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[1] We describe several newly developed methods for propagation analysis of
electromagnetic plasma waves. We make use of singular value decomposition (SVD)
technique and we determine the wave vector direction, ellipticity and directions of axes of
the polarization ellipse, wave refractive index, transfer function of electric antennas,
estimators of the planarity of polarization, and electromagnetic planarity. Simulations of
Z-mode waves, which simultaneously propagate with different wave vectors, indicate that
the SVD methods give reasonable results even if the assumption on the presence of a
single plane wave is invalid. Simulations of whistler mode waves show that these methods
can be used to recognize cases when the waves simultaneously propagate with wave vectors
in two opposite hemispheres. Finally, we show an example of analysis of natural whistler
mode and Z-mode emissions measured in the high-altitude auroral region by the MEMO
experiment onboard the INTERBALL spacecraft. INDEX TERMS: 0694 Electromagnetics:

Instrumentation and techniques; 6984 Radio Science: Waves in plasma; 2772 Magnetospheric Physics: Plasma

waves and instabilities; 2794 Magnetospheric Physics: Instruments and techniques; 0689 Electromagnetics:

Wave propagation (4275); KEYWORDS: wave propagation, singular value decomposition

Citation: Santolı́k, O., M. Parrot, and F. Lefeuvre, Singular value decomposition methods for wave propagation analysis,

Radio Sci., 38(1), 1010, doi:10.1029/2000RS002523, 2003.

1. Introduction

[2] Today’s instrumentation for wave measurements in
space often allows us to work with multicomponent data
[e.g., Lefeuvre et al., 1998; Gurnett et al., 1995; Cornil-
leau-Wehrlin et al., 1997]. In these devices, full magnetic
field vector is measured by three orthogonal antennas,
and the electric field is simultaneously measured by at
least two electric antennas. With these data, the classical
analysis of power spectra and spectrograms can be
completed by examination of wave propagation proper-
ties. If we suppose the presence of a single plane wave at
frequency f, the wave vector k can be determined from
the linearized Faraday’s law:

k � E ¼ wB; ð1Þ

where w is the angular frequency w = 2pf, and E and B are
the vectors of complex amplitudes of electric andmagnetic

fields. Here we suppose that the corresponding analytic
signals at a point x can be written as� exp[i(wt� k � x)],
where i is

p�1, and � stands for E or B, respectively.
[3] From (1) it follows thatB is always perpendicular to

both wave vector and E. The perpendicularity to the wave
vector is also a consequence of another Maxwell equation,
k � B = 0. This can be used to determine the wave vector
direction, for instance by the minimum variance analysis
of magnetic fluctuations [e.g., Rezeau et al., 1993]. This
method directly works with waveforms of measured
signals. The direction of minimum variance can be
attributed to the wave vector direction and the hodographs
of the magnetic field plotted in the plane perpendicular to
this direction can show the wave polarization. This
supposes that the signal is narrow-band or that the wave
vector direction does not change with the frequency.
[4] Another way to determine the wave vector direc-

tions is based on the multidimensional spectral analysis.
This technique acts as a narrow-band frequency filter cen-
tered at each analyzed frequency and gives us the power-
spectral densities of the measured components and their
relative phase and coherency relations. Several different
methods to determine propagation characteristics using
this information exist in the literature [Means, 1972; Mc-
Pherron et al., 1972; Samson, 1973; Samson and Olson,
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1980]. All of them are based on the multidimensional
spectral analysis of a single vector of field fluctuations,
and as far as we know, all known practical applications of
these methods concern the magnetic field vector. More
recently, Ladreiter et al. [1995] developed a method to
estimate the propagation parameters of radio waves from
the electric field measurements using the singular value
decomposition (SVD). Their technique is based on deter-
mination of parameters of a theoretical model for the
results of the multidimensional spectral analysis, and uses
the SVD to improve the minimization procedure.
[5] The multidimensional spectral analysis is the basis

of the method we are going to discuss in the present paper.
We will show that it is useful and easy to take into account
all the information obtained from this analysis of either a
single measured vector, or of the simultaneously measured
magnetic and electric field data. Based on the SVD, we
have developed a new method which is very easy to
implement using SVD procedures accessible from numer-
ical libraries. This new technique is essentially different
from the method of Ladreiter et al. [1995] and the basic
idea is presented for the magnetic field data in section 2.
We will also show that the new method provides us with
some other useful polarization parameters such as the
ellipticity, planarity, and the direction of the polarization
ellipse axes. Next, we will demonstrate that the method is
easily extensible to simultaneously process the electric
and magnetic fields (section 3), and that this approach
allows us to obtain not only the fully defined wave vector
direction, but also the wave number and electromagnetic
planarity. Section 4 shows several examples of the anal-
ysis results for well defined simulated data, and, finally,
section 5 presents an example of the analysis of natural
VLF emissions in the high-altitude auroral region.

2. Singular Value Decomposition of the

Magnetic Spectral Matrix

[6] There are several possible methods of spectral
analysis resulting in estimates B̂( f ) and Ê( f ) of vectors
of complex amplitudes of magnetic and electric fields as
a function of frequency. For instance, we can use the
discrete Fourier transform implemented by the fast Four-
ier transform algorithm (FFT), and different weighting
windows can be used for the time series of real samples
(for details, see Priestley [1989]). A simple example of
discrete Fourier transform method is shown in algebraic
calculations in Appendices A and B. Another possibility
is to use estimates based on the wavelet analysis.
[7] Using the estimates of magnetic complex ampli-

tudes at a given frequency f (we do not explicitly express
functions of f in the following), a hermitian spectral
matrix is formed,

Ŝij ¼ hB̂iB̂j*i ð2Þ

where indices i and j stand for the three cartesian
components of the magnetic field, * means the complex
conjugate, symbols h i mean average of results obtained
from successive time intervals, where estimates B̂ are
calculated from finite time series of real samples. For a
detailed discussion of the multidimensional spectral
analysis see [e.g., Priestley, 1989]. Note also that this
kind of analysis can be implemented in the on-board
software of today’s space instruments [Cornilleau-
Wehrlin et al., 1997].
[8] From (1) it follows that B (a three-dimensional

complex vector of magnetic field amplitudes) is
perpendicular to the wave vector k. This can be
expressed by a complex equation,

B � k ¼ 0: ð3Þ
This equation is at the same time a consequence of the
fact that the magnetic field vectors have zero divergence.
If we multiply (3) successively by the three cartesian
components of B*, we have three mutually dependent
equations X3

i¼1

BiBj*ki ¼ 0; j ¼ 1 . . . 3; ð4Þ

where terms BiBj* can be written as components Sij of a
spectral matrix of the analytic signals used in (1),

Sij ¼ BiBj*: ð5Þ
Note that, compared to (2), we have dropped the
averaging operation since it has no effect on the
components of this idealized spectral matrix.
[9] The three complex equations (4) thus can be

rewritten

S � k ¼ 0 ð6Þ
involving all the components of the spectral matrix S
and a column vector k. For practical usage with the real
SVD procedure (see below) we rewrite these equations
as a homogeneous system of six real equations,

A � k ¼ 0; ð7Þ
where A is a real matrix 6 � 3 obtained by a
superposition of the real part (<) of the spectral matrix
over its imaginary part (=),

A ¼

<S11 <S12 <S13
<S12 <S22 <S23
<S13 <S23 <S33

0 �=S12 �=S13
=S12 0 �=S23
=S13 =S23 0

0
BBBBBBBBB@

1
CCCCCCCCCA
: ð8Þ

Note that the unknown k can be multiplied by any real
coefficient with no effect on (7). This is a consequence of
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the fact that from the wave magnetic field we cannot
determine the wavelength, but only the wave vector
direction. Additionally, we cannot distinguish between
two antiparallel wave vector directions because k may be
also multiplied by negative numbers in (7). Using (7), we
can thus only define k on a hemispheric surface in the
wave vector space, and the result can be given in a
spherical coordinate system by

q ¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22

q
=k3


 �
;

f ¼ arctan k2=k1ð Þ for k1  0;
f ¼ arctan k2=k1ð Þ � p for k1 < 0; k2 < 0;
f ¼ arctan k2=k1ð Þ þ p for k1 < 0; k2  0;

ð9Þ

where q is a polar angle ranging from 0� to 90�, f is an
azimuthal angle between�180� and 180�, and k1, k2, and
k3 are Cartesian components of a unity vector K = k/k.
Since themodulus of K is unity and carries no information,
the solution is fully defined by q and f using (9).
[10] The system (7) has more equations than

unknowns. A subset of two independent equations
picked up from this system would thus suffice to obtain
a unique solution for q and f. This is exactly what is
done by some of the existing methods based on the
multidimensional spectral analysis of the magnetic field,
although they are introduced by different formalisms.
The method of Means [1972] is based on imaginary parts
of three cross-spectra and the procedure is equivalent to
solving any two of the last three equations in (7), while
replacing the idealized matrix S by its experimental
estimate Ŝ. The method of Samson and Olson [1980,
equation (11)] is equivalent to finding a unique solution
from another subset of equations selected in (7). Oppo-
sitely, the method of McPherron et al. [1972] uses the
first three equations to perform the eigenanalysis of the
real part of the spectral matrix.
[11] By selecting only a part of equations, these

methods miss some information contained in the exper-
imental spectral matrix Ŝ. From the theoretical point of
view, this is well justified: The system (7) degenerates
into only two independent equations. However, when
we use the experimental matrix Ŝ it would be true only
if Ŝ exactly matches its idealized counterpart S. In the
appendix we show a special case where this condition
holds but in practice it is rarely the case. We only have
a limited time series, and the spectral matrices cannot
be known without uncertainties due to the spectral
analysis. Waves also sometimes contain a significant
unpolarized fraction or noise. This was the motivation
of Samson [1973] who presented different methods of
decomposition of the spectral matrix using the eigena-
nalysis of the spectral matrix without missing any piece
of information. This is also our motivation for using the
SVD technique.

[12] Let us now replace A by Â in (7) and (8), Â being
composed of elements of Ŝ instead of S in (8). The
modified (7) then reads

Â � K̂ ¼ 0: ð10Þ

If this modified set does not degenerate to less than three
equations it is not possible to find a vector K̂ which
simultaneously solves all six equations. Instead, a ‘‘sol-
ution’’ can be defined in the least squares sense, it means
that we search for a column vector K̂ which gives the
minimum modulus of a six-dimensional vector Â � K̂.
This can be done without actually having to solve a
minimization problem, just using the SVD of the matrix
[e.g., Golub and Van Loan, 1996],

Â ¼ U �W � VT; ð11Þ

where U is a matrix 6 � 3 with orthonormal columns, W
is a diagonal matrix 3 � 3 of three nonnegative singular
values, and VT is a matrix 3 � 3 with orthonormal rows.
Note that the SVD algorithm can often be found in
numerical libraries [e.g., Press et al., 1992], and it is
very easy to use. This decomposition shows some
similarity with the method of Samson [1973] based on
the eigenanalysis: the squared singular values W2 are
eigenvalues of the matrix ÂT � Â while the rows of VT are
the corresponding eigenvectors. Oppositely to Ladreiter
et al. [1995] who analyzed radio waves by a minimiza-
tion technique based on a theoretical model of the
spectral matrix, our method doesn’t implement any
explicit minimization procedure and only consist in
direct interpretation of the SVD results (11).
[13] The ‘‘least squares estimate’’ for K̂ is in fact

directly found as the row of VT corresponding to the
minimum singular value at the diagonal of W. This is a
consequence of (11): If we multiply the right-hand side
of (11) from the right by K̂ defined as the ith column of
V, the rightmost multiplication gives us a unity vector
with all zero components, but the ith one (recall that V
has orthonormal columns). Multiplication of this vector
with W then makes a 3 dimensional column vector with
all zero components, but the ith one which is equal to the
ith singular value. The leftmost multiplication finally
gives us a 6-dimensional vector taken from the ith
column of U multiplied by the ith singular value. Since
U has orthonormal columns the modulus of the resulting
vector is equal to the ith singular value. If this is the
minimum singular value then we obtain the minimum
modulus. Since V has orthonormal columns, multiplica-
tion by any other unit vector K̂0 generated by this
orthonormal basis would result in a linear combination
of orthonormal columns of U with a higher modulus.
[14] The two other rows of VT are perpendicular to the

least squares estimate of K̂, and thus these rows generate
an estimate of the magnetic field polarization plane.
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Additionally, an estimate of the direction of the major
polarization axis is given by the row of VT which
corresponds to the maximum singular value. The third
direction defined by the last of the orthogonal rows of VT

corresponds to the minor axis of the magnetic field
polarization ellipse. Appendix A shows a simple alge-
braic example of these results.
[15] If we order the three singular values into an

ascending series w1, w2, and w3, we can define the
planarity of polarization of the wave magnetic field,

F ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w1=w3

p
: ð12Þ

Appendix B demonstrates how F is connected to the
standard deviations of incoherent noise. A value near to
unity means that there are one or two nonzero singular
values and the system (10) degenerates into one or two
independent equations, respectively. For two nonzero
singular values, the above described SVD procedure
results then in an exact and unique solution for two
variables, as we demonstrate in Appendix A. These two
variables can be represented by angles q and f from (9),
using K̂ instead of K. Moreover, the SVD procedure
gives us reasonable results also when F is less than unity.
In this case we have three nonzero singular values and
the procedure directly gives us a least squares estimate of
q and f using all independent information from (10).
[16] The ratio of the two axes of the polarization

ellipse can be defined as

Lp ¼ w2=w3: ð13Þ

When Lp is near to unity, the polarization is circular.
When it is near to zero, the polarization is linear. In such
a case, there is a single nonzero singular value and the
system (10) degenerates to a single equation. As a
consequence, we have a plane of possible wave vector
directions and a unique solution for q and f does not
exist. Appendix A demonstrates Lp on a simple case of
elliptically polarized plane wave.

3. Electromagnetic SVD Techniques

[17] With the vector of magnetic field fluctuations the
propagation direction cannot be fully determined. As
mentioned above, two antiparallel directions cannot be
distinguished. We have to use both the magnetic and
electric fields to fully determine the wave vector from the
Faraday’s law (1). For the sake of simplicity we rewrite
(1) to

n� E ¼ cB; ð14Þ

where n = kc/w is a dimensionless vector having the
modulus of the wave refractive index and the direction of
the wave vector, c being the speed of light.

3.1. Direct Solution

[18] Suppose the vectors B and E are represented by
three magnetic components and three electric compo-
nents in the same cartesian coordinate system. We can
now proceed similarly as in section 2 but instead of using
the condition of perpendicularity between B and k we
can directly use (14). Multiplying the three complex
equations (14) successively by the three cartesian
components of cB*, and by the three cartesian
components of E* we have 18 mutually dependent
complex equations

X3
j;k¼1

�ijk Ek z‘* nj ¼ c Bi z‘*; i ¼ 1 . . . 3; ‘ ¼ 1 . . . 6;

ð15Þ

where �ijk = 1 for i, j, k = 1, 2, 3 and for the other two
cyclic shifts of this sequence; �ijk = �1 for i, j, k = 1, 3, 2
and cyclic shifts; �ijk = 0 otherwise. Z is a six-
dimensional ‘‘electromagnetic’’ vector

Z ¼ cB1; cB2; cB3;E1;E2;E3ð Þ: ð16Þ

Terms Ekz‘* and cBiz‘* in (15) can be respectively written
as selected components Q(k+3)‘ and Qi‘ of a 6� 6 spectral
matrix Q. This idealized matrix is composed in the same
way as matrix S in (5), but using the electromagnetic
vector Z of analytic signals,

Qij ¼ zizj*: ð17Þ

The result can be rewritten as a set of 36 real equations for
3 components of a column vector n,

AE � n ¼ b; ð18Þ

where AE is a real matrix with 36 rows and 3 columns,
and b is a 36-dimensional real column vector. Both are
composed in a straightforward manner using (15), (16),
and (17) from the components of the 6� 6 spectral matrix
Q but the explicit expressions for AE and b would be
rather lengthy. We thus only give an example correspond-
ing to the real part of (15) for i = 1 and ‘ = 1; this first row
of AE is (0,<Q61,�<Q51), and the corresponding row of
b is (Q11).
[19] The system (18) contains 36 equations for only 3

unknowns. However, in the ideal case of analytic signals
these equations are obtained from only six real equations
in (14). One of these six equations could be, moreover,
eliminated using an appropriate phase factor for the
complex amplitudes, and two of them are already con-
tained in the condition E � B = 0 which internally bounds
the complex electric and magnetic field amplitudes
consistent with (1). For analytic signals, the system (18)
thus should degenerate into only 3 independent real
equations for the three components of n.
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[20] With real data, the multidimensional spectral anal-
ysis at a given frequency results in an estimate Q̂ of the
spectral matrix which can be used instead of Q. Q̂ can be
obtained in the same manner as in (2), but instead of the
estimate of the 3-dimensional vector of magnetic field
amplitudes B̂ we will now use the 6-dimensional vector
Ẑ of estimates of complex amplitudes of both magnetic
and electric fields,

Q̂ij ¼ h ẑiẑj* i: ð19Þ

The system (18) then becomes

ÂE � n̂ ¼ b̂; ð20Þ

where ÂE and b̂ are composed in the same way as AE and
b, but this time we use components of Q̂ instead of Q.
[21] As discussed in section 2 for equation (10), the

system (20) can become overdetermined (degenerating to
more than 3 equations). The SVD can be used to estimate
n̂ which is consistent with all equations (20) in the least
squares sense. The matrix ÂE can thus be decomposed,

ÂE ¼ UE �WE � VT
E; ð21Þ

where, as in section 2, UE is a matrix 36 � 3 with three
orthonormal columns, WE is a diagonal matrix 3 � 3 of
singular values, and VT

E is a matrix 3 � 3 with ortho-
normal rows. It can be proven [e.g., Press et al., 1992]
that the least squares solution is then directly given by

n̂ ¼ VE �W�1
E � UT

E � b̂; ð22Þ

where VE is transposed from VT
E, and UT

E is transposed
from UE. W

�1
E is the diagonal matrix with reciprocal

values of the corresponding singular values on the main
diagonal.
[22] Using (9) with n̂ instead of K we can define the

result by the polar angle q between 0� and 180� and the
azimuthal angle f between �180� and 180�. The third
spherical coordinate, the modulus of n̂, now also carries
useful information. Due to experimental uncertainties, it
must however be used with caution. The electric signals
can be affected by an unknown transfer function due to
the coupling between the antenna system and the plasma
medium. Without going into the details on the exper-
imental problems of electric antennas, we can follow
Gurnett [1998] and write a general relation between an
ideal vector of the analytic complex amplitudes E and a
vector of complex amplitudes EZ affected by the transfer
function as

EZ ¼ ZE; ð23Þ

where components of EZ are obtained from ratios of the
output voltages of the antenna preamplifiers Vout and the
effective lengths of the antennas Leff. Z is then a complex

number which could be a function of frequency, and
includes also possible uncertainties of the effective
lengths. In (23) we assume that the transfer function is
the same for all the electric antennas. We can then write
E as EZ/Z and use this expression in (14) and subsequent
equations (15) and (16). If Z has no imaginary
component (i.e., the transfer function is purely resistive
with no phase shift [Gurnett, 1998]) we can write n/Z
instead of n in (18) and we finally obtain the ratio n̂=Z
on the left-hand side of equation (22). The obtained wave
vector direction thus remains unaffected. However, the
modulus of the vector obtained in that way from (22)
represents the ratio of the wave refractive index to the
transfer function.
[23] It is important to note that with real data, system

(20) can exactly hold only in the case when a single
plane wave is present. If the spectral matrix reflects a
more complex situation, for instance simultaneous prop-
agation of multiple plane waves, SVD method gives us a
least squares estimate of n̂, but the system (20) will not
exactly hold, i.e., ÂE � n̂ will not be exactly equal to b̂.
This property can be used to construct an estimator FE of
the ‘‘electromagnetic planarity’’,

FE ¼ 1�
ffiffiffiffiffi
N
D

r
; ð24Þ

where

N ¼
X36
i¼1

b̂i � b̂i

� �2

;

D ¼
X36
i¼1

jb̂ij þ jb̂ij
� �2

;

B̂ is the left-hand side of (20), B̂ = ÂE � n̂, n̂ being
estimated by the SVD using (22). FE is unity when system
(20) exactly holds, consistent with a presence of a single
plane wave.FE tends to zero with increasing differences of
left-hand and right-hand sides of (20). Computer simu-
lations in section 4 will show how this difference is
connected to some simplified physical situations.

3.2. Transformation to a Homogeneous System

[24] Another possibility how to find an SVD solution
of (15) is the transformation into a homogeneous system
of equations. We now suppose a more general complex
value of Z and we use EZ = ZE instead of E in (16). After
replacing E by EZ/Z from (23) and after using (17) we
obtain expressions Qi‘Z on the right-hand side of (15).
We then have

AZ � nZ ¼ 0; ð26Þ

where nZ is a 5-dimensional real vector composed of
unknown n (the first three components) and unknown

(25)
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real and imaginary parts of Z (the last two components).
AZ is a real matrix 36 � 5. It is obtained by adding two
new columns to AE. These columns are (<Qi‘, � =Qi‘)
for the rows generated by real parts of (15) and (=Qi‘,
<Qi‘) for the rows generated by imaginary parts of (15).
[25] If we now replace Q by experimental estimates

Q̂ (equation (19)) in the definition of the elements of
the matrix AZ we obtain the matrix ÂZ, and equation
(26) can be rewritten,

ÂZ � n̂Z ¼ 0; ð27Þ

where n̂Z is an unknown 5-dimensional vector.
[26] Following the discussion of (10) in section 2, the

homogeneous system of equations (27) can be over-
determined, and SVD finds a least squares estimate of
the solution. ÂZ can be decomposed to

ÂZ ¼ UZ �WZ � VT
Z; ð28Þ

where the symbols have similar meaning as in (11) and
(21); UZ is a matrix 36 � 5 with five orthonormal
columns, WZ is a diagonal matrix 5 � 5 of singular
values, and VT

Z is a matrix 5 � 5 with orthonormal rows.
Then, following the discussion of (11), the unknown
vector n̂Z is obtained as the row of VT

Z which corresponds
to the minimum singular value from WZ. Using (9) with
the first three components of n̂Z we can again obtain the
polar angle q between 0� and 180� and the azimuthal
angle f between �180� and 180�. As in section 3.1, we
cannot separate the wave refractive index and the transfer
function of electric antennas. Using all five components
of n̂Z we obtain the ratio of refractive index to the
absolute value of the transfer function,

n̂=jZj ¼ p
n̂2Z1 þ n̂2Z2 þ n̂2Z3
� �

=
p

n̂2Z4 þ n̂2Z5
� �

: ð29Þ

The phase shift connected with the transfer function is
defined by the last two components of n̂Z,

fZ ¼ arctan n̂Z5=n̂Z4ð Þ for n̂Z4  0;

fZ ¼ arctan n̂Z5=n̂Z4ð Þ þ p for n̂Z4 < 0:

The same method additionally provides us with another
estimator of electromagnetic planarity, obtained now in a
similar way as in section 2 from the ratio of the minimum
and maximum singular values,

FZ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wZ1=wZ5

p
: ð31Þ

FZ varies from 0 to 1. In this case, however, it does not
concern the polarization of the wave magnetic field, but
it characterizes the consistence of the whole spectral
matrix with (14).

3.3. Estimation of the Full Spectral Matrix Using
Two Electric Antennas

[27] Often, experimental constraints do not allow us to
use the data of the full electric field vector, and only
two electric components are measured [Lefeuvre et al.,
1998; Cornilleau-Wehrlin et al., 1997]. Despite of that,
we can still use the SVD analysis methods described in
sections 3.1 and 3.2. An estimate of the 6 � 6 spectral
matrix Q̂ of all field components can be obtained from
the spectral matrix of three magnetic and two electric
components using the Faraday’s law (1) [Grard, 1968;
Shawhan, 1970].
[28] Suppose a 5 � 5 spectral matrix Q̂V ,

Q̂
V
ij ¼ hx̂ix̂j*i; ð32Þ

composed of complex amplitudes of the 5 separate
signals,

X̂ ¼ cB̂1; cB̂2; cB̂3; Ê1; Ê2

� �
: ð33Þ

For a given experimental estimate Q̂
V

(e.g., from a
spectral analyzer onboard a spacecraft [Cornilleau-Wehr-
lin et al., 1997]) we must first reduce the spectral matrix
back to estimates of complex amplitudes X of separate
analytic signals. This procedure can lead to the loss of
information because we cannot take into account relative
coherence of signals expressed by absolute values of the
off-diagonal elements of the spectral matrix (cross-power
spectra). Modulus of each signal is defined as a square
root of the corresponding diagonal element (auto-power
spectrum). The phase shift of each signal is estimated by
a least squares method from all relevant cross-spectra.
The modulus and the phase shift define the complex
amplitude.
[29] The procedure needs three cartesian components

of the magnetic field and two mutually perpendicular
electric components. If the directions of the two electric
antennas are not perpendicular a correction of their
complex amplitudes can be done. The complex ampli-
tudes of the three magnetic components are then trans-
formed to the Cartesian system defined by the two
measured electric components Ex and Ey. Next, real
and imaginary parts of the third electric component Ez

are calculated from equations

<E � <B ¼ 0;

=E � =B ¼ 0;

respectively. These equations are a consequence of (1).
Finally, the 6 � 6 spectral matrix Q̂ can be reconstituted
using (16) and (17).
[30] Since this Q̂ is now created artificially consistent

with (1) and hence with (14) and (18), the electro-
magnetic planarity estimators FE (equation (24)) and

(30)

(34)
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FZ (equation (31)) do not reflect the real polarization
properties of the original data. To obtain an electro-
magnetic planarity estimator based on the measurement
using only two electric antennas we can, however, still
use a very similar method to that described in (24) for the
estimator FE. Equation (14) can be written in cartesian
coordinates defined by the plane of the two electric
antennas. From these three complex equations we pick
up only the single equation where the two available
electric components are on the left-hand side, and we
drop the two other equations containing the electric
component which is not measured. Similarly as in (15)
we can write a system of 5 complex equations for
analytic signals ideally consistent with (14),

E1x‘* n2 � E2x‘* n1 ¼ c B3 x‘*; ‘ ¼ 1 . . . 5; ð35Þ

where terms Ekx‘* and cB3x‘* can be respectively written
as selected components QV

kþ3ð Þ‘ and QV
3‘ of a 5 � 5

spectral matrix QV
. This idealized matrix is composed in

the same way as matrix Q in (17), but using the vector X
of analytic signals,

QV
ij ¼ xixj*: ð36Þ

The electromagnetic planarity estimator for the exper-
imental spectral matrix (32) can be then written,

FV ¼ 1�

ffiffiffiffiffiffiffi
NV
DV

s
ð37Þ

where

NV ¼
X10
‘¼1

Q̂
V
4‘ n̂2 � Q̂

V
5‘ n̂1 � Q̂

V
3‘

� �2

;

DV ¼
X10
‘¼1

jQ̂V
4‘ n̂2 � Q̂

V
5‘ n̂1j þ jQ̂V

3‘j
� �2

;

n̂ being estimated by the SVD method (22) from the 6 �
6 matrix Q̂ reconstituted from Q̂V

using (34).

[31] Note that when we have the data of three magnetic
and a single electric antennas the above described
method cannot be used. Under some conditions, we are
however able to estimate the hemisphere of the wave
propagation [Santolı́k and Parrot, 1999]. The wave
distribution function (WDF) methods (see below) can
also determine the hemisphere of propagation as shown
for instance by Lefeuvre et al. [1992].

4. Tests With Simulated Data

[32] In order to verify the functionality of the above
described methods we have done throughout tests
using simulated data. In this section we will present
two examples of simulations using the concept of the

WDF which has been introduced by Storey and Lefeu-
vre [1979] to describe the situations when the waves
simultaneously propagate at more than one wave
vector direction. Assumption on the presence of a
single plane wave with a single wave vector direction
was used in derivation of the above described SVD
methods. It is therefore important to know how the
results of the analysis behave when this assumption is
not valid.
[33] We proceed as follows. First, we choose parame-

ters of the anisotropic plasma medium, wave frequencies,
and propagation modes corresponding to observations
[Santolı́k et al., 2001] in the high-altitude auroral region.
We define the plasma frequency fp = 10.5 kHz, the
electron cyclotron frequency is fg = 27 kHz, the wave
frequency of 4.5 kHz for the first simulation of Z-mode
waves, and the wave frequency of 9 kHz for the second
simulation of whistler mode waves.
[34] Next, we choose a wave vector direction K and we

calculate theoretical vectors of complex amplitudes of
wave electric and magnetic fields using the theory of the
cold magnetized plasma [e.g., Stix, 1992]. Aiming to
simulate the data of Santolı́k et al. [2001], we use three
orthogonal magnetic antennas and two electric antennas,
we project the vectors of complex amplitudes to the
predefined directions of antennas, and we form theore-
tical spectral matrices S and QV following (5) and (36),
respectively.
[35] Finally, we use these theoretical spectral matrices,

calculated for different K as the integration kernels in the
equation of the direct problem of the WDF [Storey and
Lefeuvre, 1979],

�Sij ¼
Z

Sij Kð ÞG Kð ÞdK2;

�Q
V
ij ¼

Z
QV

ij Kð ÞG Kð ÞdK2;

where
R
dk2 denotes integration over the surface of the

unit sphere, G(K) is the WDF, and �S, �QV are model
spectral matrices at the given frequency. These matrices
are used instead of experimental spectral matrices Ŝ and
Q̂V as the input information for the SVD analysis
methods. We compare the results with the methods of
Means [1972] and Samson [1973] used for the same
input data. We use a Cartesian coordinate system
connected with the DC magnetic field. For instance,
angles q and f define the deviation of the wave vector
from the DC magnetic field, and the wave vector
azimuth, respectively.
[36] In Figure 1 we show results of a simulation of the

Z-mode waves at a frequency of 4.5 kHz. We suppose
that the waves propagate in a divergent beam of wave
vectors which is described as a Gaussian peak on the
WDF (a model defined as ‘‘GP’’ by Santolı́k and Parrot
[2000]). The central direction of the beam is defined by

(38)
(39)
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q0 = 50� and f0 = 50� and its angular width (D) varies
from zero to 90�. For D = 0�, the beam collapses to a
single plane wave at q0 = 50� and f0 = 50�. For D ! 1,
the waves simultaneously propagate at all directions with
q � 90�.
[37] Figure 1a shows that the angle q estimated by the

method of Means [1972] (dotted line) rapidly decreases
from the central value q0 = 50� with a growing width of
the peak. The estimates done by the magnetic SVD
method (solid line) and by the method of Samson
[1973] (dash-dot line) give larger q than the central
value, the method of Samson [1973] being closer to q0.
The electromagnetic SVD method gives a result which is
always nearest to the central direction (dashed line). The f
values (Figure 1b) are estimated very near to the original
central direction f0 = 50� by all the methods for all D. The
electromagnetic SVD method (dashed line) deviates at
maximum by one degree, the other methods giving
always exactly f0. The index of refraction (Figure 1c)
from the electromagnetic SVDmethod is always the same
as for a plane wave at the central direction. Both planarity
estimates (Figure 1d) decrease with increasing D, the
electromagnetic planarity FV (equation (37)) being sig-
nificantly less sensitive to the peak width than the
planarity of the polarization of magnetic field fluctuations
F (equation (12)).
[38] The assumption on the presence of a single plane

wave is also invalid when the waves simultaneously
propagate in both hemispheres for q � 90� and q >
90�. Figure 2 shows simulation results for such a case.
We simulate data corresponding to whistler mode waves
at a frequency of 9 kHz. We use the same parameters of
the cold plasma model as in the first simulation. The
theoretical spectral matrix is calculated for two plane
waves which simultaneously propagate in mutually anti-
parallel directions placed not far from the resonance cone
at qR = 29�. The two direction are defined respectively by
q1 = 28�, f1 = 10�, and q2 = 152�, f2 = �170�. We
gradually change the percentage ( p) of energy density
carried by each of the two waves. When p = 0%, only the
wave at q1 = 28�, f1 = 10� propagates. Oppositely, a
single plane wave at q2 = 152�, f2 = �170� propagates
when p = 100%. If p = 50% the same energy density is
placed into the two antiparallel waves.
[39] Obtained results strictly reproduce the properties

of the wave with higher energy density. At p = 50% the
results of the electromagnetic SVD method (sections 3.1
and 3.3) switch between the two antiparallel directions
(Figures 2a and 2b, dashed line). As discussed in
section 2 the results obtained without considering the
wave electric field (solid line for the three methods:
Means [1972], Samson [1973], and section 2) always
indicate the hemisphere where q � 90�, and, as the two
simulated wave vectors are antiparallel, no change is
observed at p = 50%. No effect is observed on the

estimate of the refractive index (Figure 2c). The presence
of waves in both hemispheres is indicated by a smooth
decrease of the electromagnetic planarity FV (equation
(37)) down to zero at p = 50% (Figure 2d, dashed line).
As the wave magnetic field does not reflect the presence
of the two antiparallel waves at all, the estimate of the
magnetic planarity F (equation (12)) is always unity
(Figure 2d, solid line).

5. Analysis of a Multicomponent

Measurement in the High-Altitude Auroral

Region

[40] Figure 3 presents an example of results of the
SVD analysis of natural emissions measured in the high-
altitude auroral region [Santolı́k et al., 2001]. The data
have been recorded on 9 November 1996, at 2320:10 h

Figure 1. Analysis of the influence of the plane wave
hypothesis for a beam of Z-mode waves. Simulated
results are given in four panels as a function of the width
D of a Gaussian wave distribution function. (a) Polar
angle q estimated by the method of Means [1972], by the
method of Samson [1973], by the magnetic SVD method
from section 2, and by the electromagnetic SVD method
from section 3.1 with the electric field vector completed
using the procedure described in section 3.3; (b)
Azimuthal angle f estimated by the same four methods;
(c) Refractive index n estimated by the SVD method
from sections 3.1 and 3.3; (d) Planarity F (equation
(12)—solid line) and electromagnetic planarity FV

(equation (37)—dashed line) from sections 2 and 3.3,
respectively.
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UT by the MEMO device onboard the INTERBALL-2
satellite. The satellite was located at an invariant latitude
of 73.8�, on 0310 h MLT and at an altitude of 18,038
km. The electric and magnetic spectra show emissions
with both lower-frequency and higher-frequency cutoffs
(see Figures 3e and 3f ). The polarization analysis
indicates that the majority of waves in the frequency
band 3.6–5 kHz above the lower-frequency cutoff
propagate in the left-hand polarized Z-mode, and that
the waves at frequencies above 6 kHz and below the
higher-frequency cutoff at 10.5 kHz mainly propagate in
the right-hand polarized whistler mode [Santolı́k et al.,
2001, Figure 1].
[41] The analysis results (Figures 3a–3d) are shown

only for frequencies where both the sums of power
spectral densities of the wave electric field components
(ES) and magnetic field components (BS) are well above
the background noise (BS > 1.4 � 10�10 nT2/Hz, ES >
10�3 mV2/m2/Hz). We use only two methods: the
magnetic SVD method from section 2 (solid line), and
the electromagnetic SVD method from section 3.1 with
the electric field vector completed by the method
described in section 3.3 (dashed line). Looking first at
the results for the wave vector direction, we can see that
in the Z-mode band below 5 kHz the waves propagate in
the hemisphere where q � 90� (Figure 3a), and that the q
values rapidly grow with frequency from 20�–40� up to

90�. The f values (Figure 3b) are between 40� and 90�.
There are some differences between the results of the two
methods which will be discussed later on. In the whistler
mode band above 6 kHz, the electromagnetic SVD
method shows that the waves propagate mainly in the
hemisphere where q > 90�. q is between 100� and 140�
with a short excursion below 90� around 9 kHz, f being
near 40�. The SVD method from section 2 cannot
determine the hemisphere of propagation, but gives
similar results if we inverse the wave vector direction,

Figure 2. Analysis of simulated whistler mode waves
simultaneously propagating in two antiparallel directions
at 9 kHz. Results plotted as a function of the percentage
p of the energy density of the up-coming wave. The
panels and line styles are the same as in Figure 1.

Figure 3. Analysis of Z-mode and whistler mode VLF
emissions in the frequency interval 2.5–12 kHz. Data
were recorded by the MEMO device onboard INTER-
BALL-2 on 9 November 1996 at 2320:10 h UT. Panels
(a)–(d) show the same parameters as in Figure 1. (e)
Sum of the power spectra of the three orthogonal
magnetic components; (f ) sum of the power spectra of
electric signals measured by two orthogonal antennas.
The same line styles as in Figure 1 are used for the
results of the two SVD methods, the magnetic SVD
method from section 2 (solid line), and the electro-
magnetic SVD method from section 3.1 with the electric
field vector completed by the method described in
section 3.3 (dashed line).
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except for the f values which are near 180�. The values
of n/|Z| grow from 0.1 to 0.3 in the Z-mode band, and
decrease to 0.02 in the whistler mode band.
[42] The results for the wave vector direction can be

explained by the complexity of the wave fields reflected
by the two estimators of the planarity of polarization.
The magnetic planarity F (12) from section 2 is lower in
the Z-mode band below 5 kHz. This indicates that the
waves do not propagate as a single plane wave. Dis-
persion of wave vector directions to a large WDF also
explains the differences of q values obtained by the two
different methods in this band. The electromagnetic
planarity FV (37), however, is rather high in this band.
As shown by analysis of simulated data in the preceding
section (Figure 1), the electromagnetic SVD method
indicate in such a case an average wave vector direction
of observed waves.
[43] The electromagnetic planarity FV (37) substan-

tially decreases in the whistler mode band above 6
kHz, and goes nearly to zero around 9 kHz. As indicated
by another analysis of simulated data described in the
preceding section (Figure 2), this is probably due to
simultaneous presence of waves in both hemispheres of
propagation (for q � 90� and q > 90�). The hemisphere of
propagation just below the higher-frequency cutoff of the
whistler mode band at 10.5 kHz is in agreement with the
Poynting vector directions determined from the same
data (not shown). Further interpretation of these results
in terms of the possible sources of the observed emis-
sions is beyond the scope of this paper and is done
elsewhere [Santolı́k et al., 2001].

6. Summary

[44] We have presented a detailed description of
several newly developed methods for propagation anal-
ysis of electromagnetic plasma waves. All these meth-
ods are based on the singular value decomposition
(SVD) technique which takes into account all informa-
tion contained in a spectral matrix. With the spectral
matrix of three magnetic components the SVD techni-
que allows us to simultaneously determine the wave
vector direction in a single hemisphere (without distin-
guishing two antiparallel directions), the direction of
axes of the polarization ellipse, its the ratio of their
lengths, and the planarity of polarization. With the
spectral matrix of three magnetic components and two
or three electric components, the SVD technique allows
us to determine the fully defined wave vector direction,
the ratio of the refractive index and the absolute value of
the transfer function of electric antennas, the phase shift
induced by this transfer function, and the electromag-
netic planarity.
[45] With the analysis of simulated whistler mode

and Z-mode waves we have shown that (a) the SVD

methods (especially the electromagnetic ones) better
reflect central direction of a beam of wave vectors of
simultaneously propagating waves. (b) The electro-
magnetic planarity estimator can be used to indicate
cases when the waves simultaneously propagate in two
opposite hemispheres. The analysis of natural whistler
mode and Z-mode emissions in the high-altitude
auroral region shows that the SVD methods give
consistent results, and that they may serve as a useful
tool for propagation analysis of multicomponent meas-
urements of plasma waves made onboard artificial
satellites.
[46] All the above presented methods are contained in

the computer program PRASSADCO [Santolı́k, 2000]
designed primarily for the analysis of data of the STAFF-
SA devices onboard the Cluster satellites [Cornilleau-
Wehrlin et al., 1997]. The results shown in the present
paper have been obtained by this program.

Appendix A: Algebraic SVD Solution for

the Magnetic Spectral Matrix of a Totally

Polarized Wave

[47] Let us suppose that the wave is totally polarized in
a plane defined by axes x1 and x2 of a cartesian
coordinate system, the major axis of the polarization
ellipse being along x1. The corresponding components of
the magnetic field then fluctuate as sine waves,

B1 tð Þ ¼ a cos 2p ftð Þ;
B2 tð Þ ¼ b sin 2p ftð Þ; ðA1Þ
B3 tð Þ ¼ 0;

where f it the frequency, t is time, and a and b are real
amplitudes corresponding respectively to the major and
minor axis of the polarization ellipse (a  b). The
particular choice of coordinate system doesn’t represent
any restriction, and a generalization for an arbitrary
system will be shown later on.
[48] Suppose also that the signals are sampled at times

separated by equal time intervals t, resulting in time
series of M samples B1(mt) and B2(mt), m = 1. . .M. To
facilitate further discussion we will also suppose that one
quarter of the period of the sine wave exactly matches an
entire number of sampling intervals,

t ¼ 1

4K f
; ðA2Þ

where K is a positive entire number. This represents the
first principal assumption allowing us to obtain simple
algebraic expressions for the results of the spectral
analysis. Similar analysis would be more complicated
for a general case which does not necessarily satisfy the
condition (A2). However, for K � 1 we expect that the
results would be very close to what is obtained below.
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[49] Choosing the discrete Fourier transform method of
the spectral analysis of real signals B1 and B2 we obtain
the estimates B̂1 and B̂2 of the complex amplitudes at an
angular frequency w = 2pf,

<B̂1 ¼
2

M

XM
m¼1

a cos2 wmtð Þ;

=B̂1 ¼
2

M

XM
m¼1

a sin wmtð Þcos wmtð Þ;

<B̂2 ¼
2

M

XM
m¼1

b cos wmtð Þsin wmtð Þ;

=B̂2 ¼
2

M

XM
m¼1

b sin2 wmtð Þ:

We have assumed here a rectangular weighting window
which is unity inside the closed time interval between t
and Mt and zero outside.
[50] Assume further that the duration of the time series

of samples exactly matches an entire number Q of wave
periods,

Mt ¼ Q=f : ðA4Þ

This is the second principal assumption, which in a
general case becomes approximately valid for Q � 1.
=B̂1 and <B̂2 then vanish, <B̂1 = a and =B̂2 = b. Since
these estimates are always the same for all the successive
series of M samples of magnetic field components (A1)
satisfying the conditions (A2) and (A4), the averaging in
the calculation (2) of the spectral matrix has no effect.
[51] Spectral matrix thus only has four nonzero ele-

ments, S11 = a2, S22 = b2, S12 = �iab, and S21 = iab. The
SVD of matrix A from (11) then reads

A ¼ U �W � VT; where ðA5Þ

A ¼

a2 0 0

0 b2 0

0 0 0

0 ab 0

�ab 0 0

0 0 0

0
BBBBBB@

1
CCCCCCA
; ðA6Þ

U ¼

a=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
0 0

0 b=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
0

0 0 1

0 a=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
0

�b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
0 0

0 0 0

0
BBBBBB@

1
CCCCCCA
; ðA7Þ

W ¼

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
0 0

0 b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
0

0 0 0

0
BBBB@

1
CCCCA; and ðA8Þ

V ¼
1 0 0

0 1 0

0 0 1

0
@

1
A: ðA9Þ

[52] We can see that the diagonal matrixW contains two
nonzero singular values. The planarity from (12) is thus
F = 1 and the ellipticity from (13) Lp = a/b. That means we
retrieve the original ratio of the two axes of the polar-
ization ellipse. Moreover, the last column of the matrix V
(the column corresponding to the position of the zero
singular value in W) gives us the wave vector direction
along the axis x3, which is perpendicular to the plane of
polarization. In that plane, the direction x1 corresponds to
the major axis (the column of V corresponding to the
largest singular value a=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
). The result in (A5)

thus reflects all properties of the original model (A1).

Appendix B: Algebraic SVD Solution for

the Magnetic Spectral Matrix of a Random

Noise

[53] Supposing now that the cartesian components of
the magnetic field fluctuate as a random noise, the
samples Bi(mt) can be defined as independent random
variables with zero mean values and finite standard
deviations. Supposing further that these standard devia-
tions are constant for the ith cartesian component, we can
define for all the samples of B1(t), B2(t), and B3(t) the
standard deviations a, b, and c, respectively, and choose
that a  b  c. Again, that particular choice of
coordinate system doesn’t represent any loss of general-
ity, as we will demonstrate later on.
[54] Choosing the discrete Fourier transform method

for the spectral analysis of these real signals we have,

Sij wð Þ ¼
*XM

k¼1

Bi ktð Þexp iwktð Þ

�
XM
‘¼1

Bj ‘tð Þexp �iw‘tð Þ
+
; ðB1Þ

giving

Sij wð Þ ¼
XM
k;‘¼1

exp iw k � ‘ð Þt½ �

� 1
P

XP
m¼1

Bi ktþ mMð ÞBj ‘tþ mMð Þ; ðB2Þ

(A3)
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where i is
p�1, and the symbols h i were replaced by

averaging results obtained from P successive time series.
Product Mt was chosen so that it covers an entire
number Q of wave periods according to (A4).
[55] For large P the innermost sum in (B2) is nonzero

only for i = j and ‘ = k. In that case the result is the
variance of the respective component. Otherwise differ-
ent terms of the innermost sum cancel out since each
sample is an independent random variable. The resulting
spectral matrix thus only has three nonzero elements, the
auto-spectra S11 = a2, S22 = b2, and S33 = c2. The SVD of
matrix A from (11) then reads

A ¼ U �W � VT; where ðB3Þ

A ¼

a2 0 0

0 b2 0

0 0 c2

0 0 0

0 0 0

0 0 0

0
BBBBBB@

1
CCCCCCA
; ðB4Þ

U ¼

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

0
BBBBBB@

1
CCCCCCA
; ðB5Þ

W ¼
a2 0 0

0 b2 0

0 0 c2

0
@

1
A; and ðB6Þ

V ¼
1 0 0

0 1 0

0 0 1

0
@

1
A: ðB7Þ

[56] We can see that the diagonal matrix W contains
three nonzero singular values equal to variances of noise
in the respective components. The planarity from (12) is
then F = 1 � c/a, and reflects the ratio of minimum to
maximum standard deviation of noise.

Appendix C: Transformation of Algebraic

SVD Solutions to an Arbitrary Coordinate

System

[57] If we now use arbitrary cartesian coordinate sys-
tem defined by a transformation matrix T,

B0
i ¼

X3
k¼1

TikBk ; ðC1Þ

where B0
i is a vector component in the new system, the

transformed spectral matrix will be S0 ¼ T � S � TT. In
this case the transformed matrix A will be

A0 ¼ T 0

0 T


 �
� A � TT; ðC2Þ

and its SVD transforms as

A0 ¼ U0 �W � V0T; where

U0 ¼ T 0

0 T


 �
� U; ðC3Þ

V0 ¼ T � V:

Since V is a unity matrix in (A5), we have V0 = T, and the
columns of V0 are again the vectors defining the axes of
the polarization ellipse and the wave vector direction in
the new coordinate system. The parameters F and Lp do
not change since the matrix of singular valuesW remains
unchanged after the transformation.
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on./CNRS, Orléans, France, 2000.

Santolı́k, O., and M. Parrot, Case studies on wave propagation

and polarization of ELF emissions observed by Freja around

the local proton gyro-frequency, J. Geophys. Res., 104,

2459–2476, 1999.

Santolı́k, O., and M. Parrot, Application of wave distribution

function methods to an ELF hiss event at high latitudes,

J. Geophys. Res., 105, 18,885–18,894, 2000.

Santolı́k, O., F. Lefeuvre, M. Parrot, and J. L. Rauch, Propaga-

tion of Z-mode and whistler-mode emissions observed by

Interball 2 in the nightside auroral region, J. Geophys. Res.,

106, 21,137–21,146, 2001.

Shawhan, S. D., The use of multiple receivers to measure the

wave characteristics of very-low-frequency noise in space,

Space Sci. Rev., 10, 689–736, 1970.

Stix, T. H., Waves in Plasmas, Am. Inst. of Phys., New York,

1992.

Storey, L. R. O., and F. Lefeuvre, The analysis of 6-component

measurement of a random electromagnetic wave field in a

magnetoplasma, 1, The direct problem, Geophys. J. R. As-

tron. Soc., 56, 255–270, 1979.

���������������������
F. Lefeuvre andM. Parrot, Laboratoire de Physique et Chimie

de l’Environnement, Centre National de la Recherche Scienti-

fique, 3A, Avenue de la Recherche Scientifique, F-45071
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