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Fluid flow in porous media drives the transport, mixing and reaction
of molecules, particles and microorganisms across a wide spectrum
of natural and industrial processes. Current macroscopic models
that average pore-scale fluctuations into an effective dispersion co-
efficient have shown significant limitations in the prediction of many
important chemical and biological processes. Yet, it is unclear how
three-dimensional flow in porous structures govern the microscale
chemical gradients controlling these processes. Here we obtain
high-resolution experimental images of microscale mixing patterns
in three-dimensional porous media and uncover an unexpected and
general mixing mechanism that strongly enhances concentration
gradients at pore-scale. Our experiments reveal that systematic
stretching and folding of fluid elements are produced by grain con-
tacts, through a mechanism that leads to efficient microscale chaotic
mixing. These insights form the basis for a general kinematic model
linking chaotic mixing rates in the fluid phase to the generic struc-
tural properties of granular matter. The model successfully predicts
the resulting enhancement of pore-scale chemical gradients, which
appear to be orders of magnitude larger than predicted by dispersive
approaches. These findings offer new perspectives for predicting
and controlling the vast diversity of reactive transport processes in
natural and synthetic porous materials, beyond the current disper-
sion paradigm.

Porous Media | Mixing | Lagrangian Chaos

Introduction

F luid mixing in porous media plays a key role in a range
of natural and industrial systems (1–3). In these confined

environments, mixing enables or limits reactions controlling
the degradation of contaminants in the subsurface, the cycles
of biogeochemical elements such as nitrogen, iron and carbon,
and the sequestration of CO2 in deep reservoirs (4–10). Mixing
also shapes the nutrient landscapes and chemical gradients
seen by bacteria evolving in soils or medical systems (11, 12)
and facilitates chemical processes in drug delivery, packed
bed reactors, flow batteries, or catalysts (13–15). Increasing
evidence of sustained chemical gradients and incomplete mix-
ing below the pore-scale, along with associated impacts upon
chemical reactions (3, 16–18), have questioned the relevance of
macroscopic dispersion coefficients to capture these processes
(1). Yet, it is currently unknown how three-dimensional flow
topologies in porous structures control microscale mixing rates
and concentration gradients.

Recent theories (19, 20) have suggested that laminar flow
through three-dimensional porous media may possess the basic
ingredients for chaotic advection, which would represent a pos-
sible mechanism for the enhancement of microscale chemical
gradients, and the persistence of incomplete mixing at the
pore-scale. These chaotic dynamics may have particularly
important consequences for microbial processes, a broad range

of which are hosted in porous environments (21). Biological
processes in turbulent flows have been shown to be deeply
altered by chaotic advection, which promotes coexistence of
competitive microbial species (22) and affects the chemotactic
responses of micro-organisms (23). However, whether such
chaotic dynamics can spontaneously develop in laminar flows
through porous media remains on open question.

A key experimental barrier to the direct imaging of solute
advection in three-dimensional porous materials is their pre-
dominantly opaque nature. Whilst X-ray micro-tomography
technologies have progressed significantly (24), they still can-
not resolve the fine structures produced below pore-scale. In
contrast, use of visible spectrum refractive index matching
between the solid and the fluid phases represents a viable
alternative to observe solute mixing, as obtained with hy-
drogel beads in water (25). However, as molecular diffusion
eventually masks the deformation of dyed fluid elements, a
direct measurement of fluid deformation in random porous
media is an outstanding challenge. Here we overcome these
limitations by performing high-resolution laser imaging of the
evolution of a low diffusivity fluorescent dye plume through a
column of optically transparent borosilicate spheres via high
precision refractive index matching (Fig. 1). This technique
allows reconstruction of the three-dimensional dye plume at
unprecedented resolution, thus providing direct experimen-
tal observation of pore-scale fluid deformation and mixing in
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Fig. 1. (a) Experimental dye plume
with backbone filament (red lines) at
selected stages of the folding mech-
anism (run III, SI Video S4). Beads
have been shrunk by 40% and white
lines depict the contact line joining
bead centres; surrounding beads are
not shown. (b) Cross-sections detail-
ing the typical folding stages (run I, SI
Video S3). Upon passing the contact
point 1-2 (b.0), the filament is stretched
(diverging arrows) along the contact
plane (dashed line) and compressed
in the perpendicular direction (converg-
ing arrows). After contact (b.1), the
directions of stretching and compres-
sion are inverted, and a cusp forms,
creating a fold (b.2) which is advected
over the subsequent contact 3-4 (b.3).
Other experimental runs and numerical
simulations are reported in SI Figures
S1, Fig. S2 and SI Video S5.

porous media. These novel data reveal the hitherto unknown
role of grain contacts in controlling folding and stretching
of fluid elements, a mechanism that generates strong chaotic
advection and significantly enhances chemical gradients at the
microscale. Since grain contacts are inherent to all granular
porous materials, we deduce that chaotic mixing is ubiquitous
in flow through all such materials, potentially impacting a
large range of fluid-borne phenomena in natural and engineered
systems.

3D imaging of mixing patterns in porous media

We observed three-dimensional fluid deformation and solute
mixing in laminar flows through monodispersed random bead
packs of diameters d = 7, 10 and 20 mm, optically matched
into a glycerol-water fluid mixture (Fig. 5). A fluorescent dye
is continuously injected upstream of the transparent column
as a thin tube of radius L0 � d (Fig. 2a), and advected
downstream by the porous flow at the mean longitudinal
advection velocity u. Cross-stream concentration patterns of
the dye plume are imaged in the pore-space via a translational
scan using a laser sheet and a camera. The dye cross-section
rapidly evolves into a highly elongated (Fig. 2b) and striated
filamentous structure (Fig. 2c) due to transverse stretching
and folding of fluid elements in pores (SI Videos S1,S2,S3).
The combination of a highly viscous fluid mixture and a high
molecular weight dye results in laminar flows of low diffusivity,
characterized by Reynolds numbers on the order of Re=7·10−3

and Péclet numbers on the order of Pe=104 (SI Table S1). The
deformation of the dye plume (Fig. 1a) thus closely shadows
that of the advected fluid, facilitating direct visualization of
pore-scale fluid deformation. We use spline fitting on the
images to reconstruct the backbone of the cross-sectional dye
footprint, called a filament, and estimate its total length L(x)
for 9 to 14 bead diameters downstream from the injection
point (see Fig. 2, SI Video S3).

The mean total filament elongation L/L0, averaged over the
18 statistically equivalent packings (SI Table S1), exhibits clear
exponential growth with normalized longitudinal distance x/d
(Figure 3). The dimensionless exponent µ ≡ ln(L/L0)/(x/d) =
0.29 ± 0.01 is independent of both bead diameter and flow

rate and is known as the topological entropy of the flow (26).
Via the central limit theorem, µ is related to the mean λ and
variance σ2

λ of the dimensionless stretching rate (see Methods)

µ = λ+ σ2
λ/2. [1]

The dimensionless parameter λ is also known as the Lyapunov
exponent (26), which can be converted into a mean stretching
rate per unit time as λu/d. In addition to stretching, the
filament also undergoes highly localised folding events which
result in closely foliated striations (Fig. 2c). These fluid defor-
mations are the hallmarks of chaotic mixing, and permit thus
permitting exponential elongation of material elements in a
finite-sized domain.

The role of grain contacts in folding

Folding of dye filaments is consistently initiated downstream of
contact points between two beads (Fig. 1b and SI Figure S1).
The cusp-shaped geometry near grain contacts means that
when crossing a contact point (b.0), fluid elements are first
compressed in the direction joining the two bead centres and
stretched in the perpendicular direction. Downstream of the
contact point, the direction of compression and stretching are
exchanged and a cusp forms locally in the dye filament (b.1).
This cusp is stretched in the following pore space, leading to
a folded filament made of two straight segments (b.2). This
stretching and folding process is repeated sequentially as the
folded filament encounters other contact points (b.3), leading
to thin solute dye foliations that are the hallmarks of chaotic
advection (26) (Fig. 2c).

Recent studies (19, 20) identified the role of separation and
reattachment points on open grain boundaries (saddle points)
in generating exponential stretching of fluid elements. Here, we
uncovered the distinct role of contact points between grains in
generating systematic folding of fluid elements. Simulations of
laminar flow in periodic bead packings (see SI Text section A)
show that attracting and repelling stream surfaces (unstable
and stable manifolds) produced by these saddles indeed control
stretching of material lines in the pore space. We found that
these manifolds intersect orthogonally at grain contacts (SI
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Fig. 2. Cross-stream sections of the fluorescent dye plume at increasing distances
from the injection: x/d = 0 (a), 3.2 (b) and 9.3 (c)(run II, SI Video S1 and S2).
Colors represent local dye concentrations. Beads appear in deep blue. A spline curve
(dotted black lines) is used to fit the filament backbone on each cross-section image;
from which the total filament length L is obtained.

Figure S2 and SI Video S5), where both the local flow velocity
and the stretching rate vanish and manifold stabilities are
exchanged, so that repelling stream surfaces become attracting
and vice-versa. Hence, over a contact point, the local flow
structure imparts finite curvature to fluid elements, which
results in the sharp folds observed experimentally (Fig. 1).
The repetition of this basic stretching and folding sequence over
successive contact points offers a simple geometric framework
to relate stretching rates to granular structure.

Linking stretching statistics to the porous structure

Sharp folding of dye filament in between contact points pro-
duces a number nc of localised cusps of strong curvature,
separated by straight segments of moderate curvature (Fig. 6).
We define the mean segment length as Lc = L/nc and the
average area swept out by a segment between two succes-
sive contact points as Sc = S/nc, where S is the total area
swept by the filament. We find that Lc and Sc both converge
to stationary values (inset of Figure 3). Hence, the average
advection distance between two successive contact points is
statistically constant and equal to Xc = Sc/Lc ≈ 3.45 d. Over
this distance, a single elementary segment folds, giving rise to
two new straight elementary segments. Thus, over the same
distance, its length `(X) must doubles to maintain 〈`〉 = Lc
constant, so that `(X) = 2(X/Xc). Hence, the average dimen-
sionless stretching rate λ of elementary fluid segments can be
estimated as

λ ≡ d(log `)
d(X/d) = log 2

Xc/d
≈ 0.21. [2]

This rate is larger than found in synthetic porous media,
such as random pore networks (λ ≈ 0.12 (19)) and body cen-
tered cubic assemblies of spheres (λ ≈ 0.128 (27)), reflecting
the remarkably efficient stretching and folding process occur-
ring in random granular media. The variance of the stretching
rate can be estimated from Eq. (1) as σ2

λ ≈ 0.16, a value

Fig. 3. Total filament
elongation L/L0 with
respect to the nor-
malized pore advec-
tion distance x/d from
the dye injection point.
Inset: Convergence
of the mean segment
length Lc = L/nc

and area Sc = S/nc

toward constant val-
ues, with nc, the num-
ber of cusps.

comparable to the mean stretching rates λ, as it is typically
the case in space-filling chaotic flows (28).

As shown by Eq. (2), the strength of chaotic advection is
entirely governed by the spatial frequency X−1

c with which
segments encounter grain contacts. We show in Methods
that in isotropic packings Xc ≈ 8 log 2φzcdp/3, with zc the
coordination number (the mean number of contacts per bead),
φ the solids volume fraction and dp the mean pore diameter.
This yields a simple geometric estimate of the dimensionless
Lyapunov exponent

λ ≈ 3
8
φzcdp
d

. [3]

Equation 3 is applicable to non-isotropic packings with a
prefactor that quantifies the distribution of orientations of the
contact lines joining bead centres with respect to the mean
flow direction (see Methods). Insertion of the experimental
values zc = 6, φ = 0.5 and dp/d = 0.24 in Eq. (3) yields λ ≈
0.27 which is in reasonable agreement with the experimental
estimate of 0.21, given the slight anisotropic nature of our
experimental packings (see Methods). Equation 3 provides
the first quantitative link between microscopic fluid stretching
rates and porous media structural properties.

Discussion

Stretching and folding sustain microscale chemical
gradients. Repeated sequences of stretching and folding
leads to exponential compression of fluid elements that can
sustain concentration gradients at the pore-scale (Fig. 2).
These concentration gradients are locally controlled byé the
balance between diffusive spreading rate (Dm/s

2), withDm the
molecular diffusivity, and the mean compression rate (λu/d),
which is equal to the stretching rate in steady incompressible
flows. These two rates equilibrate at the Batchelor scale

sB =
√
Dmd/(λu), [4]

which represents characteristic length scale of solute concen-
tration fluctuations. Pore-scale mixing is thus characterized
by the dimensionless length scale s∗B = sB/d, which is related
to the macroscopic Péclet number Pe = ud/Dm as,

s∗B = (λPe)−1/2. [5]

For s∗B > 1, the length scale of solute concentration fluc-
tuations are larger than the grain diameter and therefore
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concentration fields are expected to be well-mixed at the
pore-scale. Our estimation of the Lyapunov exponent λ
implies that the transition to incomplete pore-scale mixing
occurs at Péclet number above 5, values commonly encoun-
tered in many natural and industrial contexts (29). This
suggests that a broad range of biogeochemical processes are
possibly affected by incomplete pore-scale mixing and chaotic
advection. From results established on chemical and microbial
processes in turbulent and chaotic flows at comparable mixing
rates (22, 23), it is possible to anticipate a range of possible
effects of chaotic mixing in porous media, including altered
effective kinetics and microbial growth dynamics, increased
biodiversity and enhanced benefit of sensing. Because they
can only develop in three-dimensional topologies under
steady conditions (26), these chaotic dynamics are generally
absent in quasi two-dimensional microfluidic experiments
used to investigate the microscale interactions between flow,
concentration gradients, chemical reactions and microbial
processes (3, 11, 30). Novel experiments in three-dimensional
porous media and new modelling frameworks are thus needed
to explore these dynamics.

Microscale mixing model. The experiments in this
study have used high Péclet numbers to uncover the rate
and kinematics of mixing in porous media. These results
may be extended to prediction of macrosocopic mixing rates
and concentration statistics at arbitrary Peclet numbers
via lamellar mixing models that couple stretching and
diffusion (31–33). In SI Text section C, we derive such
mixing model and compare its predictions in terms of dye
concentration statistics to the experimental data. The lamellar
model successfully captures the measured exponential decay
of the mean maximum solute concentration of dye filaments
with longitudinal distance cmax ∼ exp(−(λ+ σ2/2)x/d)
(Fig. 4), as well as the growth of concentration fluctuations
caused by variability of the Lagrangian stretching history.
These predictions provide an independent validation of the
estimated mean and variance of the stretching rate, λ ≈ 0.21
and σ2

λ ≈ 0.16. In contrast, conventional mixing models
based upon macroscopic dispersion coefficients (1) ignore
incomplete mixing at the pore-scale and predict an algebraic
decay of concentrations cmax ∼ (x/d)−1/2 (SI Text section B).
From the normalized Batchelor scale (Eq. (5)), pore-scale
concentration fluctuations predicted by the lamellar model will
persist for all Péclet numbers larger than five. In this range,
macroscopic dispersion models fails to resolve pore-scale
concentration gradients, leading to incorrect predictions of
a broad range of reactive transport dynamics (3, 16–18).
Coupling lamellar mixing models with reactive processes is
therefore a promising avenue to capture the effect of pore-scale
incomplete mixing on biogeochemical dynamics.

Porous materials as mixers. From Eq. (3), the mix-
ing efficiency of steady laminar flows through random bead
packs (defined as the ratio of the average stretching rate to
the average strain rate) is found to be 3% (SI Text section
D). This value is comparable to the performance of industrial
mixers (26) and an order of magnitude larger than that of
micro-fluidic chaotic mixers (34), thus opening new opportu-
nities for exploiting the mixing properties of porous materi-
als. Chaotic advection is known to both increase dispersion

Data Chaotic Model Classical Model

 Fig.1a  Fig.1b  Fig.1c

Fig. 4. Experimental average (triangles) and standard deviation (circles) of the local
maximum concentration cmax along x. Values are normalized by the initial maximum
concentration c0. Classical model predictions are shown as black dashed and dotted
lines. Lamellar mixing model predictions for the average and standard deviation of
cmax are shown respectively as the green dotted line and the purple continuous line
(see SI Text sections B and C for derivations).

transverse to the mean flow direction and retard longitudinal
dispersion (35). It also alters the transport of finite-sized
particles such as colloids and micro-organisms (36) and may
thus control their clustering in the pore space and deposition
on grain boundaries. In relating stretching rates to the porous
micro-structure, Eq. (3) offers a possible pathway to the design
of engineered porous materials with optimum mixing charac-
teristics. This concept may find important applications in
the design of heat exchangers, packed bed filters and reactors,
where transverse dispersion and mixing act to enhance pro-
cess efficiency, and for continuous flow chemistry (15), such
as pressure-driven chromatography, where product selectivity
and yield strongly depends upon the minimization of longi-
tudinal dispersion. These applications would first require a
validation Eq. (3) over a large range of packing geometries.

Conclusions

Using high resolution experimental imaging of microscale mix-
ing in three-dimensional granular media we have demonstrated
the existence of efficient stretching and folding of fluid elements
at the pore-scale. We use these insights into the kinematics of
mixing to develop a stochastic model for the prediction of the
Lyapunov exponent from the geometric properties of the grain
pack, and validate this model against experimental observa-
tions. The formalization of these observations into a chaotic
mixing model, coupling stretching and diffusion, demonstrates
that incomplete mixing persists at pore-scale for Péclet num-
bers above five. This model captures the processes governing
microscale chemical gradients, opening new perspectives for
understanding, predicting and controlling a large spectrum of
physical, chemical, and biological processes, in natural and
engineered porous systems.

The discovery of systematic and efficient chaotic mixing
in single phase laminar flows through random bead packs—
the archetype of porous media—calls for deeper investigation
of this phenomenon in a broad range of systems, including
polydisperse packings, consolidated soils and rocks, and more
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complex flows, such as multiphase, inertial or non-Newtonian
flows. While these cases may act to modify the rate of mixing,
the fundamental kinematics described in this study should
persist as they arise from basic fluid-grain interactions. The
investigation of these system-specific modulations of chaotic
mixing in porous matter form promising research perspectives.

Materials and Methods

Experimental protocol. The porous column consists of a vertically-
oriented rectangular column of cross section 48×48 mm (Fig. 5),
containing monodisperse borosilicate glass beads (Sigmund Lindner
GmbH) of diameter d = 7,10 or 20mm that are loosely and randomly
packed via gravitational settling. The pore space between the beads
is filled with a glycerol-water mixture (1.4%w/w water) at controlled
temperature (T=25◦C). Fluid flow is driven by a constant pressure
difference imposed between the inlet and outlet ports, respectively
at the top and bottom of the column. The flow rate is continuously
monitored at the outlet by a scale. Together with the knowledge of
the packing porosity, this provides an estimate of the mean pore
velocity, u. To visualize fluid flow and deformation through the bead
pack, a solute fluorescent dye (PromoFluor-488LSS) is continuously
injected in the upper part of the cell through a needle of internal
diameter L0 = 0.5mm. The injected dye develops into a steady
plume downstream of the injection point. The mean flow velocity u
is chosen to be sufficiently low to get small Reynolds numbers and
laminar flows (Re= ud/ν ≈ 5 · 10−3 � 1, where ν ≈ 700 cP is the
kinematic fluid viscosity), and fast enough for the dye Péclet number
to be large and for fluid deformation to be measured from the dye
backbone (Pe= ud/Dm ≈ 8.6 · 103, where Dm ≈ 2 · 10−11 m2s−1 is
the molecular diffusivity of the dye in the glycerol-water mixture).
For representativeness, experiments are repeated for multiple dye
injection locations and for various packing realisations and bead
diameters, as summarised in SI Table S1. The coordinates of
the bead centres are determined via a three-dimensional Hough
transform on the image stack obtained by the translational laser
scan, where the background fluid fluorescence allows distinguishing
the grains. From these coordinates, several structural properties
of the porous media are obtained : φ , the solid volume fraction
(the ratio of volume occupied by the beads over the total column
volume); zc, the coordination number (the number of neighbouring
beads whose centres lie d± 5% away from the reference bead); dp,
the mean diameter of the largest sphere inscribed in the pore space,
obtained by a distance transform computed on a voxelized image of
the fluid phase.

Reconstruction of the dye filament backbone. In each cross-stream
section of the solute dye plume, a one-dimensional backbone of the
dye filament is reconstructed via the adjustment of spline curves and
its total length L is computed (Fig.2 and Fig. 6a). In experimental
run II (Fig. 2 and SI Video S1), the tracking is possible until
downstream distance x = 9.27 d (beyond which the diffusive filament
merges with itself), corresponding to a total elongation of L/L0 ≈
167 (Fig.2c), where L0 is the initial length of the dye filament
backbone.

Distribution of elongations. The sequential stretching and folding
process leading to exponential growth of the total filament back-
bone length L implies that the length l of a fluid element follows
a multiplicative random process (28, 32), such that l grows as
dl/dx∗ = γl, where x∗ = x/d and γ is a random, statistically sta-
tionary stretching rate of mean λ and variance σ2

λ. The length l
thus results from the product of the successive stretching rates γ,
such that log l is the sum of a series of independent and identically
distributed random variables. From the central limit theorem, the
distribution of log l must then converge with downstream distance
towards a normal distribution of mean λx′ and variance σ2

λx
∗. This

convergence is obtained after a few bead diameters since i) the
dye filaments length increase exponentially and thus sample an
increasingly large number of independent stretching rates in the
pore space and ii) the stretching rates are distributed within pores,
so that several independent stretching rates are experienced over
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Fig. 5. Experimental setup for
three-dimensional imaging of the
mixing of a fluorescent solute
dye in optically matched porous
bead packs. The dye is contin-
uously injected through a thin
needle upstream of the gran-
ular column, while maintaining
a steady background laminar
flow. After stabilisation of the
solute dye plume, transverse
cross-sections of concentrations
are obtained by displacing a
laser sheet (Oxxius, wavelength
488 nm, beam waist 50 µm) in
the x direction while recording
the emmited fluorescence with
a CMOS camera (Hamamatsu
ORCA-Flash4.0 16bits) mounted
with a band pass filter (Midopt
BN532) and oriented at an an-
gle of 45 degrees from the laser
plane. The perspective view is
then ortho-rectified by a projec-
tive transform.

a unit diameter distance. The mean value of l is thus such that
〈l〉 ∼ exp(µx∗) with µ = λ + σ2

λ/2, which sets the growth rate of
the total filament length to 〈L/L0〉 = exp(µx∗).

Number of high curvature regions. As shown in Fig. 1b, when the
filament is advected through contact points between beads, localized
regions of very high curvature develop in the filament backbone. We
define cusps as isolated regions of the filament backbone where the
curvature κ of the spline curve exceeds the threshold κ = 103d−1.
We find (Fig. 6c) that the total number nc of cusps in the filament
backbone increases exponentially with the downstream distance
x/d at a rate similar to that of the total filament length L. This
suggests that stretching and folding events occurs in proportion of
each other and that the resulting process is statistically stationary.

Prediction of the mean stretching rates from the porous media prop-
erties. Based on the consistently observed sequence of stretching
and folding in the pore space and its control by grain contacts
(Fig. 1), we derive a general expression for the magnitude of the
Lyapunov exponent in random granular media as a function of the
coordination number zc, the solid volume fraction φ, the grain diam-
eter d and the mean pore diameter dp. Since segment lengths must
double, on average, each times the segment encounters a contact,
that is for each distance Xc, the Lyapunov exponent can be derived
from equation Eq. (2) as λ = d log 2/Xc = d log 2/(Sc/Lc), which
requires estimating the mean segment length Lc and the mean sur-
face area Sc swept by segments between successive contact points.
A geometric estimate for the mean segment length Lc is obtained
by assuming that an individual segment doubles its length at the
constant exponential rate λ until it reaches the mean pore diameter
dp where it inevitably collides with a contact point located at Xc
downstream, e.g. Lc(x) = dp/2 exp(log 2x/Xc). This expression
yields the average value

Lc ≈
dp

2 log 2
. [6]

From tomographic reconstruction of all the experimental runs, the
average pore diameter is dp ≈ 0.24 d (see Methods). Thus, we
estimate Lc ≈ 0.17d which is in excellent agreement with the
observations (Fig. 3). To develop an estimate of Sc, we consider the
volume density ρV of contact points in the three-dimensional bead
pack. As the number of grains per unit volume is 6φ/(πd3) and
there are zc/2 independent contacts per grain, the volume density
of contact points is then ρV = 3φzc/(πd3). Conversely, Sc is equal
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Fig. 6. a. Reconstruction of fila-
ment backbone (black line) from
dye distribution and localisation of
high curvature regions (red circles).
b. Local curvature along the fila-
ment backbone (black line) with
isolated cusps (red circles) and
threshold value κ = 103d−1 for
cusp detection (dashed line). Note
that the end-points of filaments are
considered as cusps, explaining
why red circles can exist below
κ. c. Exponential growth of the
number (nc) of cusps in the fila-
ment backbone as a function of
the advection distance (x/d) from
the injection point. The fitted ex-
ponent for nc (grey line) is similar
to that for the total filament length
(dashed line), suggesting station-
arity of the stretching and folding
processes.

to the inverse of the areal density ρA of contact points in a filament
sheet. To develop a relationship between ρV and ρA, we consider a
series of filament sheets that arise from continuously injected line
sources and extend along length Z in the cross-stream z-coordinate
of the column, and are advected over distances X. These series of
injection lines are also distributed along distance Y in the other
cross-stream y-direction. If we consider the average number nV of
contact points in the volume V = XY Z, then the number nA of
contact points contained within a filament sheet is nA = ¯̀/Y nV ,
where ¯̀ is the average span of filament sheet in the y-direction that
pass through a common contact point. The simplest estimate for ¯̀
is obtained by considering the behaviour of filament sheets in a open
laminar flow over two spheres in contact at an angle α with the
mean flow direction x. From symmetry arguments, the horizontal
span `(α) is given by the projection in the plane normal to x of the
contact line connecting the two sphere centres. Thus `(α) = d sinα,
and ¯̀ is given by the mean of `(α) over the distribution of contact
angles. As ρV ≡ nV /(XY Z) and ρA ≡ nA/(XY ), then ρA = ¯̀ρV .
For isotropic packings, contact lines are uniformly orientated in the
space, and α is distributed as p(α) = sinα. Averaging over this
distribution then yields ¯̀≡ d sinα = dπ/4. From the results above,
Sc for isotropic packings is then estimated as

Sc = 1/ρA =
πd3

3¯̀φzc
. [7]

For anisotropic packings the distribution of contact orientations may
deviates from sinα, thus yielding different values for ¯̀. Eq. (7) and
Eq. (6), provide the value of the mean fold distance Xc = Sc/Lc
and from Eq. (2), the Lyapunov exponent reads

λ = ¯̀3φzcdp
2πd2 . [8]

Using the estimates of φ, zc and dp obtained from tomographic
reconstruction and ¯̀/d = π/4 ≈ 0.78 for isotropic packings, equation
Eq. (8) yields λ = 0.27, a value comparable to the experimental
estimate (λ = 0.21). The slight overestimate of λ can be explained
by the anisotropy introduced by the gravitational packing of the
beads and the finite size of the experimental column. Indeed,
independent measurements of ρV = 2.86d−3 and of Sc = 0.58d2

(Fig. 3) indicate that, experimentally, ¯̀/d = (dρV Sc)−1 ≈ 0.6,
instead of ¯̀/d = 0.78 expected for isotropic packings. Using this
value in Eq. (8) yields λ ≈ 0.21, in much better agreement with the
experimental estimate.
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