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Stretching and folding sustain microscale chemical gradients in porous media

Fluid flow in porous media drives the transport, mixing and reaction of molecules, particles and microorganisms across a wide spectrum of natural and industrial processes. Current macroscopic models that average pore-scale fluctuations into an effective dispersion coefficient have shown significant limitations in the prediction of many important chemical and biological processes. Yet, it is unclear how three-dimensional flow in porous structures govern the microscale chemical gradients controlling these processes. Here we obtain high-resolution experimental images of microscale mixing patterns in three-dimensional porous media and uncover an unexpected and general mixing mechanism that strongly enhances concentration gradients at pore-scale. Our experiments reveal that systematic stretching and folding of fluid elements are produced by grain contacts, through a mechanism that leads to efficient microscale chaotic mixing. These insights form the basis for a general kinematic model linking chaotic mixing rates in the fluid phase to the generic structural properties of granular matter. The model successfully predicts the resulting enhancement of pore-scale chemical gradients, which appear to be orders of magnitude larger than predicted by dispersive approaches. These findings offer new perspectives for predicting and controlling the vast diversity of reactive transport processes in natural and synthetic porous materials, beyond the current dispersion paradigm.

Introduction

F luid mixing in porous media plays a key role in a range of natural and industrial systems [START_REF] Dentz | Mixing, spreading and reaction in heterogeneous media: A brief review[END_REF][START_REF] Rolle | Mixing and reactive fronts in the subsurface[END_REF][START_REF] Valocchi | Mixing-limited reactions in porous media[END_REF]. In these confined environments, mixing enables or limits reactions controlling the degradation of contaminants in the subsurface, the cycles of biogeochemical elements such as nitrogen, iron and carbon, and the sequestration of CO2 in deep reservoirs [START_REF] Kitanidis | Delivery and mixing in the subsurface: processes and design principles for in situ remediation[END_REF][START_REF] Gomez-Velez | Denitrification in the mississippi river network controlled by flow through river bedforms[END_REF][START_REF] Datta | Redox trapping of arsenic during groundwater discharge in sediments from the meghna riverbank in bangladesh[END_REF][START_REF] Matter | Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions[END_REF][START_REF] Szulczewski | Lifetime of carbon capture and storage as a climate-change mitigation technology[END_REF][START_REF] Stegen | Groundwater-surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover[END_REF][START_REF] Bochet | Iron-oxidizer hotspots formed by intermittent oxic-anoxic fluid mixing in fractured rocks[END_REF]. Mixing also shapes the nutrient landscapes and chemical gradients seen by bacteria evolving in soils or medical systems [START_REF] Borer | Spatial organization of bacterial populations in response to oxygen and carbon counter-gradients in pore networks[END_REF][START_REF] Drescher | Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems[END_REF] and facilitates chemical processes in drug delivery, packed bed reactors, flow batteries, or catalysts [START_REF] Anglin | Porous silicon in drug delivery devices and materials[END_REF][START_REF] Braff | Membrane-less hydrogen bromine flow battery[END_REF][START_REF] Meirer | Spatial and temporal exploration of heterogeneous catalysts with synchrotron radiation[END_REF]. Increasing evidence of sustained chemical gradients and incomplete mixing below the pore-scale, along with associated impacts upon chemical reactions [START_REF] Valocchi | Mixing-limited reactions in porous media[END_REF][START_REF] Gramling | Reactive transport in porous media: A comparison of model prediction with laboratory visualization[END_REF][START_REF] Berkowitz | Measurements and models of reactive transport in geological media[END_REF][START_REF] Wright | Effects of incomplete mixing on reactive transport in flows through heterogeneous porous media[END_REF], have questioned the relevance of macroscopic dispersion coefficients to capture these processes [START_REF] Dentz | Mixing, spreading and reaction in heterogeneous media: A brief review[END_REF]. Yet, it is currently unknown how three-dimensional flow topologies in porous structures control microscale mixing rates and concentration gradients.

Recent theories [START_REF] Lester | Is chaotic advection inherent to porous media flow?[END_REF][START_REF] Turuban | Space-group symmetries generate chaotic fluid advection in crystalline granular media[END_REF] have suggested that laminar flow through three-dimensional porous media may possess the basic ingredients for chaotic advection, which would represent a possible mechanism for the enhancement of microscale chemical gradients, and the persistence of incomplete mixing at the pore-scale. These chaotic dynamics may have particularly important consequences for microbial processes, a broad range of which are hosted in porous environments [START_REF] Whitman | Prokaryotes: the unseen majority[END_REF]. Biological processes in turbulent flows have been shown to be deeply altered by chaotic advection, which promotes coexistence of competitive microbial species [START_REF] Tel | Chemical and biological activity in open flows: A dynamical system approach[END_REF] and affects the chemotactic responses of micro-organisms [START_REF] Stocker | Marine microbes see a sea of gradients[END_REF]. However, whether such chaotic dynamics can spontaneously develop in laminar flows through porous media remains on open question.

A key experimental barrier to the direct imaging of solute advection in three-dimensional porous materials is their predominantly opaque nature. Whilst X-ray micro-tomography technologies have progressed significantly [START_REF] Boon | Observations of 3-D transverse dispersion and dilution in natural consolidated rock by x-ray tomography[END_REF], they still cannot resolve the fine structures produced below pore-scale. In contrast, use of visible spectrum refractive index matching between the solid and the fluid phases represents a viable alternative to observe solute mixing, as obtained with hydrogel beads in water [START_REF] Kree | Scalar mixtures in porous media[END_REF]. However, as molecular diffusion eventually masks the deformation of dyed fluid elements, a direct measurement of fluid deformation in random porous media is an outstanding challenge. Here we overcome these limitations by performing high-resolution laser imaging of the evolution of a low diffusivity fluorescent dye plume through a column of optically transparent borosilicate spheres via high precision refractive index matching (Fig. 1). This technique allows reconstruction of the three-dimensional dye plume at unprecedented resolution, thus providing direct experimental observation of pore-scale fluid deformation and mixing in
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The authors declare no competing interests. porous media. These novel data reveal the hitherto unknown role of grain contacts in controlling folding and stretching of fluid elements, a mechanism that generates strong chaotic advection and significantly enhances chemical gradients at the microscale. Since grain contacts are inherent to all granular porous materials, we deduce that chaotic mixing is ubiquitous in flow through all such materials, potentially impacting a large range of fluid-borne phenomena in natural and engineered systems.

3D imaging of mixing patterns in porous media

We observed three-dimensional fluid deformation and solute mixing in laminar flows through monodispersed random bead packs of diameters d = 7, 10 and 20 mm, optically matched into a glycerol-water fluid mixture (Fig. 5). A fluorescent dye is continuously injected upstream of the transparent column as a thin tube of radius L0 d (Fig. 2a), and advected downstream by the porous flow at the mean longitudinal advection velocity u. Cross-stream concentration patterns of the dye plume are imaged in the pore-space via a translational scan using a laser sheet and a camera. The dye cross-section rapidly evolves into a highly elongated (Fig. 2b) and striated filamentous structure (Fig. 2c) due to transverse stretching and folding of fluid elements in pores (SI Videos S1,S2,S3). The combination of a highly viscous fluid mixture and a high molecular weight dye results in laminar flows of low diffusivity, characterized by Reynolds numbers on the order of Re=7•10 -3 and Péclet numbers on the order of Pe=10 4 (SI Table S1). The deformation of the dye plume (Fig. 1a) thus closely shadows that of the advected fluid, facilitating direct visualization of pore-scale fluid deformation. We use spline fitting on the images to reconstruct the backbone of the cross-sectional dye footprint, called a filament, and estimate its total length L(x) for 9 to 14 bead diameters downstream from the injection point (see Fig. 2, SI Video S3).

The mean total filament elongation L/L0, averaged over the 18 statistically equivalent packings (SI Table S1), exhibits clear exponential growth with normalized longitudinal distance x/d (Figure 3). The dimensionless exponent µ ≡ ln(L/L0)/(x/d) = 0.29 ± 0.01 is independent of both bead diameter and flow rate and is known as the topological entropy of the flow (26). Via the central limit theorem, µ is related to the mean λ and variance σ 2 λ of the dimensionless stretching rate (see Methods)

µ = λ + σ 2 λ /2. [1]
The dimensionless parameter λ is also known as the Lyapunov exponent [START_REF] Ottino | Mixing, chaotic advection, and turbulence[END_REF], which can be converted into a mean stretching rate per unit time as λu/d. In addition to stretching, the filament also undergoes highly localised folding events which result in closely foliated striations (Fig. 2c). These fluid deformations are the hallmarks of chaotic mixing, and permit thus permitting exponential elongation of material elements in a finite-sized domain.

The role of grain contacts in folding

Folding of dye filaments is consistently initiated downstream of contact points between two beads (Fig. 1b and SI Figure S1). The cusp-shaped geometry near grain contacts means that when crossing a contact point (b.0), fluid elements are first compressed in the direction joining the two bead centres and stretched in the perpendicular direction. Downstream of the contact point, the direction of compression and stretching are exchanged and a cusp forms locally in the dye filament (b.1). This cusp is stretched in the following pore space, leading to a folded filament made of two straight segments (b.2). This stretching and folding process is repeated sequentially as the folded filament encounters other contact points (b.3), leading to thin solute dye foliations that are the hallmarks of chaotic advection (26) (Fig. 2c).

Recent studies [START_REF] Lester | Is chaotic advection inherent to porous media flow?[END_REF][START_REF] Turuban | Space-group symmetries generate chaotic fluid advection in crystalline granular media[END_REF] identified the role of separation and reattachment points on open grain boundaries (saddle points) in generating exponential stretching of fluid elements. Here, we uncovered the distinct role of contact points between grains in generating systematic folding of fluid elements. Simulations of laminar flow in periodic bead packings (see SI Text section A) show that attracting and repelling stream surfaces (unstable and stable manifolds) produced by these saddles indeed control stretching of material lines in the pore space. We found that these manifolds intersect orthogonally at grain contacts (SI Figure S2 and SI Video S5), where both the local flow velocity and the stretching rate vanish and manifold stabilities are exchanged, so that repelling stream surfaces become attracting and vice-versa. Hence, over a contact point, the local flow structure imparts finite curvature to fluid elements, which results in the sharp folds observed experimentally (Fig. 1). The repetition of this basic stretching and folding sequence over successive contact points offers a simple geometric framework to relate stretching rates to granular structure.
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Linking stretching statistics to the porous structure

Sharp folding of dye filament in between contact points produces a number nc of localised cusps of strong curvature, separated by straight segments of moderate curvature (Fig. 6). We define the mean segment length as Lc = L/nc and the average area swept out by a segment between two successive contact points as Sc = S/nc, where S is the total area swept by the filament. We find that Lc and Sc both converge to stationary values (inset of Figure 3). Hence, the average advection distance between two successive contact points is statistically constant and equal to Xc = Sc/Lc ≈ 3.45 d. Over this distance, a single elementary segment folds, giving rise to two new straight elementary segments. Thus, over the same distance, its length (X) must doubles to maintain = Lc constant, so that (X) = 2 (X/Xc) . Hence, the average dimensionless stretching rate λ of elementary fluid segments can be estimated as

λ ≡ d(log ) d(X/d) = log 2 Xc/d ≈ 0.21. [2]
This rate is larger than found in synthetic porous media, such as random pore networks (λ ≈ 0.12 [START_REF] Lester | Is chaotic advection inherent to porous media flow?[END_REF]) and body centered cubic assemblies of spheres (λ ≈ 0.128 [START_REF] Turuban | Chaotic mixing in crystalline granular media[END_REF]), reflecting the remarkably efficient stretching and folding process occurring in random granular media. The variance of the stretching rate can be estimated from Eq. (1) as σ 2 λ ≈ 0.16, a value comparable to the mean stretching rates λ, as it is typically the case in space-filling chaotic flows [START_REF] Meunier | The diffusive strip method for scalar mixing in two dimensions[END_REF].

As shown by Eq. ( 2), the strength of chaotic advection is entirely governed by the spatial frequency X -1 c with which segments encounter grain contacts. We show in Methods that in isotropic packings Xc ≈ 8 log 2φzcdp/3, with zc the coordination number (the mean number of contacts per bead), φ the solids volume fraction and dp the mean pore diameter. This yields a simple geometric estimate of the dimensionless Lyapunov exponent

λ ≈ 3 8 φzcdp d . [3]
Equation 3 is applicable to non-isotropic packings with a prefactor that quantifies the distribution of orientations of the contact lines joining bead centres with respect to the mean flow direction (see Methods). Insertion of the experimental values zc = 6, φ = 0.5 and dp/d = 0.24 in Eq. (3) yields λ ≈ 0.27 which is in reasonable agreement with the experimental estimate of 0.21, given the slight anisotropic nature of our experimental packings (see Methods). Equation 3provides the first quantitative link between microscopic fluid stretching rates and porous media structural properties.

Discussion

Stretching and folding sustain microscale chemical gradients. Repeated sequences of stretching and folding leads to exponential compression of fluid elements that can sustain concentration gradients at the pore-scale (Fig. 2). These concentration gradients are locally controlled byé the balance between diffusive spreading rate (Dm/s 2 ), with Dm the molecular diffusivity, and the mean compression rate (λu/d), which is equal to the stretching rate in steady incompressible flows. These two rates equilibrate at the Batchelor scale sB = Dmd/(λu), [START_REF] Kitanidis | Delivery and mixing in the subsurface: processes and design principles for in situ remediation[END_REF] which represents characteristic length scale of solute concentration fluctuations. Pore-scale mixing is thus characterized by the dimensionless length scale s * B = sB/d, which is related to the macroscopic Péclet number Pe = ud/Dm as,

s * B = (λPe) -1/2 .
[5]

For s * B > 1, the length scale of solute concentration fluctuations are larger than the grain diameter and therefore 
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concentration fields are expected to be well-mixed at the pore-scale. Our estimation of the Lyapunov exponent λ implies that the transition to incomplete pore-scale mixing occurs at Péclet number above 5, values commonly encountered in many natural and industrial contexts [START_REF] Cushman | The physics of fluids in hierarchical porous media: Angstroms to miles[END_REF]. This suggests that a broad range of biogeochemical processes are possibly affected by incomplete pore-scale mixing and chaotic advection. From results established on chemical and microbial processes in turbulent and chaotic flows at comparable mixing rates [START_REF] Tel | Chemical and biological activity in open flows: A dynamical system approach[END_REF][START_REF] Stocker | Marine microbes see a sea of gradients[END_REF], it is possible to anticipate a range of possible effects of chaotic mixing in porous media, including altered effective kinetics and microbial growth dynamics, increased biodiversity and enhanced benefit of sensing. Because they can only develop in three-dimensional topologies under steady conditions [START_REF] Ottino | Mixing, chaotic advection, and turbulence[END_REF], these chaotic dynamics are generally absent in quasi two-dimensional microfluidic experiments used to investigate the microscale interactions between flow, concentration gradients, chemical reactions and microbial processes [START_REF] Valocchi | Mixing-limited reactions in porous media[END_REF][START_REF] Borer | Spatial organization of bacterial populations in response to oxygen and carbon counter-gradients in pore networks[END_REF][START_REF] De Anna | Mixing and reaction kinetics in porous media: an experimental pore scale quantification[END_REF]. Novel experiments in three-dimensional porous media and new modelling frameworks are thus needed to explore these dynamics.

Microscale mixing model.

The experiments in this study have used high Péclet numbers to uncover the rate and kinematics of mixing in porous media. These results may be extended to prediction of macrosocopic mixing rates and concentration statistics at arbitrary Peclet numbers via lamellar mixing models that couple stretching and diffusion [START_REF] Borgne | Stretching, coalescence and mixing in porous media[END_REF][START_REF] Borgne | The lamellar description of mixing in porous media[END_REF][START_REF] Lester | Chaotic mixing in three-dimensional porous media[END_REF]. In SI Text section C, we derive such mixing model and compare its predictions in terms of dye concentration statistics to the experimental data. The lamellar model successfully captures the measured exponential decay of the mean maximum solute concentration of dye filaments with longitudinal distance cmax ∼ exp(-(λ + σ 2 /2)x/d) (Fig. 4), as well as the growth of concentration fluctuations caused by variability of the Lagrangian stretching history. These predictions provide an independent validation of the estimated mean and variance of the stretching rate, λ ≈ 0.21 and σ 2 λ ≈ 0.16. In contrast, conventional mixing models based upon macroscopic dispersion coefficients (1) ignore incomplete mixing at the pore-scale and predict an algebraic decay of concentrations cmax ∼ (x/d) -1/2 (SI Text section B). From the normalized Batchelor scale (Eq. ( 5)), pore-scale concentration fluctuations predicted by the lamellar model will persist for all Péclet numbers larger than five. In this range, macroscopic dispersion models fails to resolve pore-scale concentration gradients, leading to incorrect predictions of a broad range of reactive transport dynamics [START_REF] Valocchi | Mixing-limited reactions in porous media[END_REF][START_REF] Gramling | Reactive transport in porous media: A comparison of model prediction with laboratory visualization[END_REF][START_REF] Berkowitz | Measurements and models of reactive transport in geological media[END_REF][START_REF] Wright | Effects of incomplete mixing on reactive transport in flows through heterogeneous porous media[END_REF]. Coupling lamellar mixing models with reactive processes is therefore a promising avenue to capture the effect of pore-scale incomplete mixing on biogeochemical dynamics.

Porous materials as mixers. From Eq. ( 3), the mixing efficiency of steady laminar flows through random bead packs (defined as the ratio of the average stretching rate to the average strain rate) is found to be 3% (SI Text section D). This value is comparable to the performance of industrial mixers [START_REF] Ottino | Mixing, chaotic advection, and turbulence[END_REF] and an order of magnitude larger than that of micro-fluidic chaotic mixers [START_REF] Stroock | Chaotic mixer for microchannels[END_REF], thus opening new opportunities for exploiting the mixing properties of porous materials. Chaotic advection is known to both increase dispersion transverse to the mean flow direction and retard longitudinal dispersion [START_REF] Jones | Shear dispersion and anomalous diffusion by chaotic advection[END_REF]. It also alters the transport of finite-sized particles such as colloids and micro-organisms [START_REF] Ouellette | Transport of finite-sized particles in chaotic flow[END_REF] and may thus control their clustering in the pore space and deposition on grain boundaries. In relating stretching rates to the porous micro-structure, Eq. ( 3) offers a possible pathway to the design of engineered porous materials with optimum mixing characteristics. This concept may find important applications in the design of heat exchangers, packed bed filters and reactors, where transverse dispersion and mixing act to enhance process efficiency, and for continuous flow chemistry [START_REF] Meirer | Spatial and temporal exploration of heterogeneous catalysts with synchrotron radiation[END_REF], such as pressure-driven chromatography, where product selectivity and yield strongly depends upon the minimization of longitudinal dispersion. These applications would first require a validation Eq. ( 3) over a large range of packing geometries.

Conclusions

Using high resolution experimental imaging of microscale mixing in three-dimensional granular media we have demonstrated the existence of efficient stretching and folding of fluid elements at the pore-scale. We use these insights into the kinematics of mixing to develop a stochastic model for the prediction of the Lyapunov exponent from the geometric properties of the grain pack, and validate this model against experimental observations. The formalization of these observations into a chaotic mixing model, coupling stretching and diffusion, demonstrates that incomplete mixing persists at pore-scale for Péclet numbers above five. This model captures the processes governing microscale chemical gradients, opening new perspectives for understanding, predicting and controlling a large spectrum of physical, chemical, and biological processes, in natural and engineered porous systems. The discovery of systematic and efficient chaotic mixing in single phase laminar flows through random bead packsthe archetype of porous media-calls for deeper investigation of this phenomenon in a broad range of systems, including polydisperse packings, consolidated soils and rocks, and more 
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complex flows, such as multiphase, inertial or non-Newtonian flows. While these cases may act to modify the rate of mixing, the fundamental kinematics described in this study should persist as they arise from basic fluid-grain interactions. The investigation of these system-specific modulations of chaotic mixing in porous matter form promising research perspectives.

Materials and Methods

Experimental protocol. The porous column consists of a verticallyoriented rectangular column of cross section 48×48 mm (Fig. 5), containing monodisperse borosilicate glass beads (Sigmund Lindner GmbH) of diameter d = 7,10 or 20mm that are loosely and randomly packed via gravitational settling. The pore space between the beads is filled with a glycerol-water mixture (1.4%w/w water) at controlled temperature (T=25 • C). Fluid flow is driven by a constant pressure difference imposed between the inlet and outlet ports, respectively at the top and bottom of the column. The flow rate is continuously monitored at the outlet by a scale. Together with the knowledge of the packing porosity, this provides an estimate of the mean pore velocity, u. To visualize fluid flow and deformation through the bead pack, a solute fluorescent dye (PromoFluor-488LSS) is continuously injected in the upper part of the cell through a needle of internal diameter L 0 = 0.5 mm. The injected dye develops into a steady plume downstream of the injection point. The mean flow velocity u is chosen to be sufficiently low to get small Reynolds numbers and laminar flows (Re= ud/ν ≈ 5 • 10 -3

1, where ν ≈ 700 cP is the kinematic fluid viscosity), and fast enough for the dye Péclet number to be large and for fluid deformation to be measured from the dye backbone (Pe= ud/Dm ≈ 8.6 • 10 3 , where Dm ≈ 2 • 10 -11 m 2 s -1 is the molecular diffusivity of the dye in the glycerol-water mixture). For representativeness, experiments are repeated for multiple dye injection locations and for various packing realisations and bead diameters, as summarised in SI Table S1. The coordinates of the bead centres are determined via a three-dimensional Hough transform on the image stack obtained by the translational laser scan, where the background fluid fluorescence allows distinguishing the grains. From these coordinates, several structural properties of the porous media are obtained : φ , the solid volume fraction (the ratio of volume occupied by the beads over the total column volume); zc, the coordination number (the number of neighbouring beads whose centres lie d ± 5% away from the reference bead); dp, the mean diameter of the largest sphere inscribed in the pore space, obtained by a distance transform computed on a voxelized image of the fluid phase.

Reconstruction of the dye filament backbone. In each cross-stream section of the solute dye plume, a one-dimensional backbone of the dye filament is reconstructed via the adjustment of spline curves and its total length L is computed (Fig. 2 and Fig. 6a). In experimental run II (Fig. 2 and SI Video S1), the tracking is possible until downstream distance x = 9.27 d (beyond which the diffusive filament merges with itself), corresponding to a total elongation of L/L 0 ≈ 167 (Fig. 2c), where L 0 is the initial length of the dye filament backbone.

Distribution of elongations.

The sequential stretching and folding process leading to exponential growth of the total filament backbone length L implies that the length l of a fluid element follows a multiplicative random process [START_REF] Meunier | The diffusive strip method for scalar mixing in two dimensions[END_REF][START_REF] Borgne | The lamellar description of mixing in porous media[END_REF], such that l grows as dl/dx * = γl, where x * = x/d and γ is a random, statistically stationary stretching rate of mean λ and variance σ 2 λ . The length l thus results from the product of the successive stretching rates γ, such that log l is the sum of a series of independent and identically distributed random variables. From the central limit theorem, the distribution of log l must then converge with downstream distance towards a normal distribution of mean λx and variance σ 2 λ x * . This convergence is obtained after a few bead diameters since i) the dye filaments length increase exponentially and thus sample an increasingly large number of independent stretching rates in the pore space and ii) the stretching rates are distributed within pores, so that several independent stretching rates are experienced over a unit diameter distance. The mean value of l is thus such that l ∼ exp(µx * ) with µ = λ + σ 2 λ /2, which sets the growth rate of the total filament length to L/L 0 = exp(µx * ).

Number of high curvature regions.

As shown in Fig. 1b, when the filament is advected through contact points between beads, localized regions of very high curvature develop in the filament backbone. We define cusps as isolated regions of the filament backbone where the curvature κ of the spline curve exceeds the threshold κ = 10 3 d -1 . We find (Fig. 6c) that the total number nc of cusps in the filament backbone increases exponentially with the downstream distance x/d at a rate similar to that of the total filament length L. This suggests that stretching and folding events occurs in proportion of each other and that the resulting process is statistically stationary.

Prediction of the mean stretching rates from the porous media properties. Based on the consistently observed sequence of stretching and folding in the pore space and its control by grain contacts (Fig. 1), we derive a general expression for the magnitude of the Lyapunov exponent in random granular media as a function of the coordination number zc, the solid volume fraction φ, the grain diameter d and the mean pore diameter dp. Since segment lengths must double, on average, each times the segment encounters a contact, that is for each distance Xc, the Lyapunov exponent can be derived from equation Eq. ( 2) as λ = d log 2/Xc = d log 2/(Sc/Lc), which requires estimating the mean segment length Lc and the mean surface area Sc swept by segments between successive contact points. A geometric estimate for the mean segment length Lc is obtained by assuming that an individual segment doubles its length at the constant exponential rate λ until it reaches the mean pore diameter dp where it inevitably collides with a contact point located at Xc downstream, e.g. Lc(x) = dp/2 exp(log 2 x/Xc). This expression yields the average value

Lc ≈ dp 2 log 2 . [6]
From tomographic reconstruction of all the experimental runs, the average pore diameter is dp ≈ 0.24 d (see Methods). Thus, we estimate Lc ≈ 0.17d which is in excellent agreement with the observations (Fig. 3). To develop an estimate of Sc, we consider the volume density ρ V of contact points in the three-dimensional bead pack. As the number of grains per unit volume is 6φ/(πd 3 ) and there are zc/2 independent contacts per grain, the volume density of contact points is then ρ V = 3φzc/(πd 3 ). Conversely, Sc is equal to that for the total filament length (dashed line), suggesting stationarity of the stretching and folding processes.

to the inverse of the areal density ρ A of contact points in a filament sheet. To develop a relationship between ρ V and ρ A , we consider a series of filament sheets that arise from continuously injected line sources and extend along length Z in the cross-stream z-coordinate of the column, and are advected over distances X. These series of injection lines are also distributed along distance Y in the other cross-stream y-direction. If we consider the average number n V of contact points in the volume V = XY Z, then the number n A of contact points contained within a filament sheet is n A = ¯ /Y n V , where ¯ is the average span of filament sheet in the y-direction that pass through a common contact point. The simplest estimate for ¯ is obtained by considering the behaviour of filament sheets in a open laminar flow over two spheres in contact at an angle α with the mean flow direction x. From symmetry arguments, the horizontal span (α) is given by the projection in the plane normal to x of the contact line connecting the two sphere centres. Thus (α) = d sin α, and ¯ is given by the mean of (α) over the distribution of contact angles. As ρ V ≡ n V /(XY Z) and ρ A ≡ n A /(XY ), then ρ A = ¯ ρ V . For isotropic packings, contact lines are uniformly orientated in the space, and α is distributed as p(α) = sin α. Averaging over this distribution then yields ¯ ≡ d sin α = dπ/4. From the results above, Sc for isotropic packings is then estimated as Sc = 1/ρ A = πd 3 3 ¯ φzc . [START_REF] Matter | Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions[END_REF] For anisotropic packings the distribution of contact orientations may deviates from sin α, thus yielding different values for ¯ . Eq. ( 7) and Eq. ( 6), provide the value of the mean fold distance Xc = Sc/Lc and from Eq. ( 2), the Lyapunov exponent reads λ = ¯ 3φzcdp 2πd 2 .

[8]

Using the estimates of φ, zc and dp obtained from tomographic reconstruction and ¯ /d = π/4 ≈ 0.78 for isotropic packings, equation Eq. ( 8) yields λ = 0.27, a value comparable to the experimental estimate (λ = 0.21). The slight overestimate of λ can be explained by the anisotropy introduced by the gravitational packing of the beads and the finite size of the experimental column. Indeed, independent measurements of ρ V = 2.86d -3 and of Sc = 0.58d 2 (Fig. 3) indicate that, experimentally, ¯ /d = (dρ V Sc) -1 ≈ 0.6, instead of ¯ /d = 0.78 expected for isotropic packings. Using this value in Eq. ( 8) yields λ ≈ 0.21, in much better agreement with the experimental estimate. 
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 111 Fig. 1. (a) Experimental dye plume with backbone filament (red lines) at selected stages of the folding mechanism (run III, SI Video S4). Beads have been shrunk by 40% and white lines depict the contact line joining bead centres; surrounding beads are not shown. (b) Cross-sections detailing the typical folding stages (run I, SI Video S3). Upon passing the contact point 1-2 (b.0), the filament is stretched (diverging arrows) along the contact plane (dashed line) and compressed in the perpendicular direction (converging arrows). After contact (b.1), the directions of stretching and compression are inverted, and a cusp forms, creating a fold (b.2) which is advected over the subsequent contact 3-4 (b.3). Other experimental runs and numerical simulations are reported in SI Figures S1, Fig. S2 and SI Video S5.

Fig. 2 .

 2 Fig. 2. Cross-stream sections of the fluorescent dye plume at increasing distances from the injection: x/d = 0 (a), 3.2 (b) and 9.3 (c)(run II, SI Video S1 and S2). Colors represent local dye concentrations. Beads appear in deep blue. A spline curve (dotted black lines) is used to fit the filament backbone on each cross-section image; from which the total filament length L is obtained.

Fig. 3 .

 3 Fig. 3. Total filament elongation L/L0 with respect to the normalized pore advection distance x/d from the dye injection point. Inset: Convergence of the mean segment length Lc = L/nc and area Sc = S/nc toward constant values, with nc, the number of cusps.
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 4 Fig. 4. Experimental average (triangles) and standard deviation (circles) of the local maximum concentration cmax along x. Values are normalized by the initial maximum concentration c0. Classical model predictions are shown as black dashed and dotted lines. Lamellar mixing model predictions for the average and standard deviation of cmax are shown respectively as the green dotted line and the purple continuous line (see SI Text sections B and C for derivations).
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 5 Fig. 5. Experimental setup for three-dimensional imaging of the mixing of a fluorescent solute dye in optically matched porous bead packs. The dye is continuously injected through a thin needle upstream of the granular column, while maintaining a steady background laminar flow. After stabilisation of the solute dye plume, transverse cross-sections of concentrations are obtained by displacing a laser sheet (Oxxius, wavelength 488 nm, beam waist 50 µm) in the x direction while recording the emmited fluorescence with a CMOS camera (Hamamatsu ORCA-Flash4.0 16bits) mounted with a band pass filter (Midopt BN532) and oriented at an angle of 45 degrees from the laser plane. The perspective view is then ortho-rectified by a projective transform.

Fig. 6 .

 6 Fig. 6. a. Reconstruction of filament backbone (black line) from dye distribution and localisation of high curvature regions (red circles). b. Local curvature along the filament backbone (black line) with isolated cusps (red circles) and threshold value κ = 10 3 d -1 for cusp detection (dashed line). Note that the end-points of filaments are considered as cusps, explaining why red circles can exist below κ. c. Exponential growth of the number (nc) of cusps in the filament backbone as a function of the advection distance (x/d) from the injection point. The fitted exponent for nc (grey line) is similar
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