremely
short relative to the typical lifetimes of protoplanetary disks as a result
of aerodynamic drag (11). Although some mechanisms exist to limit the
inward drift of millimeter-sized solids such as, for example, dust trapping,
these operate on time scales typically shorter than the age variability
reported here for chondrules (12). Thus, the presence of an ancient com-
ponent and significant age variability among chondrules from indi-
vidual chondrites (Fig. 1) require effective outward mass transport
and/or storage of chondrules during the lifetime of the protoplanetary
disk. Recycling of early-formed refractory solids such as CAIs dur-
ing chondrule-forming events has been observed in a number of prim-
itive chondrites (13–15). Together with petrological evidence suggesting
that many chondrules experienced multiple melting events (16, 17), these
observations raise the possibility that younger chondrule populations
predominantly reflect the remelting and, hence, recycling of chon-
drules formed at earlier times.

Early chondrule formation and protracted recycling
It is well established that the flash heating events resulting in the
melting of chondrules result in significant evaporative Pb loss and,
hence, enhancement of the 238U/204Pb ratio (m) relative to the solar
value of ~0.19 given the refractory nature of U (6). This is consistent
with the m values for individual chondrules analyzed here that range
from~2 to~183 (seeTable 1 and the SupplementaryMaterials), which
corresponds to up to ~99.94% of Pb loss relative to the solar com-
position. If the relatively high bulk m values recorded by most of the
chondrules were acquired early, it would lead to the accumulation of
substantial amounts of radiogenic Pb during the lifetime of the
protoplanetary disk. Thus, chondrules with protracted complex thermal
histories involving more than one melting episode are expected to
record evolved initial Pb isotopic compositions relative to objects
formed from precursors with near-solar m values. Figure 2A shows
the back projection of the regressions for each of the individual chon-
drules dated in this study, which allows us to assess the initial Pb isotope
compositions of these objects. The chondrule data set shows variable
initial Pb isotope compositions corresponding to a range of ~120 e units
in the 207Pb/206Pb ratio, with most of the chondrules recording evolved
Bollard et al., Sci. Adv. 2017;3 : e1700407 9 August 2017
compositions relative to the most primitive composition defined by
chondrules 2-C1 and C1. Incorporation of U-rich, refractory material
such as CAIs in chondrule precursor could, in principle, produce
apparently evolved initial Pb isotope compositions. However, this pro-
cesswould result in correlated variability between the initial Pb isotope
compositions and the Al/Mg ratios of the bulk chondrules, which is
not observed in our data set (fig. S26). A component of the elevated
207Pb/206Pb ratio could also reflect mass-dependent heavy isotope en-
richment associated with evaporative loss of Pb. To assess this possi-
bility, we have measured the isotope composition of Zn, an element
4568 4567 4566 4565 4564 4563 4562
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Fig. 1. Absolute chronology of chondrule formation. (A) Pb-Pb dates for individ-
ual chondrules from NWA 5697 (L3.10), NWA 6043 (CR2), NWA 7655 (CR2), and
Allende (CV3). The Allende chondrules and three chondrules from NWA 5697 were
previously reported (6). The timing of CAI formation is accepted to be 4567.30 ±
0.16 Ma (6). The CB chondrules are interpreted as having formed from colliding
planetesimals at 4562.49 ± 0.21 Ma (31). (B) Histogram depicting the Pb-Pb age
distribution of individual chondrules (n = 22) relative to CAI formation. A full descrip-
tion of the methods used to collect the data reported in the paper is available in the
Supplementary Materials.
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with comparable volatility as Pb (18), for seven chondrules. Assuming
that the relative difference in the magnitude of the mass-dependent
isotope fractionation between Zn and Pb is proportional to 1/m2

(19), Zn is predicted to record a level of isotopic fractionation that
is ~10 times greater than Pb. The d66Zn values for the subset of chon-
Bollard et al., Sci. Adv. 2017;3 : e1700407 9 August 2017
drules range from−0.26 ± 0.05‰ to−2.20 ± 0.05‰, representing light
isotope enrichment that is not expected during simple evaporative
loss, which typically results in heavy Zn isotope composition (20).
The enrichment of light Zn isotopes in chondrules has been interpreted
as reflecting removal of an isotopically heavy phase such as sulfide (21).
This process is predicted to occur during remelting events (22), in
keeping with the complex thermal reprocessing history inferred here.
Regardless of the mechanism governing Zn isotope fractionation, the
light and limited variability of Zn isotope fractionation in these chon-
drules (~2‰) confirms that the range of the 207Pb/206Pb (~12‰) ratios
is not a product of mass-dependent fractionation.

The initial Pb isotope composition of chondrules is positively
correlated with their crystallization ages (Fig. 2B). Only chondrules
formed in the first million years of the protoplanetary disk record
primitive compositions, whereas younger chondrules show progres-
sively more evolved initial Pb isotope compositions. The <1-My
chondrule population records variability in the initial Pb isotope
compositions, which corresponds to ~50 e units in the 207Pb/206Pb
ratio. This range of initial Pb isotope compositions in the old chon-
drules could reflect the incorporation of radiogenic Pb possibly related
to dust condensation following the evaporativemelting ofCAIs, which
can only occur at early times. The progressively more evolved initial
Pb isotope compositions and the lack of primitive initial Pb recorded by
younger chondrules suggest that these formed from precursors having
already accumulated radiogenic Pb,which is indicative ofmaterial char-
acterized by an elevated m value. Apart from the chondrule-forming
process, wide-scale planetesimal melting and the production of magma
oceans are efficient mechanisms for Pb devolatilization during the
lifetime of the protoplanetary disk (23). Thus, it is conceivable that
the evolved initial Pb isotope signatures observed in young chon-
drules reflect the recycling of disrupted planetesimal fragments during
chondrule-forming episodes. However, the inferred m values of differ-
entiated planetesimals, such as the angrite parent body, are, at least,
one order of magnitude more extreme than those observed in chon-
drules, inconsistent with the bulk of the precursor material of young
chondrules reflecting disrupted planetesimal fragments. Moreover,
the accretion, differentiation, and establishment of long-lived magma
oceans leading to planetesimal-scale Pb devolatilization are thought to
occur over time scales of ~3 to 4 My (24, 25). Given that most of the
chondrules reported here have ages within ~3My of solar system for-
mation within analytical uncertainty, this process cannot easily
account for the elevated m values recorded by most chondrules. Thus,
we infer that the evolving initial Pb isotope compositions of chon-
drules during the lifetime of the disk reflect the recycling and, hence,
remelting of their precursors during earlier chondrule-forming events.
Thermally processed precursors may represent chondrule fragments
or, alternatively, entire chondrules having experienced more than one
chondrule-forming event.

A prediction of chondrule reworking in a closed system is a progres-
sive increase in the inferred m values of individual chondrules through
time. Although this correlation appears to be present in our data set
(fig. S27), a number of different disk processes may perturb this rela-
tionship. For example, the chondrule-forming process may have been
more efficient (with higher temperatures) at early times such that a
progressive decrease in m values with time would be expected for chon-
drules formed during the epoch of primary chondrule production,
namely, in the first million years. Moreover, the accumulation of small
amounts of Pb-rich dust onto the rims of chondrules that may be
incorporated into the chondrule interior during flash melting will have
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Fig. 2. Lead isotope evolution diagrams. (A) Initial Pb isotopic compositions of
individual chondrules. The initial Pb isotope compositions are defined by the inter-
section of the individual isochrons and a Pb evolution array anchored on the solar
system initial Pb isotope composition defined by chondrules 2-C1 and C1, which
record the most primitive initial Pb isotope compositions (see the Supplementary
Materials for the calculation of uncertainties on initial Pb isotope compositions).
Individual chondrule data points have been displaced to the left- and right-hand side
of the solar system initial Pb array for clarity. (B) Initial 207Pb/206Pb compositions and
age variation diagram. The (207Pb/206Pb)initial values are reported in per 10,000 devia-
tions (e unit) from the composition defined by chondrules 2-C1 and C1. The blue box
reflects the range of e(207Pb/206Pb)initial compositions of the >1-My chondrules back-
calculated at 4566.8 Ma. The robustness of the e(207Pb/206Pb)initial and age correlation,
including the effect of point selection of the individual regressions, has been statis-
tically evaluated using a Monte Carlo approach (see the Supplementary Materials).
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the effect of lowering the m value,whichwould prevent the m value from
reaching extreme values in these cases. Hence, itmay be significant that
the three chondrules projecting to modern terrestrial Pb isotopic
compositions (and therefore having an effectively infinite m value) cor-
respond to older chondrules that may have avoided the reworking and
incorporation of Pb-rich dust.

To assess the validity of the proposal that the young, >1-My chon-
drules with evolved initial Pb isotope compositions reflect the recycling
of chondrules formed at early times, we back-calculate the range of
initial Pb isotope compositions that correspond to a U/Pb fractiona-
tion age of ~500,000 years after CAIs. This age is supported by the age
distribution, indicating that the bulk of the chondrules records crys-
tallization ages within the first million years of protoplanetary disk
evolution (Fig. 1B). In Fig. 2B, we show the range of initial Pb isotope
compositions of the >1-My chondrules back-calculated for a primary
U/Pb fractionation age of 4566.8My, which corresponds to ~50 e units
in the 207Pb/206Pb ratio. This range of initial Pb isotope compositions is
comparable to that of chondrules that record crystallization ages <1My
after the solar system formation, consistent with the proposal that the
bulk of the young chondrules reflect the recycling of chondrules
formed at early times.
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DISCUSSION

Absolute and relative chronology of chondrule formation
The absolute ages we report demonstrate that the production and
melting of chondrules began contemporaneously with CAI condensa-
tion and melting and continued for ~4 My. Apart from Pb-Pb dating,
the only other method that has been used to provide insights into the
timing of crystallization of individual chondrules via the internal
isochron approach is the short-lived (T1/2 ≈ 0.7 My) 26Al-26Mg decay
system. Unlike the assumption-free U-corrected Pb-Pb dating method,
the validity of 26Al-26Mg relative ages is based on the hypothesis that the
26Al/27Al ratio was homogeneous in the solar protoplanetary disk with
an initial value of ~5 × 10−5 at the time of CAI formation. Attempts to
provide a chronology of chondrule formation based on the short-lived
26Al-26Mg system infer that chondrule formation began ~2 to 3 My
after CAI condensation and melting (26). This apparent age difference,
dubbed the CAI-chondrule age gap, has been used to constrain mech-
anisms of chondrule formation (27). We discuss below the possible
explanations for the inconsistency between ages of individual chon-
drules derived by the Al-Mg and U-Pb systems.

One possible explanation for the age discordance is that the age
variability or, alternatively, the preponderance of old ages inferred
from Pb-Pb dating is an artifact of the progressive step-leaching dis-
solution technique used here, relative to more traditional approaches
based on the analyses of separated mineral phases. However, three
lines of evidence suggest that this is not the case. First, two inde-
pendent estimates of the Pb-Pb age for the SAH99555 angrite using
the step-leaching dissolution technique (28) and a more traditional
mineral separation approach (29) yield ages that are concordant with-
in 280,000 ± 405,000 years. Similarly, independent estimates for the
timing of condensation of CAIs using different techniques (6, 30)
define ages that are within 140,000 ± 505,000 years. In both cases, the
potential offset between the two techniques is well within the typical
uncertainties of the chondrule ages reported here. Finally, using the
step-leaching dissolution technique, Bollard et al. (31) report Pb-Pb
ages for four individual chondrules from the Gujba metal-rich chon-
drite that are identical within 340,000 years. This chondrite is thought
Bollard et al., Sci. Adv. 2017;3 : e1700407 9 August 2017
to have formed from a vapor-melt plume produced by a giant impact
between planetary embryos, resulting in coeval ages of its various
components (32). Collectively, these observations suggest that the
Pb-Pb dates reported here for chondrules are accurate to within their
stated uncertainties.

If the Pb-Pb dates are accurate, a likely explanation for the age
mismatch between the absolute and relative ages is that the assump-
tion of homogeneous initial disk 26Al/27Al composition that underpins
the validity of 26Al-26Mg ages is incorrect. A number of recent studies
have suggested a reduced initial 26Al/27Al value in solids that accreted
to form protoplanets (33, 34), which would translate into younger
26Al-26Mg ages relatively to the Pb-Pb dates. The bulk of the Pb-Pb
ages reported here are from theNWA5697 ordinary chondrite, as well
as various CR chondrites. In Fig. 3, we show the age distribution of
NWA 5697 chondrules inferred from Pb-Pb dating relative to the
26Al-26Mg ages of chondrules from the most primitive ordinary chon-
drites, assuming that the initial inner disk 26Al/27Al inventory was
~1.5 × 10−5 (33). Under this assumption, the two datingmethods return
comparable age distributions, consistent with the hypothesis of a
reduced inner disk 26Al inventory relative to the canonical abundance.
However, the post–2-My age distribution inferred from the 26Al-26Mg
system is difficult to characterize using existing data, given the low
26Al/27Al abundance of <2 × 10−6 at that time. We note that prelim-
inary results reporting the 26Al-26Mg and Pb-Pb ages of the same indi-
vidual chondrules are consistent with the proposal of a reduced inner
disk 26Al inventory (35, 36).

Finally, it has been recently suggested that metal-rich chondrites,
including CR chondrules, formed from an 26Al-poor reservoir possi-
bly located beyond the orbits of the gas giant planets (37, 38). In detail,
it is proposed that the 26Mg* and 54Cr compositions of CR chondrules
require significant amounts (25 to 50%) of primordial 26Al-free mo-
lecular cloud matter in their precursor material. Accepting that the
true age distribution of CR chondrules is reflected by their Pb-Pb sys-
tematics, a prediction of this model is that individual CR chondrules
will record the lowest initial 26Al/27Al values relative to other chondrite
groups and that a significant number of objectwill lack evidence for live
26Al if these formed >1 My after CAI condensation. These predictions
are in line with the recent 26Al-26Mg systematics of CR chondrules,
which record initial 26Al/27Al values of typically less than 3 × 10−6

and more than 50% of the objects investigated having no sign for live
26Al at the time of their crystallization (39, 40). These observations,
together with the clear evidence for 26Al heterogeneity at the time of
CAI formation (41), emphasize that the 26Al-26Mg system may not
provide an accurate chronology of chondrule formation and, hence,
disk processes.

Dynamical evolution of the solar protoplanetary disk
In contrast to the nonigneous CAIs that formed as fine-grained con-
densates near the protosun in a brief time interval associated with col-
lapse of the presolar molecular cloud core, most of the chondrules are
thought to be products of flash heating of dust aggregates in different
disk regions, possibly by shock wave heating (42). Because shocks
require the existence of a gaseous disk, our chondrule Pb-Pb dates allow
us to provide constraints on the lifetime of the solar protoplanetary disk,
including the timing of its establishment relative to the protosun,
if these objects are formed by shock wave heating. Six chondrules
(5-C1, 2-C1, 5-C2, 5-C10, 1-C1, and C30) have ages identical to
those of CAIs within analytical uncertainty, defining a population
with a weighted mean age of 4567.41 ± 0.19 Ma. Both astronomical
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observations and numerical simulations suggest that protoplanetary
disks formed shortly after star formation, namely, during the deeply
embedded stage (43, 44). The age uncertainty associated with the an-
cient chondrule population indicates that these objects formed atmost
~138,000 years after CAIs. Thus, this time scale defines an upper limit
for the establishment of the protoplanetary disk formation after CAI
formation and, by extension, the collapse of the protosun. From an
astronomical perspective, this time corresponds to the earliest deeply
embedded stage (class 0) of protostar evolution. It is well established
that the disk was largely dissipated (45) at the time of formation of the
impact-generated chondrules from the Gujba metal-rich chondrite at
Bollard et al., Sci. Adv. 2017;3 : e1700407 9 August 2017
4562.49 ± 0.21Ma (31). Using the age of the youngest chondrule iden-
tified here, we define minimum and maximum lifetimes of ~3.3 and
~4.5 My, respectively, for the active phase of the solar protoplanetary
disk. These new time scales for the establishment and lifetime of the
solar protoplanetary disk are in keeping with astronomical observa-
tions of young stars and their disks (46) and indicate that the formation
of a disk amiable to the production of asteroidal bodies and planetary
embryos occurred shortly after the collapse of the protosun.

Our data and interpretation provide insights into the accretion
history and thermal processing of dust in the protoplanetary disk.
In the early stages of low-mass star formation, mass accretion to the
protostar occurs from the surrounding envelope via a circumstellar
disk structure (47). This represents the deeply embedded phase of star
formation that only lasts for a small fraction of a disk lifetime, typically
~0.5 My compared to several million years. During this epoch, fresh,
volatile-rich envelope material is processed through the disk and thus
available to participate in the formation of early solar system solids.
Chondrules formed within the first ~1 My of the disk lifetime have
primitive initial Pb isotope compositions that are consistent with in-
corporation of thermally unprocessed material characterized by a
solar m value. In contrast, chondrules formed at later times record
evolved compositions, which require limited or no admixing of pri-
mordial dust with a solar m value to their precursors.We infer that this
reflects the transition between two distinct accretionary regimes dur-
ing the early evolution of the solar protoplanetary disk. The first ~1
My reflects the main epoch of accretion and thermal processing of en-
velope material to the disk, which represents the regime of primary
production of chondrules. Hence, we suggest that the bulk of the
chondrules preserved in chondrite meteorites were originally pro-
duced during this period. In contrast, the >1-My regime represents an
epoch dominated by the transport and recycling of chondrules, includ-
ing the remelting of the first-generation chondrules. The limited evi-
dence for the admixing of primordial dust with a solar m value in
>1-My chondrules indicates that the envelope of accreting material
surrounding the protosun had largely dissipated by that time.

Chondrule formation and recycling mechanisms
On the basis of petrographic,mineralogical, and chemical observations,
it is thought that chondrules formed by the melting of isotopically di-
verse solid precursors in the dust-rich regions of the protoplanetary
disk during repeatable and localized transient heating events (27).
The inferred thermal histories of chondrules, as well as the high solid
densities (48) required for their formation, are consistent with shock
wave heating as the primary source of energy for the thermal pro-
cessing and melting of chondrule precursors. Recent magnesium
and chromium isotope systematics of CR chondrules suggest that
these objects formed in a reservoir distinct from other chondrite
groups possibly located beyond the orbits of the gas giant planets
(37, 38). These data require a heat source that enables the production
of chondrules at a wide range of orbital distances. A number of
mechanisms have been proposed for producing chondrule-like objects
in gaseous disks, including shocks produced by disk gravitational in-
stability (49, 50) as well as eccentrically orbiting planetesimals and
planetary embryos (51–53). The Pb isotope systematics of individual
chondrules reported here suggest that the primary chondrule produc-
tion was limited to <1 My of the protoplanetary disk evolution,
namely, during the deeply embedded stage of the protosun character-
ized by significant accretion of envelopematerial to the disk. Themost
efficient source of shocks during this epoch is shock fronts associated
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26Al-26Mg ages

Semarkona (LL3.00)
LEW 86134 (L3.00)
QUE 97008 (L3.05)
 Bishunpur (L3.10)

Fig. 3. Histogramsdepicting theabsoluteand relative timingagesof chondrules
fromunequilibratedordinary chondrites of low petrologic type (≤3.1) based on
internal isochron relationships. (A) Pb-Pb dates of chondrules from the NWA 5697
ordinary chondrite (this study). (B) 26Al-26Mg ages of chondrules from Semarkona,
LEW 86134, QUE 97008, and Bishunpur ordinary chondrites (65–68). The relative
26Al-26Mgages are calculated, assuming that the precursormaterial fromwhich these
chondrules formed had a reduced initial 26Al/27Al value corresponding to ~1.5 × 10−5

(33). Three chondrules record initial 26Al/27Al slightly higher than 1.5 × 10−5 but are
within the analytical uncertainty of this estimate and, hence, have been assigned a
T = 0 formation age for simplicity.
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with spiral armsgenerated in a gravitationallyunstabledisk (50,54).Nu-
merical simulations indicate that this type of instability occurs in early-
formed disks that are relatively massive compared to their host stars
(Md/M* ≥ 0.1) (55). Shocks generated in this regime are modeled to
be highly efficient in the inner disk region and possibly extend to ~10
astronomical units (50, 56), thereby providing a possiblemechanism for
the thermal processing of disk solids in early times on a global scale.
However, because accretion to the disk decreases and the envelope dis-
sipates, the resulting diskmass at later times is thought to be far too low
to sustain gravitational instabilities. Thus, a distinct source of shocks is
required for the remelting and, hence, recycling of the chondrules from
~1 to ~4 My after the collapse of the protosun. The accretion of large
planetesimals and Mars-sized planetary embryos is believed to occur
over time scales of ~0.5 to ~3My (24, 33, 57), comparable to the lifetime
of the protoplanetary disk inferred from our chondrule Pb-Pb dates.
Hence, bow shocks resulting fromplanetesimals and planetary embryos
traveling on eccentric orbits provide a possible source of heating for the
thermal processing of solids in the >1-My regime. Thus, it is apparent
that different sourcesofheating are required to satisfy thePb-Pb isotopic
ages of individual chondrules, suggesting a multiplicity of chondrule-
forming and remelting mechanisms. However, the higher proportion
of <1-My chondrules with nonporphyritic textures (Fig. 1B), which
indicates complete melting at higher temperatures, suggests that the
chondrule-forming process was more efficient during early times.

The age variability recorded by individual chondrules establishes
the existence of multiple generations of high-temperature solids with-
in individual chondrite groups. This observation is in keepingwith the
existence of isotopic heterogeneity between chondrules from a single
chondrite for nuclides such as 54Cr and 50Ti, which track genetic re-
lationships between the silicate precursors of solids, asteroids, and
planetary bodies (37, 38, 58). Collectively, these data require that
chondrule formation, recycling, and outwardmass transport occurred
during the lifetime of the protoplanetary disk. Outward transport of
chondrules could have occurred by a variety of time-dependent pro-
cesses, including turbulent diffusion (59) and stellar outflows (60).

The observed chondrule age range does not support the concept
that chondrules and matrix in a single chondrite group are genetically
related, which is based on an apparent chemical complementarity be-
tween chondrules and coexisting matrix (61). However, recent models
of evolving viscous disks suggest that a complementary relationship
between chondrules and dust can be preserved for long time scales
provided that the decoupling between chondrules and gas is limited
(62). In these models, various chondrule populations remained in
complementarity such that the bulk contribution from each source is
chemically solar and, thus, so is the final mixture. Alternatively, the ob-
served chondrule-matrix complementaritymay be an expression of the
generic process of chondrule formation and does not reflect a genetic
link (38). In this view, the matrix comprises a complement related to
the chondrule formation process such that the bulk composition of the
matrix is shifted from its starting composition and thus appears
complementary to a chondrule composition. This does not require that
thematrix is genetically linked to the chondrules in an individual chon-
drite but merely that some of it has experienced earlier chondrule for-
mation events. Thus, fractions of the matrix in a particular chondrite
may be complementary to chondrule populations in other chondritic
meteorites. Likewise, the apparent isotopic complementarity for sider-
ophile elements, such as W and Mo (63, 64), between chondrules and
matrix may reflect the selective destruction and/or removal of isotopi-
cally anomalous metal phases during chondrule formation.
Bollard et al., Sci. Adv. 2017;3 : e1700407 9 August 2017
Finally, the efficient production of chondrule at early times and
their continuous recycling inferred from our Pb isotope data are
consistent with the proposal that chondrules may promote the growth
of asteroidal bodies and planetary embryos by chondrule accretion (5).
Chondrite meteorites are traditionally used to estimate the com-
position of the material that accreted to form the Earth. However,
our results suggest that chondrules may be the dominant component
controlling the composition of planetary bodies. Thus, a better
understanding of the bulk elemental composition of these objects,
including their volatile element inventory, may provide insights into
the nature of the material precursor to terrestrial planets in our solar
system and abroad.
MATERIALS AND METHODS
Following the identification of chondrules of suitable sizes from
~1-mm-thick slabs of the NWA 5697, NWA 7655, and NWA
6043 meteorites, chondrules selected for isotopic investigations were
characterized for their petrology and mineral chemistry using a
scanning electronmicroscope and electronmicroprobe at the Univer-
sity of Copenhagen. Chondrules were liberated from the meteorite
slabs using a variable-speed Dremel fitted with either cone-shaped,
diamond-coated cutting tool or dental drill bits and broken in frag-
ments using an agate mortar and pestle. After sequential dissolution
and chemical purification, the Pb isotope composition of each aliquot
was determined using a Thermo Fisher Triton TIMS at the Centre for Star
and Planet Formation based on protocols described by Connelly et al.
(6) andBollard et al. (31).We determined the Pb isotope composition of
the individual phases of chondrules 1-C2 and 3-C1 using a CAMECA
1280 ionmicroprobe (IMP) at the SwedishMuseumofNaturalHistory.
The U isotope compositions of an aliquot of the chondrules used for
Pb-Pb dating were determined for seven chondrules using the Thermo
Fisher Neptune Plus MC-ICPMS at the Centre for Star and Planet For-
mation based on protocols described by Connelly et al. (6). Similarly,
the Zn isotope compositions of an aliquot of the material used for
Pb-Pb datingwere determined for seven chondrules using the Thermo
Fisher Neptune Plus at the Institut de Physique du Globe de Paris
based on protocols described by Pringle et al. (21).
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