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Abstract. We present an estimator of the bispectrum, a mea-
sure of three-wave couplings. It is evaluated directly in the
wave number domain using a limited number of detectors.
The ability of the bispectrum estimator is examined numer-
ically and then it is applied to fluctuations of magnetic field
and electron density in the terrestrial foreshock region ob-
served by the four Cluster spacecraft, which indicates the
presence of a three-wave coupling in space plasma.

Keywords. Interplanetary physics (Plasma waves and turbu-
lence) – Space plasma physics (Experimental and mathemat-
ical techniques; Wave-wave interactions)

1 Introduction

Higher order statistics is of great importance in studying non-
linear processes of turbulence. They reflect the shape of
probability distribution functions of fluctuations. Theoreti-
cal treatments of turbulent fields often assume the Gaussian
or almost-Gaussian distribution (called the quasi-normal ap-
proximation) to solve the closure problem of turbulence. In
the frame of weak turbulence the breakdown of the Gaussian
distribution can be interpreted as a sign of phase coherence,
e.g. three-wave or four-wave couplings. Estimating the bis-
pectrum provides the very means to measure the magnitude
of three-wave couplings (see review ofDudok de Wit, 2003).
In laboratory and space plasma physics the method of the bis-
pectrum has been wodely applied: in ionospheric radio emis-
sion (Lagoutte et al., 1989); in laboratory plasmas (Kim and
Powers, 1979; Ritz et al., 1989; Brochard et al., 2006); and
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upstream waves of the Earth’s quasi-parallel bow shock (Du-
dok de Wit and Krasnosel’skikh, 1995). The bispectrum in-
vestigations have been made solely in the frequency domain,
as one uses single point measurements and therefore time se-
ries data. Also, Taylor’s hypothesis is often applied in a flow-
ing medium and the bispectra in the frequency domain reflect
that in the wave number domain. However, the wave-wave
couplings should be examined in the wave number domain,
too, which motivates us to estimate the bispectrum directly
in the wave number domain using only a limited number of
measurement points. For example, with Taylor’s hypothesis
one cannot measure the wave number perpendicular to the
flow. Here we present an estimator of the bispectrum. The
ability of the estimator is examined numerically and then it
is applied to the fluctuations in the Earth foreshock region.
While wave-wave interactions are extensively studied with
simulation dataNariyuki and Hada(2006), to the authors’
knowledge it is the first time that the wave-wave coupling
is identified in the wave number domain with experimental
space plasma data.

2 Estimator of bispectrum

Suppose a scalar fieldA(r, t) is measured by anN point sen-
sor array. The scalar field can be not only density or temper-
ature of the medium but also any components of magnetic
fields or velocity fields. We determine the state vector in the
frequency domain from the measurement as

A(ω) = (A1(ω), A2(ω), · · · , AN (ω)) , (1)

whereAi(ω) denotes the Fourier transform of the scalar field
measured by thei-th sensor into the frequency domain. The
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state vector is then projected into a scalara with a suitable
weight vectorW as

a(ω, k) = W†(ω, k) · A(ω), (2)

where the dagger † denotes the Hermitian conjugate. The
scalara represents the amplitude of a plane wave with fre-
quencyω and wave vectork, retaining phase information.
We use Capon’s weight vector (Capon, 1969)

W (ω) =
R−1(ω)H (k)

H †(k)R−1(ω)H (k)
, (3)

whereH (k) is called the steering vector,

H (k) = (exp(ik · r1), · · · , exp(ik · rN )) (4)

andR(ω) is the covariance matrix of the state vector,

R(ω) = 〈A(ω)A†(ω)〉. (5)

The angular bracket〈··〉 denotes the ensemble average.
In practice the averaging is made over time-subintervals.
Capon’s weight vector stems from an optimization procedure
under a certain constraint. Consider to minimize the mean
square amplitude of the field〈|a|

2
〉 (which is the wave en-

ergy) under constraint that the weight vector serves as a unit
gain, that is

minimize 〈|a|
2
〉 subject to W†

· H = 1. (6)

This problem can be analytically solved by the method of
Lagrangian multiplier, yielding the weight vector in Eq. (3).
SeeHaykin (1991) for its derivation. In principle one could
also find another weight vector in such a way that the third
order moment is minimized under the unit gain constraint,
but the analytical treatment becomes more elaborate. We
choose here Capon’s weight vector for the sake of simplicity.
Capon’s method can be generalized to vector fields (mag-
netic fields, velocities) to determine the wave energy distri-
bution in the frequency and wave number domain, referred to
as the wave telescope (Motschmann et al., 1996; Glassmeier
et al., 2001). The k-filtering (Pinçon and Lefeuvre, 1991) is
another approach to estimate the energy distribution in the
wave number domain.

The projection using the weight vector furthermore en-
ables one to determine higher order moments of the fluctua-
tions. The third order moment, for example, is expressed as
〈aa′(a′′)∗〉, where the asterisk∗ denotes the complex conju-
gate. The prime and the double prime denote that the wave
amplitudes are estimated at different frequencies and wave
numbers. It is worthwhile to note that the third order moment
becomes non-zero only if the three wave fieldsa, a′, and
a′′ are in resonance, satisfying the frequency and the wave
number matching,ω+ω′

=ω′′ andk+k′
=k′′, otherwise the

third order moment vanishes because of random phase mix-
ing. The bispectrum in the wave number domain is obtained
from the third order moment as

F(k, k′) =
1

T 1k1k′

∫ 〈
aa′(a′′)∗

〉
dωdω′, (7)

where1k and1k′ denote the grid size of the wave num-
ber space andT the time length of the measurement. The
factor 1/T 1k1k′ sets the units of the bispectrum properly.
Since the weight vector is dimensionless, the units of the es-
timated amplitude is the same as the Fourier transform of the
field into the frequency domain, whereas the units of the bis-
pectrum are the density of the cubic amplitude in the wave
number domain,(amplitude)3/(wave number)2.

3 Applications

3.1 Numerical test

The quality of the bispectrum estimator is examined with a
numerical test. We generate waves in the magnetic field and
the number density under a three-wave resonance in one-
dimension. This type of wave-wave coupling is typical for
the parametric instabilities of large amplitude Alfvén waves
(Longtin and Sonnerup, 1986; Terasawa et al., 1986; Wong
and Goldstein, 1986). The generated fluctuations are sam-
pled at four discrete spatial points in the system. We then
evaluate the bispectrum based on the time series at the four
points to identify the wave-wave coupling in the wave num-
ber domain.

The first component of the wave fields is a magnetic
field oscillation, and the second component a density oscil-
lation. Their frequencies and wave numbers are randomly
chosen (ω1=0.39 rad/s, ω2=0.21 rad/s, k1=0.0059 km−1,
k2=0.0104 km−1). The third wave component is a mag-
netic field oscillation satisfying the resonance condition
ω1+ω2=ω3, k1+k2=k3. The amplitudes are 10 nT, 1 cm−3,
9 nT for the three wave fields, respectively. These fluctua-
tions are superposed on the background fields (23 nT for the
magnetic field and 5 cm−3 for the density). In addition we
put broadband wave activity with phases random to one an-
other. The fluctuations are sampled at four separate positions
at distance 100 km, 180 km, 290 km, and 375 km. Figure1
displays the time series of the magnetic field and the density
sampled at the sensor 1.

The bispectrum is then estimated from the four-point mea-
surements of the magnetic field and the density fluctuations.
First we compute the third order moment

C(ω, ω′, k, k′) =
〈
b(ω, k)n(ω′, k′)b∗(ω + ω′, k + k′)

〉
, (8)

whereb andn denote the projection of the state vector of the
magnetic fieldB(ω) and that of the densityN(ω′),

b(ω, k) = W
†
b(ω, k) · B(ω) (9)

n(ω′, k′) = W†
n(ω

′, k′) · N(ω′). (10)

We use different weight vectors for the magnetic field and
the density,

W b(ω, k) =
R−1

b (ω)H (k)

H †(k)R−1
b (ω)H (k)

(11)
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Fig. 1. Time series of artificial magnetic field and density fluctua-
tion at the virtual sensor 1.

W n(ω
′, k′) =

R−1
n (ω′)H (k′)

H †(k′)R−1
n (ω′)H (k′)

, (12)

whereRb(ω)=〈B(ω)B†(ω)〉 and Rn(ω
′)=〈N(ω′)N†(ω′)〉.

The bispectrum is obtained by integrating the third order mo-
ment over the two frequency domains,

F(k, k′) =
1

T 1k1k′

∫
C(ω, ω′, k, k′)dωdω′. (13)

We use a constant grid in the wave number domain
1k=1k′

=5×10−3 km−1 (grid size is limited by compu-
tational resource). Figure2 displays the bispectrum for
the numerical data set. The bispectrum exhibits a domi-
nant peak just on the resonance condition (the dotted line),
k+k′

=0.0163 km−1, which confirms the resonance pair of
wave numbers. Our bispectral analysis can identify the loca-
tion of the wave-wave coupling in the wave number domain,
although the broadband wave activity is present.

3.2 Cluster observation in foreshock

The bispectrum estimator is then applied to the fluctuation
in the Earth foreshock region. The foreshock is located
upstream of the Earth bow shock, typically beyond 20RE

(Earth radius, ca. 6400 km) ahead of the Earth, where the
interplanetary magnetic field contacts the bow shock at an-
gles quasi-parallel to the shock normal direction. The fore-
shock is one of the active regions of large amplitude Alfvén
waves, since the backstreaming ions from the shock against
the solar wind flow provides an energy to excite the Alfvén
waves. It is likely that the foreshock exhibits wave-wave cou-
pling processes, as identified bySpangler et al.(1997) in the
frequency domain. We use the magnetic field measurement
(Balogh et al., 2001) and the electron density measurement
(Décŕeau et al., 2001) on board the four Cluster spacecraft
(Escoubet et al., 2001). In the time interval 18 February

Fig. 2. Bispectrum for the numerical test. The x- and y-axes are
the wave number of the magnetic field and the density fluctuation,
respectively.

Fig. 3. Time series of the magnetic field magnitude (top), the fluc-
tuation perpendicular to the mean field (middle), and the electron
density fluctuation (bottom) obtained by Cluster-1 in the foreshock
region.

2002, 18:05–18:35 UT Cluster encountered the foreshock re-
gion in its outbound orbit. The spacecraft separation is about
100 km. The background quantities are 10 nT for the mag-
netic field and 16 cm−3 for the electron density. Figure3
displays the time series of the magnetic field (magnitude and
perpendicular component) and the electron density used in
the analysis.

www.ann-geophys.net/26/3389/2008/ Ann. Geophys., 26, 3389–3393, 2008



3392 Y. Narita et al.: Bispectrum

Fig. 4. Bispectrum for the Cluster observation in the foreshock
with the same style as Fig.2. The dotted line denotes the level of
95% confidence.

The bispectrum is determined with the same procedure as
that of the numerical test, with the grid size 5×10−5 km−1

(here the grid size is again limited by the computational re-
source). We use the perpendicular component of the mag-
netic field and the electron density fluctuation associated with
wave vectors parallel to the magnetic field. The result is dis-
played in Fig.4. A peak is identified at the pair of wave num-
bers aroundkb=3.5×10−4 km−1 and kn=6.5×10−4 km−1

for the magnetic field and the density fluctuations, respec-
tively. Figure 4 also shows the 95% confidence level about
the peak. We assume a normal distribution for the evaluation
of the bispectrum and use 16 degrees of freedom in frequency
estimates (the number of time sub-windows) and in addition
256 in bispectrum estimates. The distribution of the bispec-
trum tends to be aligned to a resonance line (straight line with
the slope−1, see the dotted line in Fig.2), but the alignment
is slightly steeper than the resonance line.

4 Conclusions

The bispectral analysis provides useful information about
wave-wave interactions. However, one should be careful in
that the bispectum is a necessary but not a sufficient condi-
tion for having three-wave interactions. A nonlinearity in the
detector, for example, may give rise to a non-zero bispec-
trum (Walker et al., 2002), or one may have four-wave inter-
actions. Also, the higher order moments may be remnants of
wave-wave interactions that took place somewhere upstream
and were convected by the flow. However, our method can
successfully identify a peak in experimental space plasma
data within the limit of the confidence level, which is an in-
dication that the three-wave coupling may really be present
in space plasma.

Although the number of measurement points is too small
to perform the Fourier transform from the spatial coordinate
into wave numbers, it is possible to estimate the higher order
moments in the wave number domain. This method is useful
even in regions like the solar wind where Taylor’s hypothe-
sis generally holds because with this hypothesis one can esti-
mate wave numbers in the flow direction and not perpendicu-
lar to the flow. Therefore it is worthwhile performing the bis-
pectral analysis in the wave number domain even in the fore-
shock or the solar wind. Our method can be used to study the
parametric instabilities of large amplitude Alfvén waves, in
which a parent Alfv́en wave collapses into a sound wave and
daughter Alfv́en waves (Longtin and Sonnerup, 1986; Tera-
sawa et al., 1986; Wong and Goldstein, 1986) in the regions
of foreshock (Spangler et al., 1997) or solar wind (Marsch
and Tu, 1997).
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