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Abstract. This paper describes a general-purpose algorithm(Harvey, 1998 Chanteur1998 Chanteur and Harvey 998

for computing the gradients in space and time of a scalaRobert et al.19983. Such gradient computations are diffi-
field, a vector field, or a divergence-free vector field, from cult for a number of reasons: (1) Four simultaneous measure-
in situ measurements by one or more spacecraft. The algament points are required. A smaller number of spacecraft is
rithm provides total error estimates on the computed gradiinsufficient, while the method also cannot properly take ad-
ent, including the effects of measurement errors, the errorvantage of a larger number of spacecraft if available. For
due to a lack of spatio-temporal homogeneity, and errors dug¢hose Cluster instruments that are not operating on the four
to small-scale fluctuations. It also has the ability to diagnosespacecratft, this instantaneous spatial gradient computation is
the conditioning of the problem. Optimal use is made of thetherefore precluded. Also, data are never obtained exactly
data, in terms of exploiting the maximum amount of infor- simultaneously, a problem that is usually dealt with by time
mation relative to the uncertainty on the data, by solving theaveraging or interpolation. (2) One never computes a gra-
problem in a weighted least-squares sense. The method dient, but rather a spatial difference representing the average
illustrated using Cluster magnetic field and electron densitygradient over a length scale fixed by the spacecraft separation
data to compute various gradients during a traversal of thelistances, usually different in each space dimension. This
inner magnetosphere. In particular, Cluster is shown to crosscale often does not correspond to the physical scale size of
azimuthal density structure, and the existence of field-alignednterest. (3) The method applies only if the so-called spatial
currents in the plasmasphere is demonstrated. homogeneity condition is satisfied, that is, it computes an
average gradient over the spacecraft separation length scale,
gut that is only useful if the true gradient does not differ too
much from the average one. (4) Computing differences is no-
toriously difficult. Subtracting two similar data values leads
to a relative error on the difference that may be much larger
_ than the error on the original data. This is especially true
1 Introduction for spacecraft that are very close together, a situation often

i ) i . required to satisfy the spatial homogeneity condition. A dif-
This paper deals with the computation of gradients of phySerence can therefore be reliably computed only when both

ical quantities (scalar or vector fields) that are measured in,n40m and systematic errors on the data are very small.
situ at different imes and positions. This topic has gainedrys necessitates accurate data intercalibration between the
importance in the context of recent magnetospheric multi-goacecraft, something that can be difficult to achieve as the
spacecraft missions, in particular the Cluster mission con<,yqraing conditions on each spacecraft tend to be different.
sisting of four identical spacecratft, flying in formation. The Systematic gradient computations with Cluster have there-
rationale behind this mission is the idea that exactly four si-tj o haen applied only to magnetic field data (FGM instru-
multaneous measurements are needed to determine the thrﬁﬁent' Balogh et al, 1997, 200 with its low measurement
spatial gradient components, at least if the four spacecrafl o and good intercalibration (especially the curlometer:

are not coplanar. Methods to do so have been developegl,umop et al, 2001, 2006 Dunlop and Balogh2005 Val-
Correspondence tal. De Keyser lat et al, 2009 and to electron density data obtained from

(johan_dekeyser@bira_iasb_oma'be) the plasma frequency (WH'SPER instrumdhé;créau et al,.

Keywords. Magnetospheric physics (Magnetospheric con-
figuration and dynamics; Plasmasphere; Instruments an
techniques)
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972 J. De Keyser et al.: Least-squares gradient calculation

data from an arbitrary number of spacecraft can be exploited.
It is possible to attempt to compute gradients on length and
time scales that match the physical scales of interest. In any
given practical situation the method will find out whether
such gradients can actually be computed with the available
data. For in situ measurements by the Cluster spacecraft in
a medium that is at rest, for instance, the scales along the
spacecraft orbit will usually be limited by the time resolution
of the data, while the scales perpendicular to the velocity will
be dictated by the orbital separations. Proper error estimates
are derived that account for the measurement errors, for the
errors due to the fact that the gradient is not constant over
the region in which measurements are available, and for the
effect of small-scale structures and perturbing wave fields. It
is also possible to take into account geometrical and spatio-
temporal constraints.

In Sects.2-5, the method is presented in a formal math-
ematical way. We use linear algebra techniques (such as
eigen-decomposition and singular value decomposition) and
therefore adopt the standard linear algebra notation: Bold
lower-case symbols represent vectors, bold upper-case sym-
bols are matrices, other symbols denote scalars. Se&i@ns
Fig. 1. The least-squares gradient algorithm uses data acquired ifjjystrate the application of the method for scalar fields, for
a set of points in space-time, represented here as a 2-dimensiongbctor fields, and for divergence-free vector fields with Clus-

space £1, x2). In this example, the data are obtained along the tra-¢o examples for a pass through the inner magnetosphere.
jectories of three spacecraft (red dots on the dotted lines), although

that does not matter for the method. The homogeneity condition is
expressed by associating with each data point an error that grow.
with the distance fromxg, the point where the gradient is com-
puted. This distance, however, is measured in a frdmeg (lou>) i
that may be rotated and scaled relative to the original frame. Point©N€ Or more spacecraft sample a scalar figld, r) at

on the ellipse with semi-axds and!,, are assigned a unit distance. POsitions and times;=[x;; y;; zi; ], i=1,..., N, in 4-
Points inside the ellipse (dark shaded area) correspond to smallélimensional space-time. The case of vector fields is dis-
distances and therefore a smaller error. Points outside that ellipseussed later. The measuremeritshave known error vari-
(lightly shaded region) will have a larger error so that they are Iessancesafn%'ea .. Data intercalibration removes all systematic

3 The problem for scalar fields

. . i . : si
relevant, thus reflecting the homogeneity condition. Points outsideerrors (we disregard clock synchronization and spacecraft
the shaded regions are considered irrelevant. position errors).

The gradientV,, f=[df/dx; df/dy; df/dz; 9f/0t] at a
point xo can be computed by combining all measurements
1997 2001 Trotignon et al. 2003 because of their abso- made inside a region in which the gradient does not change
lute calibration Darrouzet et a).20061). (5) Additional er-  appreciably. This region is the “homogeneity domain”. Its
rors arise due to the lack of synchronization of the spacecraftjze is determined by physical considerations. It can be de-
clocks, the nonzero duration over which data are gatheredscribed by a 4-dimensional ellipsoid, that is, by four mutually
and the uncertainties in the spacecraft positions. The impacérthonormal directions:; and the corresponding scalEs
of these errors may be hard to quantify, especially becausegpecifying the axes of the hyperellipsoid. This is illustrated
they may not be statistically independent. Such errors tend tgn Fig. 1 by means of an analogy in 2-dimensional space. In
be relevant for short time scales and small separations only.this example, the points (red dots) are obtained along the tra-
This paper describes an alternative way to determine thgectories of three spacecraft (dotted lines), although that does
gradient obtained by relaxing the requirement of simultane-not matter for the method. The points inside the homogeneity
ity of the observations. This is achieved by formulating the domain (represented by the dark shaded ellipse) can safely
concepts of temporal and spatial homogeneity in a more genbe used to compute the gradientign Rather than accepting
eral way. By using all observations in a region of space-timepoints inside the homogeneity domain for the computation
over which the spatial and temporal gradients are essentialland rejecting points outside, we will use a more gradual ap-
constant over prescribed length and time scales, an overdgroach. With each data point, we will associate an error that
termined system of equations is obtained from which the gra-grows with the distance fromg. This distance, however,
dient can be computed in a least-squares sense. In principlés measured in a framé 1, lou2) that may be rotated and
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J. De Keyser et al.: Least-squares gradient calculation 973

scaled relative to the originat{, x2) frame. This frame will 3 Approximation errors
be called thes-frame, and the unit coordinate vectors of this
frame are exactly the semi-axes of the elliptical homogeneityln order to obtain the gradient, we approximate the scalar
domain. Points on the border of the homogeneity domain ardield f, with all its space-time variations, by a local linear
assigned a unit distance. Points inside the ellipse corresponapproximation. There are two aspects to this approximation:
to smaller distances and therefore a smaller error. Points farfhe function might have variations at scales smaller than the
ther outside that ellipse have a larger error so that they are o$pecified homogeneity scale (this variability usually cannot
progressively diminishing relevance, thus reflecting the ho-be evaluated completely from the measurements, so a sta-
mogeneity condition. tistical approach is needed to estimate its effect), and there
The transformationx?=Px, where P=(UL)~1 with is also the curvature of at the homogeneity scale itself,
orthonormal matrixU=[...u;...] and diagonal matrix which is why the linear approximation is only valid inside
L=diag(;) (this notation means: the diagonal ma- the homogeneity domain. Both contribute to the total “ap-
trix with the /; on the diagonal) represents the tran- proximation error”; the small-scale errors are the “fluctuation
sition from the original frame to the new frame, de- errors” and the errors due to the linear approximation are the
noted by superscrip, in which the homogeneity do- “curvature errors”. We will therefore write the scalar field as
main is the unit hypersphere. The corresponding gra-f=fhst+4fis+48fss the sum of the linear fielghs at the ho-

dient operator isz,:P*lTVx,zLUTVx,. The dis- mogeneity scale (i.e. the linear approximation), a deviation

tance measure that is needed to express the homogenéfis due to variations at larger scales, and a small-scale field
ity condition assigns to each vectar a length or norm  dfss
x| p=+vxPTxP=+/xTUL-2UTx.

Homogeneity considerations in time are often sep-3-1 Structure atlarge scales

arable from spatial homogeneity. One of the; P _
must then be[0:0:0:1]. If the time scale isl,=t Structure at large scaleaf”=||Ax| g>1) is properly repre-

and if the three spatial homogeneity scales aresenteq by the Taylor expansion of Edj).(With the cons.tant
l,=l,=l.=¢, the transformation is simply a rescaling f. indicating how muchy’ changes over the homogeneity do-
P—diag([1/¢, 1/¢, 1/¢, 1/z]). The S-norm of a given vec- Main due to the higher-order terms in the expansion (function

tor x then is ||x”ﬂ:\/(X/lx)2+(y/ly)2+(Z/lZ)2+([/lt)2. curvature), the curvature error is estimated as

We will refer to this particular case as the standard isotropic(gflg(Axi) < fCZ(Axlﬂ){
homogeneity case.

If f satisfies the appropriate analyticity conditions nearsg, that the linear approximation is valid wham! <1 but not
xo, it can be locally approximated by a Taylor expansion. mych peyond that. The curvature error is completely deter-
With Ax;=x;—xo, and denoting the function value and the ineq by the homogeneity conditions through fhaorm.
gradient atro by fo andV.; fo, this becomes The user must specify the value fif based on physical con-
fi = fo+ Ax; Vi fo+ri, Q) siderations. This may not be trivial, as will be discussed in
Sect.6 and in the Conclusions. Note that the valuefpfis
linked to the homogeneity lengths: halving the homogeneity
T BTo P lengths is equivalent to multiplying. by a factor of four.
r=fotAX Vi fo—f= fotAX" V" fo—f=0 (2)  |nprinciple, the curvature errors at the various sampling po-
whereAX=[... Ax; ...] groups all relative positions anfl sitions are not statistically independent, but since nothing is
denotes all measurements. The homogeneity domain caknown about them a priori, their cross-correlations are ig-
usually be chosen big enough so thas>M: The systemis nored here. This is justified even more so because, as ex-
overdetermined and can never be satisfied exactly. Howeveplained in Sect5, only little weight will be given to data
the gradient can be computed in a least-squares sense (mipoints far fromx for which the cross-correlations would be
imization of r 'r). Expressing this system in thgeframe  large.
(the dimensionless form) is preferable from the numerical If the system is intrinsically changing on a short time scale,
point of view (since all system matrix elements then are ofshorter than the sampling time scale (time-separable case
order unity). Although systen®j is usually overdetermined, with /; <tsampld, Successive measurements cannot be related
it may still be ill-conditioned. Such ill-conditioning can of- to each other since the system has changed in between. The
ten be avoided by adding a priori knowledge in the form of homogeneity condition therefore indicates that only simulta-
constraints. In the case of Cluster it may become possibleeous measurements can be used for computing the gradient.
to compute gradients with only three, two, or even a singleindeed, data taken at a different time have a large curvature
spacecraft, depending on the number of constraints. We wilerror becausesampi¢/ {; and thereforeAx? is large. When
not use such constraints in the present paper, but Appéndix using only simultaneous data, the last rowAX vanishes
explains how they can be incorporated. so thatdf/dt remains undetermined. For four spacecraft

where the residual is =0 (]| Ax;||?). This leads to a system
of N equations forfp andV,; fo, i.e., M=5 unknowns:

www.ann-geophys.net/25/971/2007/ Ann. Geophys., 25,987-2007



974 J. De Keyser et al.: Least-squares gradient calculation

this corresponds to the classical spatial gradient computatiofdifferentu, [;, f., ij, f*) could be used. Here, the discus-

(Harvey, 1998 Chanteur1998 Chanteur and Harveg998. sion is limited to the case of identical values. The number
of unknowns at each point ®=3x5=15. For divergence-

3.2 Structure at small scales free vector fields (such as the magnetic field) the gradients

of the vector components must be computed simultaneously,

Small-scale structure is often present, for instance in the forny yiect to the constraint that the divergence vanishes, so that
of small-amplitude waves or turbulence. Small-scale per-;;_14
turbations are usually under-sampled, so their influence on Computing the curl and the divergence of the vector field
gradient precision must be characterized with a stocha:stic};,Oses an additional difficulty. As the divergence and each of
model. " _the components of the curl are sums of terms of the same or-
~The s fss(x) can be thought of as the superposition of in- yer of magnitude, but possibly with opposite sign, the relative
dividual perturbations, each with length scalgsalong mu-  error on the result can be larger than the relative errors on the
tually orthogonal directions, which we take to be the homo-jnqividual gradient components, which themselves are dit-

geneity directiong; for the sake of simplicity, and with am-  terences of similar values and have a significant uncertainty.
plitudes fsg (X, x):

8 fsslx) = A §fsa (X, x) dA. 5 Solving the overdetermined system

The overdetermined syster) (expressingV measurements

Let the population of perturbation8fss be character- of a scalar field (the number of equations) can be written as

ized by typical length scales.. @ We can then in-
troduce a new reference frame, similar to frameg r=Aq— f =0, )

but with different axis scaling, which leads to a norm iin A — [1, AX#T] and wherey=[ fo; v# folis the vector
lxll,=vxTUA~2UTx where A=diagik). ~ Restricting  of =5 unknowns. The total error of) as used in the gradi-
ourselves tp distributions that are |sotroplp inspace  ent computation ato is 5ﬁ2=(3fmeasi)2+fC2(AX,ﬁ)4+f*2,
and assuming that the perturbation amplitudes do nofy \which the terms represent the independent contribu-
vary appreciably over the homogeneity domain, one hasjons of measurement error, curvature error and fluctua-
(Ofsa. (. x)%)=8f7(37) everywhere, withi”=|All, and  tion error. In addition, there are the cross-correlations
where the gcute brackets |Qent|fy the expected value for(sf?:f*zefmﬁ/i, These estimates give thex N correlation
the population of perturbations. Because of the local- "% T o . .
ity of the perturbations(s fss. (A, x:)3 fss (A, xj)>%8ff(?»)’) ma_trl_fo=_<8f sf '), Wr_nch isreal, symme_tnc, and positive
WhenAxi”j=||xj—xi l,<A” and zero whemx?” 1" . Ap- definite. It is strongly diagonal dominant if tlig¢neas; and

1

pendixB computes that, for a distribution with perturbation /e are large, iff* is small, or if thei.; are small. AV may
strengthd ff(M’) decreasing exponentially, the covariances P large, significant computing time and storage savings can

are be achieved by setting the oﬁ-diagona}si to zero if Axl?’.
y _Ae is above an appropriately chosen limit, thus ignoring small
* — AX: . Y

(8fss(xi)8fss(x)) = f77€ ", cross-correlations (typically €/ <10™4).

. ~ . _ T 2 .
with f*2 the total perturbation variance. The cross- The eigen-decompositior®,=W D°W is computed,
\%herew contains the orthonormal eigen-vectors and where

correlation is large between nearby points and vanishes a i . I hich d
their distance exceeds the perturbation length. Better mogdt '€ Non-negative eigen-values, which are enotetfbyon-

. . - 2_ . 2 . . . . .
els are possible if the type of perturbation (e.g. a particularStitute the diagonal matri“=diag(d;). This is trivial if C s
wave mode) is known a priori. In such cases it would be bestS diagonal, i.e., when we do not consider small-scale fluc-

to compute the gradients of several wave field componentduations. Applying operatoW on the left to the vectors,
simultaneously, coupled through the wave relations. f, andAgq in the overdetermined syster8)( the errors on
the transformed residuals are now statistically independent,

so that the-th equation represents an individual piece of in-
4 The problem for vector fields formation corresponding to a covariam}% A further oper-
ation byD~! on the left normalizes the residuals so that they

The gradients of the individual components of a vector field 3| have unit variance, by dividing each by its error estimate.
can be obtained by treating each component individually asrhe resulting weighted system is

a separate scalar field under the simplifying assumption that -~ ~
the curvature errors are not correlated (or that one does ndt = Aqf f=0 . )

know a priori how) and that the small-scale perturbations forwhere A=D~WA, f=D-Wf, and 7/=D~Wr. Per-

the different components are uncorrelated as well (which iforming the equivalent operations on the correlation ma-
not really true if they are due to a particular wave mode). Dif- trix C givesszD—1WCfWD—1=I: There are no cross-
ferent homogeneity parameters for each of the componentsorrelations, and the variances are unity. The least-squares

Ann. Geophys., 25, 97887, 2007 www.ann-geophys.net/25/971/2007/



J. De Keyser et al.: Least-squares gradient calculation 975

method minimizesF'# so that equations with less rele- for an arbitrary number of spacecraft and in the presence of
vant information (Jl? large) will hardly play a role. Large constraints (AppendiR). We therefore define the condition
measurement errors and short-scale fluctuations reduce theumber
weights, and data points outside the homogeneity domain .5 2
have such important curvature errors that their weight is neg-Condz mjmsj/ m]aij. ©)
ligible, thus ensuring that the information used for comput-
ing the gradient comes from within the homogeneity domain.
Consider the situation depicted in Fij.Spacecraft 2 passes
nearxg and has three points inside the homogeneity domai
(the dark shaded ellipse), the middle of which carries only ; ) 5 )
measurement and fluctuation errors while the curvature erroHS€l€ss, computations with coati0™ are ignored. _
is small there. Spacecraft 1 does not have any point inside '€ téchnique described here is based on an unconstrained
the homogeneity domain. Nevertheless, its data points jusfPProximation off. If the scalar field is strictly positive, it
outside the homogeneity domain (in the light shaded regionjS Pest t0 apply the technique jo=log f, with §f=5f/f
will also appear in the overdetermined system. As their cur-The results are transformed back usWg f=e’ V., f and
vature errors are larger, their weights will be smaller. Theyd(V. f)=€/[8(Vx )+8f Vi f1.
therefore contribute only a limited amount of information in ~ When computing the gradients of the three components of
the computation of the gradient. a vector fieldB, supplemented by the conditiéf B=0, the

The least-squares solution is obtained by formally solvingoverdetermined system is
the overdetermined system as - .

Even when the problem is close to singular (condition num-
ber small) the method produces a valid result, but the error
estimates on the result (or, at least, on some of its compo-
nents) will be large. As results with too large errorbars are

B;o
g = ATAAT. 1AXPT Onxs  Owxs || ViiBio | [Binsa
_ e _ _ Onxs 1AXPT Oyys Byo | _| Bynx1
In practice, computingA"A (an M xM symmetric posi- Onxs Oyxs 1AXAET v# Byo ~| B.yx1
tive semidefinite matrix) is avoided because it implies sums| g ui/ly Ougd/l, Oug/ls %zo 0
with many terms and therefore a potential loss of precision. V,Bt BzO
X

The standard method is to compute a decomposﬁi@@R,
where Q is a unitary NxM matrix andR is an M xM with a 3x 3 block-diagonal coefficient matrix supplemented
upper triangular matrix with the so-called economy-size by the zero-divergence condition.

QR-algorithm. One can then easily compd#éA=RTR. In the particular situation in which all data have been ac-

This symmetricM x M matrix can be inverted by comput- quired simultaneously, the coefficients of the time derivatives
ing its singular value decompositioh’ A=VTS2V, where  are all zero and no information about the time variations can

S=diag(s,) are the singular values aiis unitary, so that be extracted. The corresponding unknowns can be removed
o from the system, so tha#=4 for the gradient of a scalar
g =VT'S™2VATf. (5) field, M=12 for a vector field, and/=11 for a divergence-

] I free vector field.
The correlation of errors on the result & =(ATA)~1,

from which the errors on the result can be estimated as
8¢=,/diag(C,) by ignoring the cross-correlations be- 6 Gradients of a scalar field

; .vB

tween the SOIU“%” components. -From:[fo, Vi fol In this section, we consider the passage of the four Clus-
and 8¢=[5f0: &(Vy, fo)l, the gradient an% the er- o spacecraft through the inner magnetosphere on 7 August
ror estimates are found a¥. fo=UL™'Vy, fo and 2003, from 06:00-11:00 UT, with perigee around 08:05 UT.
8(V 1 fo)=UL (V% fo). A subinterval of this passage has been studied earlier by

As can be seen from Eqg5), the solution is obtained by Darrouzet et al(2006). We focus on the gradients of
a}pp|~ying the transformatio'" S—2V to the weighted data the magnetic field strengtfB| obtained by the FGM mag-
AT f. SinceV is unitary, the conditioning of the problem is netometer and of the electron density derived from the
completely determined by the singular valugs|if a singu-  plasma frequencyf, measured by the WHISPER instru-
lar value is small, the propagation of errors in the associatedanent. The spacecraft separation distances were on the order
direction is important. For spatial gradient computations us-of 200x400x 1000 km in the GSEX, Y, Z directions near
ing simultaneous data from the four Cluster spacecraft, theperigee. The spacecraft cross the inner magnetosphere from
concepts of planarity and elongation of the spacecraft tetrathe south to the north. FiguBshows thatB| reaches a local
hedron have been used as a diagnostic for the well-posednessnimum andn, a maximum around perigee, at a geocen-
of the problem Robert et al. 1998ab), which have the ad- tric distance of about 4.58¢. Near perigee, the spacecraft
vantage of being easily visualized. The singular values, how-enter the outer regions of the plasmasphdéfg=£2", down
ever, provide an abstract but general diagnostic that workérom 6~ one day before, indicating post-storm recovery, a

www.ann-geophys.net/25/971/2007/ Ann. Geophys., 25,987-2007
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Fig. 2. Cluster observations during a pass through the inner magnetosphere on 7 August 2003, from 06:00-11:00 UT, with perigee around
08:02 UT:(a) magnetic field strengthB| obtained from the FGM magnetometer, i)l electron density:, computed from the plasma
frequency as identified by the WHISPER instrument. The spacecraft separation distances wer@02a@00 km in the GSK, Y, Z

directions near perige¢B| reaches a local minimum amgd a maximum around perigee (C1 — black, C2 —red, C3 — green, C4 — blue). The
bottom scale gives the-shell position of the center of the Cluster tetrahedron [fer10, elsewherd. cannot be determined accurately).

situation in which the plasmapause typically is located ratherand plasma frequencg, is
close to Earth). The plasma encountered near perigee (be- 3 2
tween 07:40 and 08:40 UT) is of plasmaspheric origin, as in/e[€M "1 = (f,[kHzl/9.0)%,
dicated by the Cluster plasma spectrometers. CIS/CODIF ofrom which Sne/n.=25f,/f,. The peak density is almost
Cluster 4, for instance, detects Hand O". The spectrom- 70 ¢ent3 with an error of Beni3. The relative error is
eters also indicate Corotating flow of a few km/S, although smallest for these h|gh densitieS, typ|ca||}4%, and in-
the measurements are not very precise since the instrumenggeases up to 20% for lower densities near the detection
miss a major fraction of the cold plasma distributions due [jmit.
to spacecraft potential effects. ThB| profiles are smooth First consider the standard isotropic homogeneity case
with minor variations at the begin and the end of the passyith a characteristic spatial scale=l,=1,=500km. The
when the spacecraft are outside the plasmasphere and sampigmogeneity time scale depends on the time it takes struc-
higherL-values at higher magnetic latitudes, and wheres  tures to convect over these spatial scales as well as on in-
low. FGM is very preCise and well calibrated. Spin'averagedtrinsic tempora| Changes_ For typ|ca| p|asmaspheric con-
magnetic field data (4 s time resolution) are used here. Thgection velocities of a few km/s, a homogeneity time scale
measurement error on the components1siT whiletheun-  ;, —=60s seems to be a natural choice compatible with the
certainty on/B| is 0.15nT (< 0.05%). These data appearto spatial scale. This is also sufficient to resolve the intrin-
allow an accurate gradient determination since the magnetigijc temporal behaviour of plasmaspheric refilling (hours)
field values registered by the four spacecraft at any giverpr electric field reconfigurations involved in the creation of
time differ by up to 10nT, larger than the measurement er-medium and large structures (tens of minutes). The ter-
rors. The measurement error ¢ is the 163 Hz discretiza-  restrial dipole field strength at the equator As=Beq/L3
tion error (half of the frequency resolution of WHISPER). (where Beq is the equatorial field strength at the surface),
Additional errors due to the possible misidentification of the gq thatdzB/dL2=12Beq/L5 from which we obtain a typ-
plasma frequency line in the WHISPER spectrograms havgca| curvature error estimatﬁ:lZBeq(lx/RE)Z/L5~1 nT
been kept to a minimum as the algorithms for plasma fre-for ;. =500km andL=5. A limitation of the present ap-
quency detection have matureld¢tignon et al. 2001, 2003 proach is that only a constarft can be specified, while in
2006 Rauch et al.2006. The relation between density  reality it can vary from point to point. No small-scale fluc-
tuations are considered;*=0. In principle, all data points
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Fig. 3. Computation oV ;| B| every 60 s with isotropic homogeneity domain (see teg) magnetic field strengtfB| at the moving center

of the homogeneity domaiih) effective scale factofqs; (C) number of equation®’ in the overdetermined system, where each curve refers
to a thresholdy, with darker color shade ag increases(d) effective number of equationSe; (€) problem condition number for each

or; (f) magnitude of the spatial gradief¥|B||, with growing error bars and gap in the computed gradient due to spacecraft coplanarity;
(g) temporal gradiend| B|/dt. The bottom scale gives thie-shell position of the center of the Cluster tetrahedron.

can be included in the weighted system for determining thethreshold is too low (a better result could be obtained) or un-
gradient at a given point. As the weights of most points arenecessarily large (computationally inefficient). Fig@rd-
negligible, however, it is computationally more efficient to lustrates the computation & ;| B|. It has been determined
include only those points with a relative variance satisfying every 60s. The magnetic field strength at the moving center
PR, of the homogeneity domain is a spatio-temporal average of
pi =8f°/ MNdfT < ox . :
‘ N ’ the observed values (panel a). In order to find the physical
. ) _ _ scales of this averaging process, note that the region from
where they is a series pf increasing threshold values. In thewhich the weighted least-squares method will take most of
example_ sketched in F|gth|s threshold correspom_js to the its information (where homogeneity-scale erromeasure-
outer ellipse: All points included in the computation form o error+ fluctuation error) has a diameter or effective

a set that is larger than the homogeneity domain (assuming e sizeD; in the j-th homogeneity direction that can be

that the measurement and fIU(_:tuation errors for all pqints ar%omputed from

the same, otherwise there exists no simple geometrical rep-

resentation). In practice, we use 5 Iogan_thm|cally sp_aced( D;/1j)* = 16(5 f2ast [/ 12 = She,

valuesa;, from 2 up to 100, for each of which the gradient

is computed. The gradient computation is thus repeated witlwhere Sef is called the effective scale factor. It is about 0.8
the outer ellipse being progressively expanded. The result ién this example (panel b). §fmeasi, fe, and f* are of the
most precise for the largest threshold (larg¥3t Solving same order of magnitudSes ~ 1 so that the effective scales
the problem for alb; allows us to assess whether the largestcorrespond to the homogeneity scales. A general property
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Fig. 4. Computation ofV,;|B| with isotropic homogeneity domain (red), anisotropic domain (green), and anisotropic domain with small-
scale fluctuations (blue) (see tex@) condition number(b—d) magnitude of spatial gradiet¥ | B||; (e—g)temporal gradiend| B|/dz. The
bottom scale gives the-shell position of the center of the Cluster tetrahedron.

is that Sef becomes smaller ag. becomes larger, reflect- spatial gradient|V|B||, correspond to this ill-conditioning
ing the equivalence between small homogeneity scales witlfpanel f), while no such large errorbars are present for the
a small f. on the one hand, and larger homogeneity scaledemporal gradient)|B|/d: (panel g). This ill-conditioning
with a larger f, on the other hand. The number of equa- is due to a purely spatial effect, namely the near-coplanarity
tions N actually used to compute the gradient (panel c, eactof the spacecraft during this period. Elsewhere, the spatial
curve refers to ay) increases withvy. A measure for the gradient is well computed, with a value aroun@®&nT/km.
amount of information used is the effective number of equa-The errorbars are on the order of 10%, but growing where the
tions Nefr= ) _; 1/p;, which is the sum of the inverse relative condition number gets worse. The temporal gradient varies
variances of the corresponding equations, so Mat<N around zero with an amplitude ef0.01 nT/s.

(panel d). For ever larges;, Nett increases, but the rel-  \edium-scale structures in the plasmasphere are often
ative gain decreases as the added equations have progregigned with the magnetic field, especially at the rather low
sively lower weights. The convergence of tNgr-curves in-  |atitudes that Cluster is sampling here. It therefore makes
dicates that maxo; =100 is well-chosen. Figur@e presents  sense to use an anisotropic homogeneity domain that is
an overview of the condition number as defined by . ( aligned with the magnetic field, with=/,=500 km perpen-

For lowoy (N small, not necessarily using data from the four gicular to B and 1,=2000km parallel toB. In addition,
spacecraft) the problem is almost singular (ce8*°), but e may consider small-scale fluctuations. Their character-
for largeroy the condition number becomes very reasonable istic scales are taken to be 1/5th of the homogeneity scales
typically 10-2. It remains below 10° in the time interval (f\xziy:lOO km, A.=400km, i,=12s) and £*=0.2nT.
09:30-09:45 UT, so that the gradient cannot be sensibly comgigyre 4 summarizes the results for the isotropic case, the
puted there. The growing errorbars on the magnitude of theynisotropic case, and the anisotropic case with fluctuations
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Fig. 5. Computation ofV|B| with anisotropic homogeneity domain and fluctuations (red), with the instantaneous gradient version (green),
and with the instantaneous version with fluctuations (blue) (see fextondition number(b—d) magnitude of spatial gradiet¥ |B||. The
bottom scale gives the-shell position of the center of the Cluster tetrahedron.

(panels b, ¢, d and e, f, g, respectively). There is not muckels b, ¢, and d, respectively). For the 4-spacecraft Cluster
difference between the gradients themselves. Yet, more dateaseN =M =4. The weights then do not matter and the clas-
points are available wherever the spacecraft trajectories arsical instantaneous spatial gradient method is recovered. The
aligned with the direction of largest extent of the homogene-gradients obtained with or without fluctuation error are iden-
ity domain (the magnetic field direction), i.e. near perigee.tical, but their error margins are not. There is a significant
ConsequentlyN is larger there and the condition humber difference from the space-time gradient only near the copla-
improves (panel a). The error margins are smaller (down tanarity region. The condition number (panel a) is slightly
8% on the spatial gradient magnitude) because laxgen- different for the three computations. The error margins are
plies more accurate averaging and because the total errors amallest for the spatio-temporal gradient.

the data are smaller. Adding fluctuations increa¥eand . . .
leads to a systematic improvement of the condition number. 1€ gradient of the plasma density can be computed in
The error margins increase a little to about 10% on the spatia?',m'Iar ways. F_|gure(5 cor_npares?ne anddn,/dt ob.tamed )
gradient magnitude. with f.=0.5cm™* for the isotropic case, for the anisotropic

. . . - __3 _
As discussed in Secs, the least-squares method can also case, and for the anisotropic case wjth=0.2cm™ (pan

be used to obtain the traditional instantaneous spatial graS'S ¢ d: € andf, g, h, respectively). As plasma density is a

dient. To this end, we first time-average and resample thestrlctly positive quantity, a logarithmic scaling has been used.

data onto a common time scale (60 s resolution in the presen(tjornputlng gradients in data gaps is, in principle, always

case), so as to obtain simultaneous data points. Note th‘,ﬂossible. However, the error associated with far-away data

time-averaging requires an appropriate evaluation of the erboints will be large, depending on the homogeneity scales, so

ror margins. The error on a time-average Y™7_, f:/n can th;_it the gradient will carry a Iarg(_e error. Often al_so the con-
be estimated by dition number becomes low. For instance, there is a data gap

for the four spacecraft around 06:42. As it lasts only a few

111 1 & times the homogeneity time scale, the gradient can still be
5f% = - [; Y 8fmeasi + P D i- f)z] ; computed, but the condition number temporarily decreases
i=1 i=1 (panel a). Something similar happens around 07:18 UT,

which takes into account both the measurement errors (of didue to a 5-min data gap for Cluster 2 only. Also note that
minishing importance as the number of data points grows}he condition number has improved again for the anisotropic
and the time-variability of the observed quantity (assumingcase near perigee, where the orbit is along the direction of
this variability to be gaussian, requiring an estimate of thelargest extent of the homogeneity domain. The spatial gradi-
standard deviation). Figur®compares the spatio-temporal ent is well-computed except close to the coplanarity region
gradient (anisotropic case with fluctuations) to the instanta-around 09:40 UT. The error margins are larger there but still
neous spatial gradients fgi*=0nT and f*=0.2nT (pan- so small that they can hardly be seen in the figure. There
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Fig. 6. Computation ofV ;n, with isotropic homogeneity domain (red), anisotropic domain (green), and anisotropic domain with small-
scale fluctuations (blue) (see text) condition number(b) n. observed by the four spacecrdft-e)magnitude of spatial gradiet¥n.|;
(~h) temporal gradiendn./d¢. The bottom scale gives tHe-shell position of the center of the Cluster tetrahedron.

is a double-peaked spatial gradient around 08:05 UT corre- ComparingV ,,n, for the anisotropic case to the instanta-
sponding to the rising and falling slopes around the densityneous spatial gradients without or with fluctuations (Fiyg.
peak observed near perigee (compare with panel b). Therthe two instantaneous spatial gradients are necessarily found
are also important gradients-0.05 cn3/km, relative pre-  to be equal and there are only minor differences with the
cision 10%) near 07:50 UT and near 08:15 UT. These strongpace-time gradient (panel ¢, d, and e). The condition num-
gradients are identical to those reportedgrrouzet et al.  ber is not much different between the three computations
(20061 and interpreted there as proof of azimuthal structure.(panel a), but it clearly is best for the space-time gradient.
As the densities drop farther away from Earth, the gradientsThe space-time gradient also has the smallest error margins.
tend to become negligible well before and after perigee. The

temporal gradient is pretty smak(.01 cn3/s with a rela-

tive precision of 20% at best), except for the bipolar structure7  Gradients of a vector field

near perigee, which corresponds to the convection of the den-

sity structure. The three results are almost identical, but therhe gradients of the magnetic field vector components have
error margins are again smallest§%) for the case of an  peen computed with the same anisotropic homogeneity do-
anisotropic homogeneity domain. main, with f.=1nT and f*=0.2nT, treating the three
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Fig. 7. Computation oiVn, with anisotropic homogeneity domain and fluctuations (red), with the instantaneous gradient version (green),
and with the instantaneous version with fluctuations (blue) (see téx))condition number{b) n, observed by the four spacecraft—
e)magnitude of spatial gradiefi¥n.|. The bottom scale gives the shell position of the center of the Cluster tetrahedron.

components independently or coupling them through the Figure9 compares the curl (panels b, ¢, and d) and di-
zero-divergence constraint. From thevixB andV-B are ob-  vergence (panels e, f, and g) for the divergence-free spatio-
tained, as shown in Fi@. The effective scale factor is close temporal gradient computation as well as for the divergence-
to unity (as for theVv ;| B| computation in SecB). Sesf, N, free instantaneous gradient computation, applied to 60s av-
and Nej are identical for both computations. The number of eraged data, without and with small-scale fluctuations, re-
equationsN (panel a) is three times larger than for a scalar spectively. While the results of the computations are essen-
field. Both N and Nest (panel b) peak near perigee as a con- tially the same, the condition number (panel a) is best for the
sequence of the alignment between the spacecraft orbits argpatio-temporal gradient. It occasionally drops below?10
the direction with the longest homogeneity scale length (thefor the instantaneous gradient without fluctuations. The error
magnetic field direction). The condition number is identical margins are smallest for the spatio-temporal gradient despite
for both computations (panel ¢), although the overdeterminedhe fact that only the spatio-temporal gradient error estimates
system sizes are different (same data used, but only 14 uraccount for the three error sources (measurement error, cur-
knowns in the divergence-free case, rather than 15). The provature error, and fluctuation error).

gressively deteriorating condition number toward 09:40 UT

reflects the spacecraft coplanarity issue. The condition num-

ber is: quite good elsewhere. The curl (panels d and e) ang Physical relevance

the divergence (panels f and g) from the uncoupled and the
divergence-free computations have absolute error margins qf;
typically 0.005 nT/km (a relative error of 10% ofV x B}). scientific analysis, FiglOa shows the anglesp v 5 and

Away from the coplanarity time interva¥ - B does not sig- ap v, between the ambient magnetic fiekl on the one
nificantly deviate from zero. The correction of the solution | -4 i’de|B| and V. on the other hand. in blue and red
e ’ ]

implied by requiringv-B=0 is rather small. While the least- oqpactively (anisotropic case with fluctuations). The Clus-
squares method minimizes the differences between the ol gyacecraft are sampling the outer regions of the plasma-
servations and the linear approximation, adding a constralngphere, which happen to be the most dynamic ones where
limits the solution search space so that the error margins bez sion can be important (e.Garpenter and Lemairé997
come slightly larger. Nevertheless, adding physically rele-| amaire and GringayZ 998 Carpenter and Lemair@004

vant constraints obviously improves the realism of the solu-paceay et al.2005. Cluster has therefore been used in-

tion. tensively to study these regions (e Darrouzet et a).2004

order to illustrate the usefulness of these gradients for
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Fig. 8. Computation ofV x B and V- B every 60 s with anisotropic homogeneity domain and fluctuations (see text) without (red) and
with (blue) theV-B=0 constraint.(a) number of equation®’ in the overdetermined system, with each curve referring to a threshold

(b) effective number of equation€eg; (c) problem condition numbefd—e) magnitude of the cuflV x B|, with growing error bars and gap

in the computed gradient due to spacecraft coplandfitg) divergenceV-B. The bottom scale gives the-shell position of the center of

the Cluster tetrahedron.

20064ab). As we are only interested in the direction of these tained here compare very well to the instantaneous gradient
gradients, not their sense, the angles are reduced to the imlirections reported biparrouzet et al(2006H.

terval [0°, 90°]. By definition, the magnetic field strength  Assuming that there are no time changes in the electric
gradient is perpendicular tB at the magnetic equator, cor- field, the current density=V x B/ug can be readily com-
responding toxp v|3=90°, near 08:02 UT (close to, but puted from the curl of the magnetic field. The anglg ;

not exactly at Cluster perigee). Before and after that time betweenB and j as well as the current density magnitude
as the Cluster spacecraft are at higher magnetic latitudeg,j| are given in FigslOb and c (anisotropic divergence-free
that angle decreases rapidly because of the progressivelector case with fluctuations). The current density vegtor
more important field-aligned gradient. The error marginsis perpendicular taB somewhat northward of the magnetic
are large away from perigee as bd#hand V|B| are small  equator, around 08:10 UT. Close to perigeg, ; is <90°
there. Anglexp v,, remains quite large throughout the time south of the equator-90° north of it, with a current den-
interval, indicating thatvn. <V 1 n, at the relatively low  sity of 30 nA/n?. The existence of field-aligned currents,
latitudes Cluster is sampling, something that has also beeaway from the equator itself, is clearly established in the
found with radio sounding techniqueRdinisch et al.2001). plasmasphere but also on auroral field lines (e.g., just after
This is due to a small longitudinal gradient within each flux 06:00 UT). For a dipolar magnetic fielgi=0, but this is def-
tube, but also because of the existence of strong radial anthitely not true in the present situation.

azimuthal density structure on the transverse homogeneity

scale of 500 km adopted here. The gradient orientations ob-
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(b—d) magnitude of the cuflVxBj|; (f-g) divergenceV-B. The bottom scale gives tleshell position of the center of the Cluster tetrahedron.

9 Conclusions its generality and its robustness. It correctly applies the prin-
ciple of locality of information since only local data are used

This paper describes a general-purpose method for compuf® compute the gradient at any given point, in accordance
ing gradients of scalar and vector fields in space and time. #Vith the homogeneity condition. It also yields more strin-
has been shown that (1) The weighted least-squares methdifnt error margins on the obtained gradients. A disadvantage

for computing gradients is a very robust one. (2) The methodS its mathematical complexity. Implementing the method is

provides reliable error estimates that include the effects of1©t trivial. Computing the gradients is time-consuming when
one considers small-scale fluctuatiornfs £0), because then

measurement errors and approximation errors due to strud® ) X x .
ture at scales that are larger and/or smaller than the physicéhe, (pos&bly large) error covariance mat_rlces.must be diago-
scale of interest. (3) The method provides diagnostics to ashalized. While the gradients obtained with this new method

sess the quality of the computation, in particular by monitor-YPically do not differ very much from those obtained with

ing the singular values of the problem as a generalization ofn€ traditional instantaneous gradient method, one now ob-

the concepts of planarity or elongation of a 4-spacecraft Cor1_tains a quantitative estimate of the total error on the results.

figuration. The role of the different parameters of the gradi- A prerequisite for a correct application of this method (and
ent computation algorithm has been illustrated. The relativeys any other method) is the ability to specify realistic values
importance of the different types of errors and their effect Onfor the different error contributions. The measurement er-
the quality of the results has been discussed. ror is usually well-known, the fluctuation error is often only
The method has been found to be superior to the traditionah minor correction, but providing an estimate for the curva-
instantaneous gradient computation. Its primary advantage iture error may be more difficult. A posteriori verification,

www.ann-geophys.net/25/971/2007/ Ann. Geophys., 25,987-2007
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Fig. 10. Orientation of gradients during the Cluster inner magnetosphere pass on 7 August 2003, as a function of time-stmell of

(@) Angle ap v || (blue) andap v,, (red) betweenB andV|B| and Vn,, respectively (anisotropic homogeneity with fluctuations, see

text), reduced t¢0°, 90°]. The magnetic equator corresponde v g =90°, near 08:02 UT. Both angles reflect the relative proportion of
parallel and perpendicular gradien¥; | B| is rather strong away from the equator, wt¥gn, <V | n. due to small longitudinal gradients

within each flux tube and because of radial and azimuthal density strudtbyeAngle «p ; betweenB and current density (where

Jj=V xB/ug in a steady situation)(c) Current density magnitudg| is significantly different from zero in the plasmasphere, indicating
deviation from a dipolar field. The current density vector contains a significant field-aligned component inside the plasmasphere (around
perigee) and also on auroral field lines (just after 06:00 UT).

however, is always possible. Once the gradient is computeadf the magnetic field strength and of the plasma density have
along the spacecraft trajectory, one can check how it changelseen discussed. In addition, nonzero current densities have
with position and/or with time, at least to a certain extent, sobeen found, indicating that the field is not dipolar. Field-
that an evaluation can be made of the curvature error. As longligned currents appear to exist in the outer regions of the
as there are enough points within the homogeneity domainplasmasphere and on auroral field lines. The correct eval-
the value and the precision of the gradient are determinediation of the error margins on the gradients offered by the
mainly by the measurement and fluctuation errors, and thgroposed method is absolutely necessary to ascertain the re-
exact value of the curvature error is not too important. A liability of these findings.
limitation of the present method is that a single, fixed value The homogeneity scales must be adapted to the physical
for the curvature error parametgr is used throughout the structures that one intends to study. In the present exam-
domain. Another limitation is that we have not accounted forple, with a density structure that does not seem to exhibit
timing errors or spacecraft position errors. too fine scales, homogeneity lengths of a few hundreds of
As an illustration, this method was used to analyze mag-kilometers and a time scale of 1 min were fine. In situations
netic field and plasma density data obtained by Cluster durof stronger geomagnetic activity, finer-scale plasmaspheric
ing a pass through the inner magnetosphere. The relativetructures may be formed more rapidly, necessitating smaller
importance of the perpendicular and field-aligned gradientshomogeneity scales in space and time. The least-squares
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method will always produce a result, but whether the com-which leads to a projection®=x /£, tP=t/z.
puted gradients are accurate depends on the nature of the

data. With Cluster, a good gradient can usually be obtained\2 Stationarity constraint

when the homogeneity scales are on the order of, or larger

than, the spacecraft separations in space and time. For a structure moving with a given constant veloaity
time-stationarity is expressed by
: d
Appendix A g =[vo 11"V fo=0.
Constraints This constraint corresponds to an infinite homogeneity scale

along directionuax|[ vo 1]. Homogeneity in time is not
The overdetermined systerl)(may still be ill-conditioned  separable from homogeneity in space unkgsso0.
as the redundancy that stems from repeatedly measuring the As an example, considep=[vo; 0; 0]. Homogeneity di-
same quantity over time on different spacecraft may be rathefectionsu1, u», anduz must form an orthonormal set to-
limited. For example, if the spacecraft are all in the samegether withu4. One particular choice produces
orbital plane, it is impossible to extract information about

variations in the direction perpendicular to that plane. This 1/ vg +1 0 0 v/ U(Z) +1
ill-conditioning can be avoided if one adds new information 0 1 0 0
about the problem in the form of constraints. U= 0 0 1 0 and
We discuss here two types of (linear) constraints that may 2 >
be very useful in practice: geometrical ones, which state | —vo/yvg+1 0 0 Yyvg+1
that one or more spatial gradient components are zero, and £/ /2+10 0 0
the stationarity constraint, which specifies that the total time 0
derivative is zero. L= 0 & 0 0
0 0 £ O
Al Geometrical constraints . 0 0 0 +oo

Geometrical constraints are introduced by specifying an Or_whereg is a length scale. The projection tums out to be

thonormal set of vectors;, j=1,...,m (m<3) to which xﬁ:(x_vot)/giyﬁ:y/g’zﬁ:.z/s.’ so that one actually com-
V., fo must be perpendi]cular. Eor examBIe, the gradientpUteS the spatial gradient with isotropic homogeneity length

might be required to be perpendicular to the local mag_scalelleyzlzzf in a reference frame that moves with

netic field vectorB. In that casen=1 andci1=B/| B]|.

A set of orthonormal vectord;, i=1,...,4—m can then  Appendix B

be constructed, so that; "c;=0. Transforming any vec-

tor asx’=[...d;...c;...]"x, the gradient itself becomes cross-correlations of small-scale perturbations

[...di...c;..1"Vy fo. Sincee; "V, fo=0, them last

components of the gradient vanish. The directiopcan  We restrict ourselves to distributions of small-scale perturba-

thus be regarded as homogeneity directions correspondions that are isotropic ifr-space with perturbation strength

ing to infinite homogeneity scales, since the gradient musidropping off exponentially. The mean perturbation ampli-

be invariant (identically zero) in each of those directions, tude is assumed constant over the homogeneity domain, such

sothatU=[...d;...c;...JandL=diag[.../; ...+ co...]). that

TransformatiorP is now a projection rather than a rotation 4

and scaling (the space spanned by ¢hés its null space), 2y cp2007y %2 Y

its target space being4—m)-dimensi0;1al. The constraint (Bfsa (X, x))%) =87 (A7) = 16f 54(!1%1()

generally improves problem conditioning, but leads to larger -

residuals as there is less freedom to mimimize. with A”=[IAll,, f* a constant, andSs; the surface of
As an example, consider the situation in which the gra-2 4-dimensional sphere. ~ Because of the locality of

dient direction in space is known, say, that it lies alang  the perturbations(s fsa (A, x;)8fsa (A, x )))~8 fZ(2¥ ) when

Thenei=[0; 1; 0; 0] ande,=[0; 0; 1; 0]. For time-separable ~ Ax;;=|x;—xill, <" and zero whemux;;>>A". For sim-

homogeneity with length scale=/,=[.=& and time scale plicity, the switch between both situations is taken to be an

Y

()3

l,=t, one finds abrupt one. The covariances &fss at pointsx; andx; can
then be computed as
1 0 0 O E§ 0 0 O
0 01 0 0t 0 O (0 fss(xi)d fss(x ;) (B1)
U=1 000 1[3=|0 0400 | S xS e 51 DA
0 1 0 0 0 0 0 400 —AA’( fssk(  Xi) fSSk( axj)>
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= A<5fs§(xvxi)5fs§(xvxj)> dx

e P 352

~ (] AT fmw) Sf2( )dnY (B2)
k=1 ij

= %M, (83)

where f*? is the total perturbation variance. Whatever the
specific choice of perturbation amplitude distribution, it must
decrease faster tharf(2?)3 in order to obtain a finite total
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] ’ Décreau, P. M. E., Fergeau, P., Krasnoselskikh, \éydque, M.,
perturbation, and the end result will always be that the cross-

Martin, P., Randriamboarison, O., SerF. X., Trotignon, J. G.,

correlation is large between nearby points, and becomes zero canu, P., Mbgensen, P. B., and Whisper investigators: WHIS-
as the distance between both points exceeds the perturbation pER, A Resonance Sounder and Wave Analyser: Performances

length scale.
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