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Abstract. This paper describes a general-purpose algorithm
for computing the gradients in space and time of a scalar
field, a vector field, or a divergence-free vector field, from
in situ measurements by one or more spacecraft. The algo-
rithm provides total error estimates on the computed gradi-
ent, including the effects of measurement errors, the errors
due to a lack of spatio-temporal homogeneity, and errors due
to small-scale fluctuations. It also has the ability to diagnose
the conditioning of the problem. Optimal use is made of the
data, in terms of exploiting the maximum amount of infor-
mation relative to the uncertainty on the data, by solving the
problem in a weighted least-squares sense. The method is
illustrated using Cluster magnetic field and electron density
data to compute various gradients during a traversal of the
inner magnetosphere. In particular, Cluster is shown to cross
azimuthal density structure, and the existence of field-aligned
currents in the plasmasphere is demonstrated.

Keywords. Magnetospheric physics (Magnetospheric con-
figuration and dynamics; Plasmasphere; Instruments and
techniques)

1 Introduction

This paper deals with the computation of gradients of phys-
ical quantities (scalar or vector fields) that are measured in
situ at different times and positions. This topic has gained
importance in the context of recent magnetospheric multi-
spacecraft missions, in particular the Cluster mission con-
sisting of four identical spacecraft, flying in formation. The
rationale behind this mission is the idea that exactly four si-
multaneous measurements are needed to determine the three
spatial gradient components, at least if the four spacecraft
are not coplanar. Methods to do so have been developed
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(Harvey, 1998; Chanteur, 1998; Chanteur and Harvey, 1998;
Robert et al., 1998a). Such gradient computations are diffi-
cult for a number of reasons: (1) Four simultaneous measure-
ment points are required. A smaller number of spacecraft is
insufficient, while the method also cannot properly take ad-
vantage of a larger number of spacecraft if available. For
those Cluster instruments that are not operating on the four
spacecraft, this instantaneous spatial gradient computation is
therefore precluded. Also, data are never obtained exactly
simultaneously, a problem that is usually dealt with by time
averaging or interpolation. (2) One never computes a gra-
dient, but rather a spatial difference representing the average
gradient over a length scale fixed by the spacecraft separation
distances, usually different in each space dimension. This
scale often does not correspond to the physical scale size of
interest. (3) The method applies only if the so-called spatial
homogeneity condition is satisfied, that is, it computes an
average gradient over the spacecraft separation length scale,
but that is only useful if the true gradient does not differ too
much from the average one. (4) Computing differences is no-
toriously difficult. Subtracting two similar data values leads
to a relative error on the difference that may be much larger
than the error on the original data. This is especially true
for spacecraft that are very close together, a situation often
required to satisfy the spatial homogeneity condition. A dif-
ference can therefore be reliably computed only when both
random and systematic errors on the data are very small.
This necessitates accurate data intercalibration between the
spacecraft, something that can be difficult to achieve as the
operating conditions on each spacecraft tend to be different.
Systematic gradient computations with Cluster have there-
fore been applied only to magnetic field data (FGM instru-
ment; Balogh et al., 1997, 2001) with its low measurement
error and good intercalibration (especially the curlometer;
Dunlop et al., 2001, 2006; Dunlop and Balogh, 2005; Val-
lat et al., 2005) and to electron density data obtained from
the plasma frequency (WHISPER instrument;Décŕeau et al.,
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Fig. 1. The least-squares gradient algorithm uses data acquired in a set of points in space-time, represented

here as a 2-dimensional space (x1, x2). In this example, the data are obtained along the trajectories of three

spacecraft (red dots on the dotted lines), although that does not matter for the method. The homogeneity

condition is expressed by associating with each data point an error that grows with the distance fromx0, the

point where the gradient is computed. This distance, however, is measured in a frame (l1u1, l2u2) that may be

rotated and scaled relative to the original frame. Points on the ellipse with semi-axesl1 andl2 are assigned a unit

distance. Points inside the ellipse (dark shaded area) correspond to smaller distances and therefore a smaller

error. Points outside that ellipse (lightly shaded region) will have a larger error so that they are less relevant,

thus reflecting the homogeneity condition. Points outside the shaded regions are considered irrelevant.
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Fig. 1. The least-squares gradient algorithm uses data acquired in
a set of points in space-time, represented here as a 2-dimensional
space (x1, x2). In this example, the data are obtained along the tra-
jectories of three spacecraft (red dots on the dotted lines), although
that does not matter for the method. The homogeneity condition is
expressed by associating with each data point an error that grows
with the distance fromx0, the point where the gradient is com-
puted. This distance, however, is measured in a frame (l1u1, l2u2)
that may be rotated and scaled relative to the original frame. Points
on the ellipse with semi-axesl1 andl2 are assigned a unit distance.
Points inside the ellipse (dark shaded area) correspond to smaller
distances and therefore a smaller error. Points outside that ellipse
(lightly shaded region) will have a larger error so that they are less
relevant, thus reflecting the homogeneity condition. Points outside
the shaded regions are considered irrelevant.

1997, 2001; Trotignon et al., 2003) because of their abso-
lute calibration (Darrouzet et al., 2006b). (5) Additional er-
rors arise due to the lack of synchronization of the spacecraft
clocks, the nonzero duration over which data are gathered,
and the uncertainties in the spacecraft positions. The impact
of these errors may be hard to quantify, especially because
they may not be statistically independent. Such errors tend to
be relevant for short time scales and small separations only.

This paper describes an alternative way to determine the
gradient obtained by relaxing the requirement of simultane-
ity of the observations. This is achieved by formulating the
concepts of temporal and spatial homogeneity in a more gen-
eral way. By using all observations in a region of space-time
over which the spatial and temporal gradients are essentially
constant over prescribed length and time scales, an overde-
termined system of equations is obtained from which the gra-
dient can be computed in a least-squares sense. In principle,

data from an arbitrary number of spacecraft can be exploited.
It is possible to attempt to compute gradients on length and
time scales that match the physical scales of interest. In any
given practical situation the method will find out whether
such gradients can actually be computed with the available
data. For in situ measurements by the Cluster spacecraft in
a medium that is at rest, for instance, the scales along the
spacecraft orbit will usually be limited by the time resolution
of the data, while the scales perpendicular to the velocity will
be dictated by the orbital separations. Proper error estimates
are derived that account for the measurement errors, for the
errors due to the fact that the gradient is not constant over
the region in which measurements are available, and for the
effect of small-scale structures and perturbing wave fields. It
is also possible to take into account geometrical and spatio-
temporal constraints.

In Sects.2–5, the method is presented in a formal math-
ematical way. We use linear algebra techniques (such as
eigen-decomposition and singular value decomposition) and
therefore adopt the standard linear algebra notation: Bold
lower-case symbols represent vectors, bold upper-case sym-
bols are matrices, other symbols denote scalars. Sections6–8
illustrate the application of the method for scalar fields, for
vector fields, and for divergence-free vector fields with Clus-
ter examples for a pass through the inner magnetosphere.

2 The problem for scalar fields

One or more spacecraft sample a scalar fieldf (x, t) at
positions and timesxi=[xi; yi; zi; ti], i=1, . . . , N , in 4-
dimensional space-time. The case of vector fields is dis-
cussed later. The measurementsfi have known error vari-
ancesδf 2

meas,i . Data intercalibration removes all systematic
errors (we disregard clock synchronization and spacecraft
position errors).

The gradient∇xtf =[∂f/∂x; ∂f/∂y; ∂f/∂z; ∂f/∂t] at a
point x0 can be computed by combining all measurements
made inside a region in which the gradient does not change
appreciably. This region is the “homogeneity domain”. Its
size is determined by physical considerations. It can be de-
scribed by a 4-dimensional ellipsoid, that is, by four mutually
orthonormal directionsuj and the corresponding scaleslj ,
specifying the axes of the hyperellipsoid. This is illustrated
in Fig. 1 by means of an analogy in 2-dimensional space. In
this example, the points (red dots) are obtained along the tra-
jectories of three spacecraft (dotted lines), although that does
not matter for the method. The points inside the homogeneity
domain (represented by the dark shaded ellipse) can safely
be used to compute the gradient inx0. Rather than accepting
points inside the homogeneity domain for the computation
and rejecting points outside, we will use a more gradual ap-
proach. With each data point, we will associate an error that
grows with the distance fromx0. This distance, however,
is measured in a frame (l1u1, l2u2) that may be rotated and
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scaled relative to the original (x1, x2) frame. This frame will
be called theβ-frame, and the unit coordinate vectors of this
frame are exactly the semi-axes of the elliptical homogeneity
domain. Points on the border of the homogeneity domain are
assigned a unit distance. Points inside the ellipse correspond
to smaller distances and therefore a smaller error. Points far-
ther outside that ellipse have a larger error so that they are of
progressively diminishing relevance, thus reflecting the ho-
mogeneity condition.

The transformationxβ
=Px, where P=(UL)−1 with

orthonormal matrix U=[. . . uj . . .] and diagonal matrix
L=diag(lj ) (this notation means: the diagonal ma-
trix with the lj on the diagonal) represents the tran-
sition from the original frame to the new frame, de-
noted by superscriptβ, in which the homogeneity do-
main is the unit hypersphere. The corresponding gra-
dient operator is∇

β
xt=P−1>∇xt=LU>∇xt . The dis-

tance measure that is needed to express the homogene-
ity condition assigns to each vectorx a length or norm
‖x‖β=

√
xβ>xβ=

√
x>UL−2U>x.

Homogeneity considerations in time are often sep-
arable from spatial homogeneity. One of theuj

must then be[0; 0; 0; 1]. If the time scale islt=τ

and if the three spatial homogeneity scales are
lx=ly=lz=ξ , the transformation is simply a rescaling
P=diag([1/ξ, 1/ξ, 1/ξ, 1/τ ]). Theβ-norm of a given vec-

tor x then is ‖x‖β=

√
(x/ lx)2+(y/ ly)2+(z/ lz)2+(t/ lt )2.

We will refer to this particular case as the standard isotropic
homogeneity case.

If f satisfies the appropriate analyticity conditions near
x0, it can be locally approximated by a Taylor expansion.
With 1xi=xi−x0, and denoting the function value and the
gradient atx0 by f0 and∇xtf0, this becomes

fi = f0 + 1xi
>
∇xtf0 + ri, (1)

where the residual isri=O(‖1xi‖
2). This leads to a system

of N equations forf0 and∇xtf0, i.e.,M=5 unknowns:

r = f0+1X>
∇xtf0 −f = f0+1Xβ>

∇xt
βf0 −f = 0 (2)

where1X=[. . . 1xi . . .] groups all relative positions andf
denotes all measurements. The homogeneity domain can
usually be chosen big enough so thatN�M: The system is
overdetermined and can never be satisfied exactly. However,
the gradient can be computed in a least-squares sense (min-
imization of r>r). Expressing this system in theβ-frame
(the dimensionless form) is preferable from the numerical
point of view (since all system matrix elements then are of
order unity). Although system (2) is usually overdetermined,
it may still be ill-conditioned. Such ill-conditioning can of-
ten be avoided by adding a priori knowledge in the form of
constraints. In the case of Cluster it may become possible
to compute gradients with only three, two, or even a single
spacecraft, depending on the number of constraints. We will
not use such constraints in the present paper, but AppendixA
explains how they can be incorporated.

3 Approximation errors

In order to obtain the gradient, we approximate the scalar
field f , with all its space-time variations, by a local linear
approximation. There are two aspects to this approximation:
The function might have variations at scales smaller than the
specified homogeneity scale (this variability usually cannot
be evaluated completely from the measurements, so a sta-
tistical approach is needed to estimate its effect), and there
is also the curvature off at the homogeneity scale itself,
which is why the linear approximation is only valid inside
the homogeneity domain. Both contribute to the total “ap-
proximation error”; the small-scale errors are the “fluctuation
errors” and the errors due to the linear approximation are the
“curvature errors”. We will therefore write the scalar field as
f =fhs+δfls+δfss, the sum of the linear fieldfhs at the ho-
mogeneity scale (i.e. the linear approximation), a deviation
δfls due to variations at larger scales, and a small-scale field
δfss.

3.1 Structure at large scales

Structure at large scales (1xβ
=‖1x‖β≥1) is properly repre-

sented by the Taylor expansion of Eq. (1). With the constant
fc indicating how muchf changes over the homogeneity do-
main due to the higher-order terms in the expansion (function
curvature), the curvature error is estimated as

δf 2
ls(1xi) ≤ f 2

c (1x
β
i )4,

so that the linear approximation is valid when1x
β
i <1 but not

much beyond that. The curvature error is completely deter-
mined by the homogeneity conditions through theβ-norm.
The user must specify the value offc based on physical con-
siderations. This may not be trivial, as will be discussed in
Sect.6 and in the Conclusions. Note that the value offc is
linked to the homogeneity lengths: halving the homogeneity
lengths is equivalent to multiplyingfc by a factor of four.
In principle, the curvature errors at the various sampling po-
sitions are not statistically independent, but since nothing is
known about them a priori, their cross-correlations are ig-
nored here. This is justified even more so because, as ex-
plained in Sect.5, only little weight will be given to data
points far fromx0 for which the cross-correlations would be
large.

If the system is intrinsically changing on a short time scale,
shorter than the sampling time scale (time-separable case
with lt<tsample), successive measurements cannot be related
to each other since the system has changed in between. The
homogeneity condition therefore indicates that only simulta-
neous measurements can be used for computing the gradient.
Indeed, data taken at a different time have a large curvature
error becausetsample/lt and therefore1xβ is large. When
using only simultaneous data, the last row in1X vanishes
so that∂f/∂t remains undetermined. For four spacecraft
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this corresponds to the classical spatial gradient computation
(Harvey, 1998; Chanteur, 1998; Chanteur and Harvey, 1998).

3.2 Structure at small scales

Small-scale structure is often present, for instance in the form
of small-amplitude waves or turbulence. Small-scale per-
turbations are usually under-sampled, so their influence on
gradient precision must be characterized with a stochastic
model.

The δfss(x) can be thought of as the superposition of in-
dividual perturbations, each with length scalesλj along mu-
tually orthogonal directions, which we take to be the homo-
geneity directionsuj for the sake of simplicity, and with am-
plitudeδfssλ(λ, x):

δfss(x) =

∫
λ

δfssλ(λ, x) dλ.

Let the population of perturbationsδfss be character-
ized by typical length scaleŝλ. We can then in-
troduce a new reference frameγ , similar to frame β

but with different axis scaling, which leads to a norm
‖x‖γ =

√
x>U3−2U>x where 3=diag(λ̂). Restricting

ourselves to distributions that are isotropic inγ -space
and assuming that the perturbation amplitudes do not
vary appreciably over the homogeneity domain, one has
〈(δfssλ(λ, x))2

〉=δf 2
λ (λγ ) everywhere, withλγ

=‖λ‖γ and
where the acute brackets identify the expected value for
the population of perturbations. Because of the local-
ity of the perturbations,〈δfssλ(λ, xi)δfssλ(λ, xj )〉≈δf 2

λ (λγ )

when1x
γ

ij=‖xj−xi‖γ �λγ and zero when1x
γ

ij�λγ . Ap-
pendixB computes that, for a distribution with perturbation
strengthδf 2

λ (λγ ) decreasing exponentially, the covariances
are

〈δfss(xi)δfss(xj )〉 = f ∗2e−1x
γ
ij ,

with f ∗2 the total perturbation variance. The cross-
correlation is large between nearby points and vanishes as
their distance exceeds the perturbation length. Better mod-
els are possible if the type of perturbation (e.g. a particular
wave mode) is known a priori. In such cases it would be best
to compute the gradients of several wave field components
simultaneously, coupled through the wave relations.

4 The problem for vector fields

The gradients of the individual components of a vector field
can be obtained by treating each component individually as
a separate scalar field under the simplifying assumption that
the curvature errors are not correlated (or that one does not
know a priori how) and that the small-scale perturbations for
the different components are uncorrelated as well (which is
not really true if they are due to a particular wave mode). Dif-
ferent homogeneity parameters for each of the components

(differentuj , lj , fc, λ̂j , f ∗) could be used. Here, the discus-
sion is limited to the case of identical values. The number
of unknowns at each point isM=3×5=15. For divergence-
free vector fields (such as the magnetic field) the gradients
of the vector components must be computed simultaneously,
subject to the constraint that the divergence vanishes, so that
M=14.

Computing the curl and the divergence of the vector field
poses an additional difficulty. As the divergence and each of
the components of the curl are sums of terms of the same or-
der of magnitude, but possibly with opposite sign, the relative
error on the result can be larger than the relative errors on the
individual gradient components, which themselves are dif-
ferences of similar values and have a significant uncertainty.

5 Solving the overdetermined system

The overdetermined system (2) expressingN measurements
of a scalar field (the number of equations) can be written as

r = Aq − f = 0, (3)

with A =
[
1, 1Xβ>

]
and whereq=[f0; ∇

β
xtf0] is the vector

of M=5 unknowns. The total error onfi as used in the gradi-
ent computation atx0 is δf 2

i =(δfmeas,i)
2
+f 2

c (1x
β
i )4

+f ∗2,
in which the terms represent the independent contribu-
tions of measurement error, curvature error and fluctua-
tion error. In addition, there are the cross-correlations

δf 2
ij=f ∗2e−1x

γ
ij . These estimates give theN×N correlation

matrixCf =〈δf δf >
〉, which is real, symmetric, and positive

definite. It is strongly diagonal dominant if theδfmeas,i and
fc are large, iff ∗ is small, or if theλ̂j are small. AsN may
be large, significant computing time and storage savings can
be achieved by setting the off-diagonalsδf 2

ij to zero if1x
γ

ij

is above an appropriately chosen limit, thus ignoring small

cross-correlations (typically e−1x
γ
ij <10−4).

The eigen-decompositionCf =W>D2W is computed,
whereW contains the orthonormal eigen-vectors and where
the non-negative eigen-values, which are denoted byd2

i , con-
stitute the diagonal matrixD2

=diag(d2
i ). This is trivial if Cf

is diagonal, i.e., when we do not consider small-scale fluc-
tuations. Applying operatorW on the left to the vectorsr,
f , andAq in the overdetermined system (3), the errors on
the transformed residuals are now statistically independent,
so that thei-th equation represents an individual piece of in-
formation corresponding to a covarianced2

i . A further oper-
ation byD−1 on the left normalizes the residuals so that they
all have unit variance, by dividing each by its error estimate.
The resulting weighted system is

r̃ = Ãq − f̃ = 0, (4)

where Ã=D−1WA, f̃ =D−1Wf , and r̃=D−1Wr. Per-
forming the equivalent operations on the correlation ma-
trix Cf givesC̃f =D−1WCf WD−1

=I: There are no cross-
correlations, and the variances are unity. The least-squares
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method minimizesr̃>r̃ so that equations with less rele-
vant information (d2

i large) will hardly play a role. Large
measurement errors and short-scale fluctuations reduce the
weights, and data points outside the homogeneity domain
have such important curvature errors that their weight is neg-
ligible, thus ensuring that the information used for comput-
ing the gradient comes from within the homogeneity domain.
Consider the situation depicted in Fig.1. Spacecraft 2 passes
nearx0 and has three points inside the homogeneity domain
(the dark shaded ellipse), the middle of which carries only
measurement and fluctuation errors while the curvature error
is small there. Spacecraft 1 does not have any point inside
the homogeneity domain. Nevertheless, its data points just
outside the homogeneity domain (in the light shaded region)
will also appear in the overdetermined system. As their cur-
vature errors are larger, their weights will be smaller. They
therefore contribute only a limited amount of information in
the computation of the gradient.

The least-squares solution is obtained by formally solving
the overdetermined system as

q = (Ã>Ã)−1Ã>f̃ .

In practice, computingÃ>Ã (an M×M symmetric posi-
tive semidefinite matrix) is avoided because it implies sums
with many terms and therefore a potential loss of precision.
The standard method is to compute a decompositionÃ=QR,
where Q is a unitaryN×M matrix and R is an M×M

upper triangular matrix with the so-called economy-size
QR-algorithm. One can then easily computeÃ>Ã=R>R.
This symmetricM×M matrix can be inverted by comput-
ing its singular value decompositioñA>Ã=V>S2V, where
S=diag(sj ) are the singular values andV is unitary, so that

q = V>S−2VÃ>f̃ . (5)

The correlation of errors on the result isCq=(Ã>Ã)−1,
from which the errors on the result can be estimated as
δq=

√
diag(Cq) by ignoring the cross-correlations be-

tween the solution components. Fromq=[f0; ∇
β
xtf0]

and δq=[δf0; δ(∇
β
xtf0)], the gradient and the er-

ror estimates are found as∇xtf0=UL−1∇
β
xtf0 and

δ(∇xtf0)=UL−1δ(∇
β
xtf0).

As can be seen from Eq. (5), the solution is obtained by
applying the transformationV>S−2V to the weighted data
Ã>f̃ . SinceV is unitary, the conditioning of the problem is
completely determined by the singular valuessj . If a singu-
lar value is small, the propagation of errors in the associated
direction is important. For spatial gradient computations us-
ing simultaneous data from the four Cluster spacecraft, the
concepts of planarity and elongation of the spacecraft tetra-
hedron have been used as a diagnostic for the well-posedness
of the problem (Robert et al., 1998a,b), which have the ad-
vantage of being easily visualized. The singular values, how-
ever, provide an abstract but general diagnostic that works

for an arbitrary number of spacecraft and in the presence of
constraints (AppendixA). We therefore define the condition
number

cond= min
j

s2
j / max

j
s2
j . (6)

Even when the problem is close to singular (condition num-
ber small) the method produces a valid result, but the error
estimates on the result (or, at least, on some of its compo-
nents) will be large. As results with too large errorbars are
useless, computations with cond<10−5 are ignored.

The technique described here is based on an unconstrained
approximation off . If the scalar field is strictly positive, it
is best to apply the technique tōf = logf , with δf̄ =δf/f .
The results are transformed back using∇xtf =ef̄ ∇xt f̄ and
δ(∇xtf )=ef̄

[δ(∇xt f̄ )+δf̄ ∇xt f̄ ].
When computing the gradients of the three components of

a vector fieldB, supplemented by the condition∇·B=0, the
overdetermined system is


1 1Xβ> 0N×5 0N×5

0N×5 1 1Xβ> 0N×5

0N×5 0N×5 1 1Xβ>

0 u1
>/l1 0 u2

>/l2 0 u3
>/l3




Bx0

∇
β
xtBx0
By0

∇
β
xtBy0
Bz0

∇
β
xtBz0


=


Bx,N×1
By,N×1
Bz,N×1

0



with a 3×3 block-diagonal coefficient matrix supplemented
by the zero-divergence condition.

In the particular situation in which all data have been ac-
quired simultaneously, the coefficients of the time derivatives
are all zero and no information about the time variations can
be extracted. The corresponding unknowns can be removed
from the system, so thatM=4 for the gradient of a scalar
field, M=12 for a vector field, andM=11 for a divergence-
free vector field.

6 Gradients of a scalar field

In this section, we consider the passage of the four Clus-
ter spacecraft through the inner magnetosphere on 7 August
2003, from 06:00–11:00 UT, with perigee around 08:05 UT.
A subinterval of this passage has been studied earlier by
Darrouzet et al.(2006b). We focus on the gradients of
the magnetic field strength|B| obtained by the FGM mag-
netometer and of the electron densityne derived from the
plasma frequencyfp measured by the WHISPER instru-
ment. The spacecraft separation distances were on the order
of 200×400×1000 km in the GSEX, Y , Z directions near
perigee. The spacecraft cross the inner magnetosphere from
the south to the north. Figure2 shows that|B| reaches a local
minimum andne a maximum around perigee, at a geocen-
tric distance of about 4.53RE . Near perigee, the spacecraft
enter the outer regions of the plasmasphere (Kp=2+, down
from 6− one day before, indicating post-storm recovery, a
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Fig. 2. Cluster observations during a pass through the inner magnetosphere on August 7, 2003, from 06:00–

11:00 UT, with perigee around 08:02 UT: (a) magnetic field strength|B| obtained from the FGM magnetometer,

and (b) electron densityne computed from the plasma frequency as identified by the WHISPER instrument.

The spacecraft separation distances were200 × 400 × 1000 km in the GSEX, Y , Z directions near perigee.

|B| reaches a local minimum andne a maximum around perigee (C1 - black, C2 - red, C3 - green, C4 - blue).

The bottom scale gives theL-shell position of the center of the Cluster tetrahedron (forL < 10, elsewhereL

cannot be determined accurately).
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Fig. 2. Cluster observations during a pass through the inner magnetosphere on 7 August 2003, from 06:00–11:00 UT, with perigee around
08:02 UT:(a) magnetic field strength|B| obtained from the FGM magnetometer, and(b) electron densityne computed from the plasma
frequency as identified by the WHISPER instrument. The spacecraft separation distances were 200×400×1000 km in the GSEX, Y , Z

directions near perigee.|B| reaches a local minimum andne a maximum around perigee (C1 – black, C2 – red, C3 – green, C4 – blue). The
bottom scale gives theL-shell position of the center of the Cluster tetrahedron (forL<10, elsewhereL cannot be determined accurately).

situation in which the plasmapause typically is located rather
close to Earth). The plasma encountered near perigee (be-
tween 07:40 and 08:40 UT) is of plasmaspheric origin, as in-
dicated by the Cluster plasma spectrometers. CIS/CODIF on
Cluster 4, for instance, detects He+ and O+. The spectrom-
eters also indicate corotating flow of a few km/s, although
the measurements are not very precise since the instruments
miss a major fraction of the cold plasma distributions due
to spacecraft potential effects. The|B| profiles are smooth
with minor variations at the begin and the end of the pass,
when the spacecraft are outside the plasmasphere and sample
higherL-values at higher magnetic latitudes, and wherene is
low. FGM is very precise and well calibrated. Spin-averaged
magnetic field data (4 s time resolution) are used here. The
measurement error on the components is 0.1 nT while the un-
certainty on|B| is 0.15 nT (< 0.05 %). These data appear to
allow an accurate gradient determination since the magnetic
field values registered by the four spacecraft at any given
time differ by up to 10 nT, larger than the measurement er-
rors. The measurement error onfp is the 163 Hz discretiza-
tion error (half of the frequency resolution of WHISPER).
Additional errors due to the possible misidentification of the
plasma frequency line in the WHISPER spectrograms have
been kept to a minimum as the algorithms for plasma fre-
quency detection have matured (Trotignon et al., 2001, 2003,
2006; Rauch et al., 2006). The relation between densityne

and plasma frequencyfp is

ne[cm−3
] = (fp[kHz]/9.0)2,

from which δne/ne=2δfp/fp. The peak density is almost
70 cm−3 with an error of 0.3 cm−3. The relative error is
smallest for these high densities, typically 0.4 %, and in-
creases up to 20 % for lower densities near the detection
limit.

First consider the standard isotropic homogeneity case
with a characteristic spatial scalelx=ly=lz=500 km. The
homogeneity time scale depends on the time it takes struc-
tures to convect over these spatial scales as well as on in-
trinsic temporal changes. For typical plasmaspheric con-
vection velocities of a few km/s, a homogeneity time scale
lt=60 s seems to be a natural choice compatible with the
spatial scale. This is also sufficient to resolve the intrin-
sic temporal behaviour of plasmaspheric refilling (hours)
or electric field reconfigurations involved in the creation of
medium and large structures (tens of minutes). The ter-
restrial dipole field strength at the equator isB=Beq/L

3

(whereBeq is the equatorial field strength at the surface),
so thatd2B/dL2

=12Beq/L
5 from which we obtain a typ-

ical curvature error estimatefc=12Beq(lx/RE)2/L5
∼1 nT

for lx=500 km andL=5. A limitation of the present ap-
proach is that only a constantfc can be specified, while in
reality it can vary from point to point. No small-scale fluc-
tuations are considered,f ∗

=0. In principle, all data points
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Fig. 3. Computation of∇xt |B| every 60 s with isotropic homogeneity domain (see text).(a) magnetic field strength|B| at the moving center
of the homogeneity domain;(b) effective scale factorSeff; (c) number of equationsN in the overdetermined system, where each curve refers
to a thresholdσk , with darker color shade asσk increases;(d) effective number of equationsNeff; (e) problem condition number for each
σk ; (f) magnitude of the spatial gradient|∇|B||, with growing error bars and gap in the computed gradient due to spacecraft coplanarity;
(g) temporal gradient∂|B|/∂t . The bottom scale gives theL-shell position of the center of the Cluster tetrahedron.

can be included in the weighted system for determining the
gradient at a given point. As the weights of most points are
negligible, however, it is computationally more efficient to
include only those points with a relative variance satisfying

ρi = δf 2
i / min

j
δf 2

j < σk,

where theσk is a series of increasing threshold values. In the
example sketched in Fig.1 this threshold corresponds to the
outer ellipse: All points included in the computation form
a set that is larger than the homogeneity domain (assuming
that the measurement and fluctuation errors for all points are
the same, otherwise there exists no simple geometrical rep-
resentation). In practice, we use 5 logarithmically spaced
valuesσk from 2 up to 100, for each of which the gradient
is computed. The gradient computation is thus repeated with
the outer ellipse being progressively expanded. The result is
most precise for the largest threshold (largestN ). Solving
the problem for allσk allows us to assess whether the largest

threshold is too low (a better result could be obtained) or un-
necessarily large (computationally inefficient). Figure3 il-
lustrates the computation of∇xt |B|. It has been determined
every 60 s. The magnetic field strength at the moving center
of the homogeneity domain is a spatio-temporal average of
the observed values (panel a). In order to find the physical
scales of this averaging process, note that the region from
which the weighted least-squares method will take most of
its information (where homogeneity-scale error≤ measure-
ment error+ fluctuation error) has a diameter or effective
scale sizeDj in the j -th homogeneity direction that can be
computed from

(Dj/lj )
4

= 16(δf 2
meas+ f ∗2)/f 2

c = S4
eff,

whereSeff is called the effective scale factor. It is about 0.8
in this example (panel b). Ifδfmeas,i , fc, andf ∗ are of the
same order of magnitude,Seff ∼ 1 so that the effective scales
correspond to the homogeneity scales. A general property
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Fig. 4. Computation of∇xt |B| with isotropic homogeneity domain (red), anisotropic domain (green), and anisotropic domain with small-
scale fluctuations (blue) (see text).(a) condition number;(b–d) magnitude of spatial gradient|∇|B||; (e–g)temporal gradient∂|B|/∂t . The
bottom scale gives theL-shell position of the center of the Cluster tetrahedron.

is that Seff becomes smaller asfc becomes larger, reflect-
ing the equivalence between small homogeneity scales with
a smallfc on the one hand, and larger homogeneity scales
with a largerfc on the other hand. The number of equa-
tionsN actually used to compute the gradient (panel c, each
curve refers to aσk) increases withσk. A measure for the
amount of information used is the effective number of equa-
tionsNeff=

∑
i 1/ρi , which is the sum of the inverse relative

variances of the corresponding equations, so thatNeff≤N

(panel d). For ever largerσk, Neff increases, but the rel-
ative gain decreases as the added equations have progres-
sively lower weights. The convergence of theNeff-curves in-
dicates that maxk σk=100 is well-chosen. Figure3e presents
an overview of the condition number as defined by Eq. (6).
For lowσk (N small, not necessarily using data from the four
spacecraft) the problem is almost singular (cond∼10−16), but
for largerσk the condition number becomes very reasonable,
typically 10−3. It remains below 10−5 in the time interval
09:30–09:45 UT, so that the gradient cannot be sensibly com-
puted there. The growing errorbars on the magnitude of the

spatial gradient,|∇|B||, correspond to this ill-conditioning
(panel f), while no such large errorbars are present for the
temporal gradient,∂|B|/∂t (panel g). This ill-conditioning
is due to a purely spatial effect, namely the near-coplanarity
of the spacecraft during this period. Elsewhere, the spatial
gradient is well computed, with a value around 0.04 nT/km.
The errorbars are on the order of 10%, but growing where the
condition number gets worse. The temporal gradient varies
around zero with an amplitude of<0.01 nT/s.

Medium-scale structures in the plasmasphere are often
aligned with the magnetic field, especially at the rather low
latitudes that Cluster is sampling here. It therefore makes
sense to use an anisotropic homogeneity domain that is
aligned with the magnetic field, withlx=ly=500 km perpen-
dicular to B and lz=2000 km parallel toB. In addition,
we may consider small-scale fluctuations. Their character-
istic scales are taken to be 1/5th of the homogeneity scales
(λ̂x=λ̂y=100 km, λ̂z=400 km, λ̂t=12 s) andf ∗

=0.2 nT.
Figure 4 summarizes the results for the isotropic case, the
anisotropic case, and the anisotropic case with fluctuations
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Fig. 5. Computation of∇|B| with anisotropic homogeneity domain and fluctuations (red), with the instantaneous gradient version (green),
and with the instantaneous version with fluctuations (blue) (see text).(a) condition number;(b–d) magnitude of spatial gradient|∇|B||. The
bottom scale gives theL-shell position of the center of the Cluster tetrahedron.

(panels b, c, d and e, f, g, respectively). There is not much
difference between the gradients themselves. Yet, more data
points are available wherever the spacecraft trajectories are
aligned with the direction of largest extent of the homogene-
ity domain (the magnetic field direction), i.e. near perigee.
Consequently,N is larger there and the condition number
improves (panel a). The error margins are smaller (down to
8% on the spatial gradient magnitude) because largerN im-
plies more accurate averaging and because the total errors on
the data are smaller. Adding fluctuations increasesN and
leads to a systematic improvement of the condition number.
The error margins increase a little to about 10% on the spatial
gradient magnitude.

As discussed in Sect.5, the least-squares method can also
be used to obtain the traditional instantaneous spatial gra-
dient. To this end, we first time-average and resample the
data onto a common time scale (60 s resolution in the present
case), so as to obtain simultaneous data points. Note that
time-averaging requires an appropriate evaluation of the er-
ror margins. The error on a time-averagef =

∑n
i=1 fi/n can

be estimated by

δf 2
=

1

n

[
1

n

n∑
i=1

δf 2
meas,i +

1

n − 1

n∑
i=1

(fi − f )2

]
,

which takes into account both the measurement errors (of di-
minishing importance as the number of data points grows)
and the time-variability of the observed quantity (assuming
this variability to be gaussian, requiring an estimate of the
standard deviation). Figure5 compares the spatio-temporal
gradient (anisotropic case with fluctuations) to the instanta-
neous spatial gradients forf ∗

=0 nT andf ∗
=0.2 nT (pan-

els b, c, and d, respectively). For the 4-spacecraft Cluster
caseN=M=4. The weights then do not matter and the clas-
sical instantaneous spatial gradient method is recovered. The
gradients obtained with or without fluctuation error are iden-
tical, but their error margins are not. There is a significant
difference from the space-time gradient only near the copla-
narity region. The condition number (panel a) is slightly
different for the three computations. The error margins are
smallest for the spatio-temporal gradient.

The gradient of the plasma density can be computed in
similar ways. Figure6 compares∇ne and∂ne/∂t obtained
with fc=0.5 cm−3 for the isotropic case, for the anisotropic
case, and for the anisotropic case withf ∗

=0.2 cm−3 (pan-
els c, d, e and f, g, h, respectively). As plasma density is a
strictly positive quantity, a logarithmic scaling has been used.
Computing gradients in data gaps is, in principle, always
possible. However, the error associated with far-away data
points will be large, depending on the homogeneity scales, so
that the gradient will carry a large error. Often also the con-
dition number becomes low. For instance, there is a data gap
for the four spacecraft around 06:42. As it lasts only a few
times the homogeneity time scale, the gradient can still be
computed, but the condition number temporarily decreases
(panel a). Something similar happens around 07:18 UT,
due to a 5-min data gap for Cluster 2 only. Also note that
the condition number has improved again for the anisotropic
case near perigee, where the orbit is along the direction of
largest extent of the homogeneity domain. The spatial gradi-
ent is well-computed except close to the coplanarity region
around 09:40 UT. The error margins are larger there but still
so small that they can hardly be seen in the figure. There
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Fig. 6. Computation of∇xtne with isotropic homogeneity domain (red), anisotropic domain (green), and
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Fig. 6. Computation of∇xtne with isotropic homogeneity domain (red), anisotropic domain (green), and anisotropic domain with small-
scale fluctuations (blue) (see text).(a) condition number;(b) ne observed by the four spacecraft;(c–e)magnitude of spatial gradient|∇ne|;
(f–h) temporal gradient∂ne/∂t . The bottom scale gives theL-shell position of the center of the Cluster tetrahedron.

is a double-peaked spatial gradient around 08:05 UT corre-
sponding to the rising and falling slopes around the density
peak observed near perigee (compare with panel b). There
are also important gradients (∼0.05 cm−3/km, relative pre-
cision 10%) near 07:50 UT and near 08:15 UT. These strong
gradients are identical to those reported byDarrouzet et al.
(2006b) and interpreted there as proof of azimuthal structure.
As the densities drop farther away from Earth, the gradients
tend to become negligible well before and after perigee. The
temporal gradient is pretty small (<0.01 cm−3/s with a rela-
tive precision of 20% at best), except for the bipolar structure
near perigee, which corresponds to the convection of the den-
sity structure. The three results are almost identical, but the
error margins are again smallest (<8%) for the case of an
anisotropic homogeneity domain.

Comparing∇xtne for the anisotropic case to the instanta-
neous spatial gradients without or with fluctuations (Fig.7),
the two instantaneous spatial gradients are necessarily found
to be equal and there are only minor differences with the
space-time gradient (panel c, d, and e). The condition num-
ber is not much different between the three computations
(panel a), but it clearly is best for the space-time gradient.
The space-time gradient also has the smallest error margins.

7 Gradients of a vector field

The gradients of the magnetic field vector components have
been computed with the same anisotropic homogeneity do-
main, with fc=1 nT and f ∗

=0.2 nT, treating the three
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Fig. 7. Computation of∇ne with anisotropic homogeneity domain and fluctuations (red), with the instanta-
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Fig. 7. Computation of∇ne with anisotropic homogeneity domain and fluctuations (red), with the instantaneous gradient version (green),
and with the instantaneous version with fluctuations (blue) (see text).(a) condition number;(b) ne observed by the four spacecraft;(c–
e)magnitude of spatial gradient|∇ne|. The bottom scale gives theL-shell position of the center of the Cluster tetrahedron.

components independently or coupling them through the
zero-divergence constraint. From them,∇×B and∇·B are ob-
tained, as shown in Fig.8. The effective scale factor is close
to unity (as for the∇xt |B| computation in Sect.6). Seff, N ,
andNeff are identical for both computations. The number of
equationsN (panel a) is three times larger than for a scalar
field. BothN andNeff (panel b) peak near perigee as a con-
sequence of the alignment between the spacecraft orbits and
the direction with the longest homogeneity scale length (the
magnetic field direction). The condition number is identical
for both computations (panel c), although the overdetermined
system sizes are different (same data used, but only 14 un-
knowns in the divergence-free case, rather than 15). The pro-
gressively deteriorating condition number toward 09:40 UT
reflects the spacecraft coplanarity issue. The condition num-
ber is quite good elsewhere. The curl (panels d and e) and
the divergence (panels f and g) from the uncoupled and the
divergence-free computations have absolute error margins of
typically 0.005 nT/km (a relative error of 10% on|∇×B|).
Away from the coplanarity time interval,∇·B does not sig-
nificantly deviate from zero. The correction of the solution
implied by requiring∇·B=0 is rather small. While the least-
squares method minimizes the differences between the ob-
servations and the linear approximation, adding a constraint
limits the solution search space so that the error margins be-
come slightly larger. Nevertheless, adding physically rele-
vant constraints obviously improves the realism of the solu-
tion.

Figure 9 compares the curl (panels b, c, and d) and di-
vergence (panels e, f, and g) for the divergence-free spatio-
temporal gradient computation as well as for the divergence-
free instantaneous gradient computation, applied to 60 s av-
eraged data, without and with small-scale fluctuations, re-
spectively. While the results of the computations are essen-
tially the same, the condition number (panel a) is best for the
spatio-temporal gradient. It occasionally drops below 10−5

for the instantaneous gradient without fluctuations. The error
margins are smallest for the spatio-temporal gradient despite
the fact that only the spatio-temporal gradient error estimates
account for the three error sources (measurement error, cur-
vature error, and fluctuation error).

8 Physical relevance

In order to illustrate the usefulness of these gradients for
scientific analysis, Fig.10a shows the anglesαB,∇|B| and
αB,∇ne between the ambient magnetic fieldB on the one
hand and∇|B| and∇ne on the other hand, in blue and red,
respectively (anisotropic case with fluctuations). The Clus-
ter spacecraft are sampling the outer regions of the plasma-
sphere, which happen to be the most dynamic ones where
erosion can be important (e.g.,Carpenter and Lemaire, 1997;
Lemaire and Gringauz, 1998; Carpenter and Lemaire, 2004;
Décŕeau et al., 2005). Cluster has therefore been used in-
tensively to study these regions (e.g.,Darrouzet et al., 2004,
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Fig. 8. Computation of∇×B and∇ ·B every 60 s with anisotropic homogeneity domain and fluctuations (see text) without (red) and
with (blue) the∇·B=0 constraint.(a) number of equationsN in the overdetermined system, with each curve referring to a thresholdσk ;
(b) effective number of equationsNeff; (c) problem condition number;(d–e)magnitude of the curl|∇×B|, with growing error bars and gap
in the computed gradient due to spacecraft coplanarity;(f–g) divergence∇·B. The bottom scale gives theL-shell position of the center of
the Cluster tetrahedron.

2006a,b). As we are only interested in the direction of these
gradients, not their sense, the angles are reduced to the in-
terval [0◦, 90◦

]. By definition, the magnetic field strength
gradient is perpendicular toB at the magnetic equator, cor-
responding toαB,∇|B|=90◦, near 08:02 UT (close to, but
not exactly at Cluster perigee). Before and after that time,
as the Cluster spacecraft are at higher magnetic latitudes,
that angle decreases rapidly because of the progressively
more important field-aligned gradient. The error margins
are large away from perigee as bothB and∇|B| are small
there. AngleαB,∇ne remains quite large throughout the time
interval, indicating that∇||ne�∇⊥ne at the relatively low
latitudes Cluster is sampling, something that has also been
found with radio sounding techniques (Reinisch et al., 2001).
This is due to a small longitudinal gradient within each flux
tube, but also because of the existence of strong radial and
azimuthal density structure on the transverse homogeneity
scale of 500 km adopted here. The gradient orientations ob-

tained here compare very well to the instantaneous gradient
directions reported byDarrouzet et al.(2006b).

Assuming that there are no time changes in the electric
field, the current densityj=∇×B/µ0 can be readily com-
puted from the curl of the magnetic field. The angleαB,j

betweenB andj as well as the current density magnitude
|j | are given in Figs.10b and c (anisotropic divergence-free
vector case with fluctuations). The current density vectorj

is perpendicular toB somewhat northward of the magnetic
equator, around 08:10 UT. Close to perigee,αB,j is <90◦

south of the equator,>90◦ north of it, with a current den-
sity of 30 nA/m2. The existence of field-aligned currents,
away from the equator itself, is clearly established in the
plasmasphere but also on auroral field lines (e.g., just after
06:00 UT). For a dipolar magnetic field,j≡0, but this is def-
initely not true in the present situation.
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Fig. 9. Computation of∇×B and∇·B, subject to the∇·B = 0 constraint, with anisotropic homogeneity domain

and fluctuations (red), with the instantaneous gradient version (green), and with the instantaneous version with

fluctuations (blue) (see text). (a) condition number; (b–d) magnitude of the curl|∇×B|; (f–g) divergence∇·B.

The bottom scale gives theL-shell position of the center of the Cluster tetrahedron.
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Fig. 9. Computation of∇×B and∇·B, subject to the∇·B = 0 constraint, with anisotropic homogeneity domain and fluctuations (red),
with the instantaneous gradient version (green), and with the instantaneous version with fluctuations (blue) (see text).(a) condition number;
(b–d) magnitude of the curl|∇×B|; (f–g) divergence∇·B. The bottom scale gives theL-shell position of the center of the Cluster tetrahedron.

9 Conclusions

This paper describes a general-purpose method for comput-
ing gradients of scalar and vector fields in space and time. It
has been shown that (1) The weighted least-squares method
for computing gradients is a very robust one. (2) The method
provides reliable error estimates that include the effects of
measurement errors and approximation errors due to struc-
ture at scales that are larger and/or smaller than the physical
scale of interest. (3) The method provides diagnostics to as-
sess the quality of the computation, in particular by monitor-
ing the singular values of the problem as a generalization of
the concepts of planarity or elongation of a 4-spacecraft con-
figuration. The role of the different parameters of the gradi-
ent computation algorithm has been illustrated. The relative
importance of the different types of errors and their effect on
the quality of the results has been discussed.

The method has been found to be superior to the traditional
instantaneous gradient computation. Its primary advantage is

its generality and its robustness. It correctly applies the prin-
ciple of locality of information since only local data are used
to compute the gradient at any given point, in accordance
with the homogeneity condition. It also yields more strin-
gent error margins on the obtained gradients. A disadvantage
is its mathematical complexity. Implementing the method is
not trivial. Computing the gradients is time-consuming when
one considers small-scale fluctuations (f ∗

6=0), because then
the (possibly large) error covariance matrices must be diago-
nalized. While the gradients obtained with this new method
typically do not differ very much from those obtained with
the traditional instantaneous gradient method, one now ob-
tains a quantitative estimate of the total error on the results.

A prerequisite for a correct application of this method (and
of any other method) is the ability to specify realistic values
for the different error contributions. The measurement er-
ror is usually well-known, the fluctuation error is often only
a minor correction, but providing an estimate for the curva-
ture error may be more difficult. A posteriori verification,
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Fig. 10. Orientation of gradients during the Cluster inner magnetosphere pass on August 7, 2003, as a func-

tion of time and ofL-shell. (a) AngleαB,∇|B| (blue) andαB,∇ne (red) betweenB and∇|B| and∇ne,

respectively (anisotropic homogeneity with fluctuations, see text), reduced to[0◦, 90◦]. The magnetic equa-

tor corresponds toαB,∇|B| = 90◦, near 08:02 UT. Both angles reflect the relative proportion of parallel and

perpendicular gradients;∇|||B| is rather strong away from the equator, while∇||ne � ∇⊥ne due to small

longitudinal gradients within each flux tube and because of radial and azimuthal density structure. (b) Angle

αB,j betweenB and current densityj (wherej = ∇×B/µ0 in a steady situation). (c) Current density mag-

nitude|j| is significantly different from zero in the plasmasphere, indicating deviation from a dipolar field. The

current density vector contains a significant field-aligned component inside the plasmasphere (around perigee)

and also on auroral field lines (just after 06 UT).
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Fig. 10. Orientation of gradients during the Cluster inner magnetosphere pass on 7 August 2003, as a function of time and ofL-shell.
(a) Angle αB,∇|B| (blue) andαB,∇ne

(red) betweenB and∇|B| and∇ne, respectively (anisotropic homogeneity with fluctuations, see
text), reduced to[0◦, 90◦

]. The magnetic equator corresponds toαB,∇|B|=90◦, near 08:02 UT. Both angles reflect the relative proportion of
parallel and perpendicular gradients;∇|||B| is rather strong away from the equator, while∇||ne�∇⊥ne due to small longitudinal gradients
within each flux tube and because of radial and azimuthal density structure.(b) Angle αB,j betweenB and current densityj (where
j=∇×B/µ0 in a steady situation).(c) Current density magnitude|j | is significantly different from zero in the plasmasphere, indicating
deviation from a dipolar field. The current density vector contains a significant field-aligned component inside the plasmasphere (around
perigee) and also on auroral field lines (just after 06:00 UT).

however, is always possible. Once the gradient is computed
along the spacecraft trajectory, one can check how it changes
with position and/or with time, at least to a certain extent, so
that an evaluation can be made of the curvature error. As long
as there are enough points within the homogeneity domain,
the value and the precision of the gradient are determined
mainly by the measurement and fluctuation errors, and the
exact value of the curvature error is not too important. A
limitation of the present method is that a single, fixed value
for the curvature error parameterfc is used throughout the
domain. Another limitation is that we have not accounted for
timing errors or spacecraft position errors.

As an illustration, this method was used to analyze mag-
netic field and plasma density data obtained by Cluster dur-
ing a pass through the inner magnetosphere. The relative
importance of the perpendicular and field-aligned gradients

of the magnetic field strength and of the plasma density have
been discussed. In addition, nonzero current densities have
been found, indicating that the field is not dipolar. Field-
aligned currents appear to exist in the outer regions of the
plasmasphere and on auroral field lines. The correct eval-
uation of the error margins on the gradients offered by the
proposed method is absolutely necessary to ascertain the re-
liability of these findings.

The homogeneity scales must be adapted to the physical
structures that one intends to study. In the present exam-
ple, with a density structure that does not seem to exhibit
too fine scales, homogeneity lengths of a few hundreds of
kilometers and a time scale of 1 min were fine. In situations
of stronger geomagnetic activity, finer-scale plasmaspheric
structures may be formed more rapidly, necessitating smaller
homogeneity scales in space and time. The least-squares
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method will always produce a result, but whether the com-
puted gradients are accurate depends on the nature of the
data. With Cluster, a good gradient can usually be obtained
when the homogeneity scales are on the order of, or larger
than, the spacecraft separations in space and time.

Appendix A

Constraints

The overdetermined system (2) may still be ill-conditioned
as the redundancy that stems from repeatedly measuring the
same quantity over time on different spacecraft may be rather
limited. For example, if the spacecraft are all in the same
orbital plane, it is impossible to extract information about
variations in the direction perpendicular to that plane. This
ill-conditioning can be avoided if one adds new information
about the problem in the form of constraints.

We discuss here two types of (linear) constraints that may
be very useful in practice: geometrical ones, which state
that one or more spatial gradient components are zero, and
the stationarity constraint, which specifies that the total time
derivative is zero.

A1 Geometrical constraints

Geometrical constraints are introduced by specifying an or-
thonormal set of vectorscj , j=1, . . . , m (m≤3) to which
∇xtf0 must be perpendicular. For example, the gradient
might be required to be perpendicular to the local mag-
netic field vectorB. In that case,m=1 andc1=B/‖B‖.
A set of orthonormal vectorsd i , i=1, . . . , 4−m can then
be constructed, so thatd i

>cj=0. Transforming any vec-
tor asxβ

=[. . . d i . . . cj . . .]>x, the gradient itself becomes
[. . . d i . . . cj . . .]>∇xtf0. Since cj

>∇xtf0=0, the m last
components of the gradient vanish. The directionscj can
thus be regarded as homogeneity directions correspond-
ing to infinite homogeneity scales, since the gradient must
be invariant (identically zero) in each of those directions,
so thatU=[. . . dj . . . cj . . .] andL=diag([. . . lj . . . + ∞...]).
TransformationP is now a projection rather than a rotation
and scaling (the space spanned by thecj is its null space),
its target space being(4−m)-dimensional. The constraint
generally improves problem conditioning, but leads to larger
residuals as there is less freedom to mimimizer>r.

As an example, consider the situation in which the gra-
dient direction in space is known, say, that it lies alongx.
Thenc1=[0; 1; 0; 0] andc2=[0; 0; 1; 0]. For time-separable
homogeneity with length scalelx=ly=lz=ξ and time scale
lt=τ , one finds

U =


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 andL =


ξ 0 0 0
0 τ 0 0
0 0 +∞ 0
0 0 0 +∞

 ,

which leads to a projectionxβ
=x/ξ , tβ=t/τ .

A2 Stationarity constraint

For a structure moving with a given constant velocityv0,
time-stationarity is expressed by

df0

dt
= [ v0 1 ]

>
∇xtf0 = 0.

This constraint corresponds to an infinite homogeneity scale
along directionu4∝[ v0 1 ]. Homogeneity in time is not
separable from homogeneity in space unlessv0=0.

As an example, considerv0=[v0; 0; 0]. Homogeneity di-
rectionsu1, u2, andu3 must form an orthonormal set to-
gether withu4. One particular choice produces

U =


1/

√
v2

0 + 1 0 0 v0/

√
v2

0 + 1

0 1 0 0
0 0 1 0

−v0/

√
v2

0 + 1 0 0 1/
√

v2
0 + 1

 and

L =


ξ/

√
v2

0 + 1 0 0 0

0 ξ 0 0
0 0 ξ 0
0 0 0 +∞

 ,

whereξ is a length scale. The projection turns out to be
xβ

=(x−v0t)/ξ , yβ
=y/ξ , zβ

=z/ξ , so that one actually com-
putes the spatial gradient with isotropic homogeneity length
scalelx=ly=lz=ξ in a reference frame that moves withv0.

Appendix B

Cross-correlations of small-scale perturbations

We restrict ourselves to distributions of small-scale perturba-
tions that are isotropic inγ -space with perturbation strength
dropping off exponentially. The mean perturbation ampli-
tude is assumed constant over the homogeneity domain, such
that

〈(δfssλ(λ, x))2
〉 = δf 2

λ (λγ ) = 16f ∗2S4(

4∏
k=1

λ̂k)
e−λγ

(λγ )3
,

with λγ
=‖λ‖γ , f ∗ a constant, andS4 the surface of

a 4-dimensional sphere. Because of the locality of
the perturbations,〈δfssλ(λ, xi)δfssλ(λ, xj )〉≈δf 2

λ (λγ ) when
1x

γ

ij=‖xj−xi‖γ �λγ and zero when1x
γ

ij�λγ . For sim-
plicity, the switch between both situations is taken to be an
abrupt one. The covariances ofδfss at pointsxi andxj can
then be computed as

〈δfss(xi)δfss(xj )〉 (B1)

=

∫
λ

∫
λ′

〈δfssλ(λ, xi)δfssλ(λ
′, xj )〉 dλdλ′
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=

∫
λ

〈δfssλ(λ, xi)δfssλ(λ, xj )〉 dλ

≈ (

4∏
k=1

λ̂k)
S4

16

∫
+∞

1x
γ
ij

(λγ )3δf 2
λ (λγ )dλγ (B2)

= f ∗2e−1x
γ
ij , (B3)

wheref ∗2 is the total perturbation variance. Whatever the
specific choice of perturbation amplitude distribution, it must
decrease faster than 1/(λγ )3 in order to obtain a finite total
perturbation, and the end result will always be that the cross-
correlation is large between nearby points, and becomes zero
as the distance between both points exceeds the perturbation
length scale.

Acknowledgements.The authors thank M. Hamrin for fruitful dis-
cussions. This work was supported by the Belgian Federal Of-
fice for Scientific, Technical and Cultural Affairs through ESA
(PRODEX/Cluster and PRODEX/Solar Drivers of Space Weather).

Topical Editor I. A. Daglis thanks M. L. Adrian and C. Harvey
for their help in evaluating this paper.

References

Balogh, A., Dunlop, M. W., Cowley, S. W. H., Southwood, D. J.,
Thomlinson, J. G., Glassmeier, K.-H., Musmann, G., Lühr, H.,
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