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Abstract. The broadbaaad electrostatic waves inside the electron foreshock region 
well away from its boundaries were explained as a beam mode for which the beam 
velocity is lower than the thermal velocity of the background plasma. We discuss 
here the nonlinear saturation of this instability. The waves propagating along the 
beam are stabilized by a plateau formation on the electron distribution function. 
The waves that propagate at an angle to the beam are stabilized in a different way. 
In the course of the development of the instability the beam velocity spreads and 
an initially negative energy mode, which is initially unstable, experiences increased 
damping by the beam particles and finally is stabilized due to this effect. We give an 
estimation of the wave energy in both cases, and we present a numerical modelling 
to substantiate our analytical estimates. The saturated wave energy level is found 
to be comparable in both cases and agrees with the levels observed in the foreshock. 

1. Introduction 

Two kinds of waves have been observed in the elec- 

tron foreshock [Etcheto and Faucheuz, 1984]. Waves at 
the plasma frequency excited by the bump-on-tail dis- 
tributions are observed close to the foreshock upstream 
edge [Fitzenreiter et al., 1984, 1990] and a broadband 
electrostatic noise below the local plasma frequency is 
observed deep inside the foreshock, far away from its 
boundaries [Lacombe et al., 1985; Onsager and Holz- 
worth, 1990]. This broadband noise is well explained 
by the beam-driven electron sound oscillations [Fuselief 
et al., 1985, Marsh, 1985, Gary, 1985](see Mso Burin- 
skaya and Meister [1989], $hriver and Ashour-Abdalla 
[x9s9], •d 0..• [x990]). A •m•i• •6•.•io. i. tn• 
foreshock arises due to the reflection and acceleration of 
solar wind electrons at the Earth's bow shock. A kine- 

matic argument of Filbert and Kellog [1979] (see also 
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Cairns [1987]) shows that the reflected electrons must 
have a velocity greater than 

R 

Vb • Vn• 

well inside the foreshock. Here v, is the solar wind 
velocity component perpendicular to the magnetic field, 
R is the distance from the bow shock measured •ong 
the magnetic field, X is in the direction perpendicular to 
it, measured from the foreshock's upstream edge. This 
gives rise to a beam like electron distribution with the 
velocity Vb. Inside the foreshock this beam velocity is 
lower than the therm• velocity VTe O• the background 
solar wind plasma electrons and the beam density nb is 
weak, nb<< no, where no is the background solar wind 
plasma density. 

The aim of this paper is to discuss the nonlinear de- 
velopment of the beam-driven electron acoustic instabil- 
ity. Namely, we will show that the waves are stabilized 
by two essentially different processes. The waves going 
•ong the beam saturate as the plateau develops on the 
electron distribution function. The waves that propa- 
gate at an angle to the beam are stabilized as the beam 
velocity spreads and grows as the beam is being ther- 
m•ized. This leads to enhanced damping by the beam 
electrons and the wave growth is switched off. We in- 
vestigate the model problem and examine separately 
the resonant quasi-linear diffusion of the Maxwelltan 
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background plasma a•d the nonlinear interaction of the 
beam electrons with the excited wave spectrum. Next 
we define the most important nonlinear effect responsi- 
ble for the stabilization of the instability using the pa- 
rameters typical for the electron foreshock region. Both 
components, that is, background solar wind electrons 
and beam electrons are in resonance with the same 

waves, but every solar wind electron is in resonance 
only with several waves from the unstable phase ve- 
locity interval. At the same time, every beam electron, 
due to the condition AVb << ?/k, is in resonance with 
the whole unstable wave spectrum. So it is because the 
nonlinear interaction of the excited wave spectrum with 
these two components takes place in different ways that 
we decided to separate the two distributions. We in- 
vestigate the nonlinear interaction of waves with each 
of these components, but the nonlinear influence of one 
component on the other through the waves is neglected 
in the paper. 

In the following section we consider the one dimen- 
sional diffusion of plasma electrons in velocity space. 
The quasi-linear set of equations that describes the pro- 
cess is solved and the resulting wave spectrum is calcu- 
lated. In section 3 the nonlinear dynamics of oblique 
waves is analyzed. In this case the formation of the 

velocities much larger than the thermal velocity VTe are 
in resonance with the oblique waves. The condition 
for quenching the instability is found by looking how 
the growing spread in transverse velocities of the beam 
electrons lead to the reduction of the growth rate. A 
method of incomplete numerical simulation [Matsiborko 
et aI., 1972] is used in section 4 to substantiate our an- 
alytical findings. In this procedure only the beam par- 
ticles (the spreading of their velocities) is taken into 
account, the distribution of the plasma electrons is held 
constant. Both the cases of one dimension and two di- 

mensions are treated. Then we discuss and compare the 
analytical and numerical results. Our findings are in a 
satisfactory agreement with the observations in what 
concerns the frequency spectrum and typical wave am- 
plitudes. 

2. Electron Acoustic Beam-Driven 

Instability in the Solar Wind 

We shall consider electrostatic oscillations of the solar 
wind electrons in the case when the electron distribution 

function has a 6-type singularity at a velocity Vb << 
VTe. In this case the distribution function represented 
qualitatively in Fig. I can be written in the following 
form: 

Vb • VTe • 

where nb and Vb are the density and the speed of beam 
rraivy, = ther- 

mal velocity of background plasma electrons, K is Boltz- 
man's constant, and fo(Y) is the distribution function 
of the solar wind electrons, assumed to be MaxwellJan. 

I I 
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Figure 1. Qualitative electron distribution function 
considered. 

The electrostatic oscillations under consideration have 

the following dispersion relation [MikhaiIovskii, 1974]: 

I ( .V• w ) w• )2 = 0 (1) 1+ k2r•)e 1 + z kvTe -- (co - kllVb ' 
where r De is the background electron Debye radius and 
k, kll are the absolute values of the wave vector and 
of its component parallel to the direction of the beam 
propagation, COb = (nb½2/(•om) 1]2 «s the plasma pulsa- 
tion of the beam. 

The solution of the dispersion relation gives both the 
pulsation and the growth rate of unstable oscillations. 
Since the imaginary part of co is small compared to its 
real part cot, the notation co is used in place of cot. 

krDe 

• cob ,-y = ,.,., 
cop(1 + kZr•)e)z/2 ' 

where cop is the plasma pulsation in the ba•ground 
solar wind electrons. The threshold for the onset of 
instability, 

(3) 
de•es q•te a wide inter• for •gles of propagation of 
•stable waves from p•Mlel to Mmost normM propaga- 
tion. A possible nonlinear mech•sm that c• stabi•ze 
the wave gro•h is the velocity &•sion of pl•ma elec- 
trons in reson•ce with the •stable waves. In this c•e 
every unstable wave on the distribution function of the 
ba•gro•d plasma singles out it's o• group of the 
reson•ce particles. The reson•ce interaction betw•n 
the waves •d be• p•icles t•es place in •other 
way. Because of the con&tion •Vb • ?/k M1 the beam 
• a whole is in reson•ce with every harmonic of the 
unstable wave paget. The velocity &•sion leads to 
the formation of a plateau in the r•on•t p•t of the 
velocity &stfibution function of the ba•ground elec- 
trons due to which the instability of the negative ener• 
mode is quenched. The qu•i-linear set of equations de- 
scribing this process has the following fo•: 



SOTNIKOV ET AL ß NONL•AR PLASMA WAVES 1N THE FORESHOCK 23,475 

Of e 2 (9[ IEnl 20fo] 0-•- m-q0-• Iv-•l Ov (4) 
01Enl • •v•.• •De 
at = 4•0% (• + •L)•/• Ov (•) 

where • is •he slowly •r•ng •s•fibufion function of 
•he qu•i-line• •h•ry. The relation be•w•n •he reso- 
n•ce velocity v •d •he w•venumber k is determined 
by •he •spersion l•w: 

•b•De 

• - • - (• + •L) •/• (•) 
•d •he group velocity of •he unstable w•ves is 

d• •brDe 

a• = • - (• + 
The qu•si-line• equations (4) •d (5) •e written for 
•he one-•mensionM c•e where only w•ves propagat- 
ing in •he beam direction are exci•ed •d •he formation 
of •he plateau in •he reson• p• of •he distribution 
function is •he domin• nonline• process. The •s- 
cussion of •he role of • plateau formation for •he •wo- 
ß mensionM case wi•h •he excitation of oblique w•ves is 
carried ou• below in section 3. 

We c• investigate •he plateau formation using •he 
s•d•d [echnique (•, for exmple, Akhiezer ei. 
[1975]). • our c•se •he •s•ribufion function is •s- 
continuous on •he ends of •he •s•ble phase velocity 
in•e•M. I• is possible in principM •o •void •his dis- 
continuity by using • effective collision frequency in- 
s•ead of •he binary collisions. For •he instability un- 
der question •he qu•i-line• evolution of •he distribu- 
tion function •es place in •wo •recfions from •he 
poin• vo = v•- vT•(2n•/3no)X/•. T•s poing corre- 
sponds •o •he m•imum of •he gro•h r•e. Dynamics 
of •he plateau formation for •he si•l• physicM situa- 
tion of •he ion-bern driven •cousfic instability w•s in- 
v•fig•ed by Buhnska•a and Meisier [1989]. In our 
c•e of •he electron beam-dfiv• •cousfic instability 
•his corresponds •o •he unstable phase velocity r•ge 
(vmi• = v•- •rD•, Vm• = v•). • •he p•per by Dum 
[1990] •he pro•ss of •he plateau formation w• inves- 
tigated wi•h •he help of nmericM simulations. I• w• 
sho• •h• plateau formation •es place in •he region 
of phase velocities slightly l•ger •han v•. We, from 
•he ve• begin•ng, examine •he instability using 
extremely n•ow •s•fibufion of •he beam electrons in 
velocity sp• (6 function distribution in velocity sp•ce 
for •he bern p•ficles). In •his case •he unstable ph•e 
velocity in•er• is restricted by v• in i•'s upper limit. 
We •h• •d the plateau formation on •he reson• bulk 
sol• wind •s•fibution by neglecting velocities • v•. 
These velocities c• •ppe• due •o •he beam velocity 
spread •d were investigated sep•ely so •h• •here 
would be no contradiction wi•h •he p•icle conserva- 
tion l•w. We Mso neglec• in our model •he nonreson• 
ß •sion of b•k solar wind electrons since i• c•no• 

play • signific• role in •he electron foresho• region 
where •he collision frequency is very smM1. 

The energy integral of the quasi-linear set of equa- 
tions (4) and (5) has the fo•m: 

[Ek[ 2 = 
•'KTe wb krDe 

•0 • (x + e:•L)•/: Iv - a•/ael 
ß (f-fo)dv (•) 

where KT• is the electrons' thermal energy and Vmin 
the minimal value of the resonant velocity: 

Vmin -- Vb -- 0Jb r De (k • 0) 

In the one-dimensional case, a plateau is formed in the 
velocity interval Vmin << V < Vb. The height of the 
plateau can be found from the number of particles con- 
servation law: 

foo _ 1 f•vb -- fodv 
Vb -- Vmin rain 

where fo is the Maxwellian velocity distribution, which 
can be written in the following form for the velocities 

•o ß (• - v •/2vL) f o - h/r• V T e 
Then, 

O0 • 
q- Vb Vmin q- Vmi n 

and from (7) the following formula for the wave spectral 
density at the final stage of plateau formation can be 
obtained 

IEz•I 2 = 

(8) 

An integration over k gives the following wave energy 
level for the beam-driven electron sound mode: 

w•- • •01•1 • ~ .o•C• .• v• (o) k - 40v/• nzø vT• 
It should be noted that there exists another mechanism 

for the saturation of the wave growth. The instability 
under consideration is the negative energy mode insta- 
bility which exists only in the case of the monoener- 
getic beam. The growth of the beam velocity spread 
can stabilize the instability. This happens when damp- 
ing produced by the beam electrons due to the velocity 
spread will exceed the growth rate connected with the 
resonant interaction with the background electrons. To 
find this critical value of the beam velocity spread, we 
can include the damping due to the beam particles into 
the dispersion equation and from the numerical solution 
try to find the maximum possible beam velocity spread. 
We can introduce the parameter 6 = Z•Vbmax/VTe where 
AVbmax is the maximum value of the beam velocity 
spread. From the requirement that the growth rate has 
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to be positive it is possible to get the scaling [Dttm, 
1989]: 

where the parameter r/ << 1 depends on the ratio 
w/kvTc. For the ratio of the beam velocity to the back- 
ground electron speed, we use v,/vTc • 0.15, which is 
typical inside the electron foreshock region. This gives 
us r/ • 0.2. As it is well known, the growth of ther- 
mal energy in the beam caused by waves is equal to the 
kinetic energy of the beam particles oscillating in the 
wave field: 

m(Av*) • e2 E I•! • 
2 2m --• k 6w• 

(•) 

where 6wa = w - k,v•. With the use of (2) and condi- 
tion (10) we can obtain an estimate for the energy of 
the wave dectric field that is sufficient for the satura- 

tion of the instability as the result of the growth of the 
beam velocity spread. This is achieved by restricting 
the summation over k to the values whi& correspond to 
the maximum of the growth rate, that is for krDe --• 1' 

y]01l , ø 
xn,z t:•untm, t• xz) was oo[mnect in •he paper z•ttra 
[1989]. When this estimate is compared to (9) it fol- 
lows that in the one-dimensional case the velocity dif- 
fusion of plasma electrons and the plateau formation is 
the dominant nonlinear process when compared to the 
negative energy mode instability. It stabilizes the insta- 
bility for amplitudes that are somewhat smaller (by 
factor v,/[ 40(2•r)•/2v•,•rt 2 ] ) for the quasi-linear wave 
energy. Nevertheless, the growth of the velocity spread 
is significant in the final stage. This is confirmed by 
a one-dimensional numerical simulation of the instabil- 

ity by Dura [1990]. In this paper the author does not 
separate the distributions of the background solar wind 
plasma and beam electrons. This makes it difficult to 
make the comparison with some of our results where 
this separation was used. One of the main differences 
for the runs with v,/vT• -- 1.25, which is the closest 
to our case of V,/VT½ ----- 0.5, is connected with the ap- 
pearance of the particle diffusion into the region v > 
This can be explained, if we take into account the ve- 
locity spread of the beam electrons. 

It is also necessary to point out that the dependence 
of the kinetic instability of the downshifted oscillations 
from the v,/v•.• ratio was examined in the paper by 
Dum [1989]. Also, it should be noted that in the two- 
dimensional simulation the plateau formation cannot 
stabilize the instability, and in this case the saturation 
is only due to the growth of the velocity spread in the 
beam. This case is the subject of the next section. 

3. Nonlinear Saturation of the 

Instability in the Two-Dimensional Case 

The dispersion equation for waves that propagate at 
an angle to the beam has still the form (2) and the nec- 

essary condition for the instability (w > 0) determines 
possible angles of propagation of unstable waves derived 
from equation (3): 

kll > COb VTe (13) 
k cop Vb 

Also, in the two-dimensional case the phase velocity 
may attain very low values and the width of the inter- 
val of the resonant particle phase velocities ZXv widens 
and becomes comparable to the beam velocity, Av '"' Vb. 
Under experimental conditions with dilute beam plasma 
(COb << cop), the right hand side of the inequality (13) can 
be of the order of 1/10. In which case, the waves prop- 
agating almost transverse to the beam are excited. For 
such waves the stabilization due to a plateau formation 
is impossible as it would be necessary to form a plateau 
in an infinite velocity interval v.k k w/k over which the 
integration in the formula for the growth rate is carried 
out [ Galeev and $a#deev, 1983]. 

The instability in the two-dimensional case is stabi- 
lized by the growth of the transverse velocity spread in 
the beam. Again, as in the one-dimensional case, from 
the condition for the growth rate to be positive it is 
possible to get the scaling (10), but now the parame- 
ter r/will be smaller (r/ < 0.1) because it depends on 

is smaller. The growth of the transverse energy in the 
beam, equal to the kinetic energy of the beaxn particles 
oscillating in the wave electric field, gives 

m(Av_l_) 2 e 2 1 
2 • 2m lEvI2 

Now, using (14) one obtains the following result for 
the level of the wave energy at which the instability 
of oblique waves is stabilized: 

- y]01El 
k 

As we shall see from the results of numerical simula- 

tions, the parameter r/2 is equal to r/2 • 10 -2 (see next 
section). 

4. Incomplete Numerical Simulations in 
One- and Two-Dimensional Cases 

The process of saturation of the instability due to the 
increase of the transverse beam velocity spread can be 
described with the use of the method of incomplete nu- 
merical simulations [Matsiborko et aL, 1972]. According 
to this method, we consider the distribution function of 
plasma electrons to be constant, and we follow the mo- 
tion of the beam electrons during the development of 
the instability. We &oose the initial distribution func- 
tion of the beam electrons as 

- fo, - (1•) 

where Vzo is the velocity component along the beam. 
The electric potential of the unstable wave packet cor- 
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responding to a number of harmonics k is represented 
in the following form: 

•- • -. •ke iki'-ia•k + (17) 
It obeys the Poisson equation: 

e•k•l,• = --4•re / fbdSv 
where fb is the current stage of the velocity distribution 
function in the beam, with the dielectric function: 

• = 1• k2r•)e 1• kv• 

• 10 'l •1• 

10 '3 o.=l•o = 
10-4 

10-5 

10 -6 
0 1 O0 200 300 

(obt 

Figure 3. Parallel propagation: normalized to 
noKT•(nb/no) 2 the wave energy density WE and the 
change of the absolute value of beam kinetic energy 
IzEl = rn(v•/2- < v2/2 >), versus time. The chosen 
beam and plasma characteristics are as in Figure 2. 

and with the source term -4•re f fbdSv due to the beam 
electrons. The potential harmonics and the equations 
of motion for the beam electrons are given by 

8•re 1 V'. r;' •o-igr•+i•k t (19) • = k2• N• 
p 

dt • m f, 
Np is the total number of the beam particles over a 
wave length and periodic boundary conditions are ap- 
plied. The value np(f'op) is the density of beam particles 
at initial positions r%p and f'p(t) the position at time t of 
an individual beam electron p. This set of equations was 
solved numerically in order to obtain the nonlinear satu- 
ration of the instability due to the increase of the beam 
velocity spread with the simulation system size equal 
to the maximum unstable wavelength. A nonuniform 
initial density of the beam electrons insures the pres- 
ence of non linear terms in right-hand side of (20) for 
the initial steps of integration (after several steps, the 
density becomes self-consistantly inhomogeneous, due 
to the interaction with the excited electric field). 

The results of simulations for the one-dimensional 

case (i.e., only the waves propagating along the beam 

.16 

.12 

• .08 

' I ' I ' I ' 

(kzrde = 0.25-2.00) 

_ 

0 , I , I , I • 
0 .50 1.00 1.50 2.00 

Kzrde 

Figure 2. Parallel propagation: normalized growth 
rate versus normalized wavenumber, for rib/no -- 0.001, 
v•/va.• = 0.5. 

are considered) are presented in Figures 2 and 3. The 
growth rate versus the parallel wave number is shown 
in Figure 2, and the harmonics used in the simulation 
are marked. Figure 3 shows the growth of energy W in 
the excited wave spectrum with time and the change of 
the beam particle kinetic energy related to the velodty 
spreading. From this figure we conclude that the wave 
energy saturates at 

w 0.05 ] 
due to the velocity spreading in the beam. As this value 
is higher than the one given by (9) for the saturation 
of instability by a plateau formation, it may be con- 
cluded that it is the plateau formation that stabilizes 
the waves going along the beam. This estimate appears 
to be in good agreement with the estimation (12) of the 
saturation by velocity spreading. 

In the two-dimensional simulation case, Figure 4 shows 
the lines of constant level for the growth rate in the 
(o• •) •a • (o• •) •,• •a • •mo,i• ,•a. 
Taking into account the fact that due to the condition 

1.5 i • 

1.0 - 

0.5 • 

0.0 
0.0 0.5 

i i 
i i 

i i 

! ! ! 

•07 

1.08 ' ' , 

!.!• ' _ _ _' _ _ _• .... 

1.12 

i i i i 

i i i i 

1.0 1.5 2.0 2.5 3.0 

kzrde 

Figure 4. Oblique propagation: constant levels of nor- 
malized growth rate in the kz (parallel wave number) 
and k= (perpendicular wave number) plane. Same char- 
acteristics as in Figure 2. 
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'1o 

1 

• lO'1 
?•1• lO -2 

10 -4 

10 -5 

r I•EBI 
W 

10-6 ......... • ......... 
0 1 O0 200 

cobt 

Figure 5. Same as Figure 3, for oblique propagation 

Av0 << 7/k every beam particle is in resonance with the 
excited wave spectrum, we can conclude that the spac- 
ing of resonance velocities is smaller then the resonance 
width for the examined modes. Figure 5 is similar to 
Figure 3, in the case of oblique waves. We conclude once 
again that our estimate (15) of the saturation level is in 
good agreement with the numerical results. 

When we compare (15) and (9), we can see that both 
the waves going along and across the beam are stabi- 
lized at approximately the same level, even if the mech- 
anisms involved in the saturation are different. 

5. Conclusions 

In the course of this work we have shown that the non- 

linear saturation process for the beam driven electron 
acoustic instability for the waves propagating along the 
beam differs from that for oblique waves. Nevertheless, 
we have found that the saturated wave level is approxi- 
mately the same in both cases. Now, if we take typical 
electron foreshock parameters in our formulas (9) and 
(15), we obtain a ratio between the wave electric field 
energy and the plasma energy W/noKT• •- 10 -6 to 
10 -s, which is in satisfactory agreement with experi- 
mental data (see, for example, Etcheto and Faucheuz 
[1984], Fitzenreiter et al. [1984, 1990], and Buckle•t et 
at. Our results confirm also the conclusion 
made by Dum [1990], namely that for the waves along 
the beam, the main nonlinear effect is the quasi-linear 
transformation of the plasma electron distribution func- 
tion. For the waves propagating across the beam it 
is the transformation of the beam electron distribution 

and increased damping by the beton particles which sta- 
bilizes the instability. 
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