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S U M M A R Y
During the last decade, rapid or extreme geomagnetic field intensity variations associated with
rates greater than the maximum currently observed have been inferred from archeomagnetic
data in the Near-East and in Western Europe. The most extreme events, termed geomagnetic
spikes, are defined as intensity peaks occurring over a short time (a few decades), and are
characterized by high variation rates, up to several μT yr–1. Magnetic flux expulsion from the
Earth’s outer core has been suggested as one possible explanation for these peaks but has not
yet been examined in detail. In this study, we develop a 2-D kinematic model for magnetic
flux expulsion whose key control parameter is the magnetic Reynolds number Rm, the ratio of
magnetic diffusion time to advection time. This model enables the tracking of magnetic field
lines which are distorted and folded by a fixed flow pattern. Two processes govern the magnetic
evolution of the system. The first is the expulsion of magnetic flux from closed streamlines,
whereby flux gradually concentrates near the boundaries of the domain, which leads to an
increase of the magnetic energy of the system. If the upper boundary separates the conducting
fluid from an insulating medium, a second process then takes place, that of diffusion through
this interface, which we can quantify by monitoring the evolution of the vertical component
of magnetic induction along this boundary. It is the conjunction of these two processes that
defines our model of magnetic flux expulsion through the core–mantle boundary. We analyse
several configurations with varying flow patterns and magnetic boundary conditions. We first
focus on flux expulsion from a single eddy. Since this specific configuration has been widely
studied, we use it to benchmark our implementation against analytic solutions and previously
published numerical results. We next turn our attention to a configuration which involves two
counter-rotating eddies producing an upwelling at the centre of the domain, and comprises
an upper boundary with an insulating medium. We find that the characteristic rise time and
maximum instantaneous variation rate of the vertical component of the magnetic field that
escapes the domain scale like ∼ R0.15

m and ∼ R0.45
m , respectively. Extrapolation of these scaling

laws to the Earth’s régime is compared with various purported archeointensity highs reported
in the Near-East and in Western Europe. According to our numerical experiments magnetic
flux expulsion is unlikely to produce geomagnetic spikes, while intensity peaks of longer
duration (one century and more) and smaller variation rates appear to be compatible with this
process.

Key words: Dynamo: theories and simulations; Magnetic field variations through time; Rapid
time variations; Archaeomagnetism.

1 I N T RO D U C T I O N

Studying the variations of the Earth’s magnetic field provides invalu-
able information on the dynamics in the Earth’s outer core through
the magnetohydrodynamic equations. These variations combine two
processes: advection and diffusion. Considering that the typical

timescale for diffusion is much longer than that for advection, dif-
fusion is often neglected, especially when dealing with short-term
geomagnetic variations. Such a simplification is referred to as the
frozen–flux approximation (Roberts & Scott 1965). However, the
validity of this approach is sometimes questioned (see Jackson &
Finlay 2015, for a review). First, the diffusion term is negligible
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compared to the advection term only when considering the same
large length scale for both processes (∼1000 km), which does not
hold for peculiar flow and/or field configurations, such as that occur-
ring when an upwelling drives expulsion of toroidal magnetic field.
From the observational standpoint, constraints on the processes
underlying secular variation come from the study of maps of the
radial component of the magnetic field at the core–mantle bound-
ary (CMB) inferred from data at the Earth’s surface using inverse
modelling (Jackson & Finlay 2015). These models have sometimes
been interpreted as suggesting local failures of the frozen-flux ap-
proximation, for example related to the growth or decay in intensity
of magnetic flux patches at the CMB, or the emergence of newly
formed reverse flux patches (see Finlay et al. 2010, for a review). The
outputs of numerical dynamo simulations also point to a significant
contribution of radial diffusion to the secular variation at a regional
scale (Amit & Christensen 2008). This regional field-diffusion in
specific locations is often interpreted as being due to flux expulsion
events : the toroidal magnetic field confined within the outer core is
advected by an upwelling of the flow, and concentrated at the CMB
through which it then diffuses (Christensen & Olson 2003; Chris-
tensen & Wicht 2015). Flux expulsion thereby contributes to the
emergence of reverse flux patches or the weakening/strenghtening
of existing flux patches.

Flux expulsion is often invoked to explain episodes of notable
field intensity change in specific places such as the growth of the
South Atlantic anomaly and associated dipole decay since 1850
(Gubbins 1987; Gubbins et al. 2006), the acceleration of the drift
of the north magnetic pole since the 1990s (Chulliat et al. 2010),
or extreme geomagnetic field intensity variation rates as detected in
archeomagnetic data sets (Shaar et al. 2011). In the latter case, flux
expulsion has been tentatively proposed as an explanation for two
episodes of extreme field intensity variations during the first half
of the first millennium BC in the Near-East (see for example Ben-
Yosef et al. 2009; Shaar et al. 2011, 2016). These features, named
geomagnetic spikes, involve extreme variation rates up to several
μT yr–1 and occur over only a few decades, a very short-time inter-
val for such large changes. Livermore et al. (2014) emphasize that
such large rates are difficult to reconcile with our current under-
standing of core dynamics. An optimized core surface flow, given
the estimated available energy, could generate a pointwise rate-of-
change of geomagnetic intensity on the order of or lower than 1
μT yr–1, while the maximum observed in present-day variations
is ∼0.1 μT yr–1 (Olsen et al. 2014). Davies & Constable (2018)
study outputs of numerical dynamo simulations and find spike-like
features, whose intensity variation rates reach ∼0.75 μT yr–1, cor-
responding to the lower-end of the values recently reassessed by
Ben-Yosef et al. (2017), i.e. between 0.75 and 1.5 μT yr–1. Their
study suggests that these events are linked to the intensification and
migration of intense magnetic flux patches at the CMB. They also
underline that current numerical dynamo simulations are not able to
establish the occurrence of faster intensity variations at Earth-like
parameters. Korte & Constable (2018) draw a similar conclusion
from the analysis of series of global field models. The origin of
such extreme intensity variations thus remains elusive; in particu-
lar, the imprint at Earth’s surface of magnetic flux expulsion in the
core remains to be studied in detail.

The process of flux expulsion from closed streamlines (or more
generally, of the expulsion of a scalar from closed streamlines) has
been widely studied. The simplest case to analyse is the kinematic
one, which involves only the induction equation. The canonical con-
figuration is that of a prescribed circular flow which interacts with
an initially horizontal magnetic field in a closed domain surrounded

with a perfect conductor. Weiss (1966) and Charbonneau (2013)
performed the theoretical and numerical analysis of this setup, in a
2-D Cartesian geometry. In the situation when advection dominates
diffusion, the initially horizontal magnetic field lines are stretched
and folded by the flow; this leads to an increase of the magnetic en-
ergy. Through this interaction, field lines are progressively expelled
from the eddy by diffusion, and they concentrate near the edges of
the domain, which leads ultimately to a global decrease of the total
magnetic energy. This standard textbook configuration is character-
ized by a series of scaling laws relating for instance the timing and
amplitude of the magnetic energy growth to the relative importance
of transport by the flow to diffusion (quantified by the magnetic
Reynolds number to be introduced below). In the case of the Earth,
the setup departs from the textbook, as the mantle is to first order an
insulator, which allows poloidal magnetic field lines to go through
the CMB. Using a 2-D Cartesian model of a conducting fluid sand-
wiched between a lower perfectly conducting medium (the inner
core in a first approximation) and an upper insulating medium (the
mantle), and an imposed pair of counter-rotating eddies mimicking
an upwelling, Bloxham (1986) demonstrated the plausibility of this
process in the Earth’s core, without attempting to derive scaling
laws accounting for the characteristic timescale and magnitude of
magnetic flux expulsion. Perhaps surprisingly, flux expulsion has
not been systematically studied further in the decades since.

In this study, we investigate whether flux expulsion events at the
CMB could be a viable mechanism to explain rapid or extreme field
intensity variations as revealed by archeomagnetic data recently ob-
tained in the Near-East and in Western Europe. We aim to derive
scaling laws that provide detailed constraints on episodes of flux ex-
pulsion, with a particular focus on their duration. We will conduct
this investigation in two dimensions, varying the geometry and the
prescribed flows. First, we will follow Weiss (1966) and Charbon-
neau (2013) and consider only one eddy, the purpose being mostly
to validate our numerical approach against previously published re-
sults. Then, a model similar to that of Bloxham (1986) involving two
eddies is analysed. The results are compared with the maximum in-
tensity variation rates as derived from different archeointensity data
sets of different periods obtained in the Near-East and in Western
Europe.

This paper is organized as follows: the numerical method is in-
troduced in Section 2. The results are presented in Section 3, with a
detailed analysis of the theoretical and numerical scaling laws for the
expulsion of magnetic flux from closed streamlines. A comparison
with results from previous studies is conducted in order to validate
our numerical method. Then, magnetic flux expulsion through an
insulating boundary is studied for different configurations in order
to underline the effects of different flow geometry. Scaling laws are
derived for these different configurations. In Section 4, the derived
scalings laws are tentatively applied to the Earth and comparisons
are made with various extreme archeointensity events inferred in
the Near-East and in Western Europe. A conclusion follows in Sec-
tion 5. An appendix provides the interested reader with the details of
the numerical implementation and its verification against analytical
solutions.

2 M O D E L A N D M E T H O D

We are interested in the kinematic interaction of fluid flow and
magnetic field in a closed domain D, surrounded by an exterior
domain Ď. Two physical processes are at work. The first one is
strictly speaking the flux expulsion process, that is the expulsion of
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magnetic flux from closed streamlines. This expulsion occurs when
advection dominates over diffusion, namely when the frozen-flux
approximation holds. This is a standard phenomenon in magnetohy-
drodynamics whose description can be found in classical textbooks
(see e.g. Roberts 1967, Section 2.4), and whose numerical investi-
gation was pioneered by Weiss (1966), who assumed that the outer
region Ď was filled by a perfect conductor. Rhines & Young (1983)
subsequently proposed an analytical solution to the expulsion of a
passive scalar from closed streamlines which is suitable for a variety
of fluid-flow configurations.

When magnetic flux gets concentrated towards the edges of the
domain, it can radially diffuse through the boundary, if the medium
across the boundary is either finitely conducting or insulating. Mag-
netic field lines separate from fluid flow and the field diffuses in Ď.
This second process is of geophysical interest, as it can lead to a
local increase (or decrease) of magnetic flux at the boundary. In the
geophysical literature, flux expulsion often refers to the joint effect
of flux concentration towards the boundary (in this case the CMB)
and diffusion through it. It is the combination of these two processes
that we seek to investigate.

Let (x, y, z) denote Cartesian coordinates. As illustrated in Fig. 1,
we consider a 2-D Cartesian domain D of width Lx and height Lz,
setting the top of the domain at z = 0. We focus on three configu-
rations (see Fig. 1). Configuration 1 (Fig. 1a) is akin to one of the
setups chosen by Weiss (1966); it consists of a square D (Lx = Lz),
filled by one vortex, between two perfect conductors. The system
is periodic in the x-direction. The initial magnetic field is uniform
and parallel to the x-axis. In this setup, only the flux expulsion from
closed streamlines occurs, there is no subsequent diffusion through
the boundary. We choose this setup, and a slightly modified version
with a different streamfunction, previously studied by Charbonneau
(2013) in order to confirm previously published results and to vali-
date our numerical implementation. The streamfunctions are shown
in Figs 1(a) and (b), respectively for Weiss (1966) and Charbonneau
(2013), see the next section for details. For Configuration 2 (Fig. 1b),
we introduce a single modification: the top boundary is assumed to
be insulating. Consequently, diffusion through that boundary occurs
after the initial expulsion phase, and we can isolate this effect in
order to see if it has a global effect on the system, compared with
Configuration 1 (for both streamfunctions). Finally, Configuration 3
(Fig. 1c) retains the same boundaries (insulating top and perfectly
conducting bottom), in a different geometry and with a different
flow pattern. The domain is now rectangular (Lx = 2Lz through-
out) and it contains two counter-rotating eddies, which induce an
upwelling in the centre of the domain. The initial magnetic field
is again uniform and parallel to the x-axis. From the geophysical
standpoint, this is the analog of the toroidal field in the vicinity of
the CMB. This last configuration is the one designed and previously
studied by Bloxham (1986).

Regardless of the configuration retained, the evolution of the
system is governed by the induction equation

∂B

∂t
= ∇ × [u × B − η × ∇ × B] , (1)

where B is the magnetic flux induction (hereafter the magnetic
field), u the fluid velocity and η the magnetic diffusivity. In our 2-D
framework, this equation can be conveniently recast in terms of the
magnetic vector potential A, such that B(x, z, t) = ∇ × A(x, z, t)
and A = A (x, z, t) ŷ. If we further impose the Coulomb gauge
∇ · A = 0, we obtain a scalar equation for A,

∂ A

∂t
= −u · ∇ A + η∇2 A, (2)

which has to be supplemented by initial and boundary conditions.
The initial vector potential is A(x, z, t = 0) = −B0z, whereby B0

defines the amplitude of the initial field, which is parallel to the x-
axis (recall the blue arrows in Fig. 1). Boundary conditions depend
on the configuration chosen (see above). The flow u is steady and
expressed in terms of a streamfunction �(x, z), such that u = ∇ ×
�(x, z) ŷ. We choose the advection time Lz/U as the characteristic
timescale, where U is the characteristic fluid velocity. Variables are
non-dimensionalized according to

t∗ = t
U

Lz
, z∗ = z

Lz
, A∗ = 1

B0 Lz
A,

in which starred variables are dimensionless. This allows us to
rewrite eq. (2) in the following non-dimensional form[

∂

∂t∗ − 1

Rm

(
∂2

∂x∗2
+ ∂2

∂z∗2

)]
A∗ = ∂�∗

∂z∗
∂ A∗

∂x∗ − ∂�∗

∂x∗
∂ A∗

∂z∗ , (3)

with

Rm = U Lz

η
(4)

the magnetic Reynolds number. The magnetic Reynolds number is
the ratio of the characteristic timescales of diffusion and advection

τd = L2
z

η
,

and

τadv = Lz

U
,

respectively; Rm is the sole control parameter for the kinematic
problem of interest here. In what follows, the stars are omitted and,
unless otherwise noted, time is expressed in units of advection time.

In order to approximate the solution of eq. (3) numerically, a
pseudospectral method is applied using a Fourier expansion along
the x-direction together with a second-order accurate finite differ-
ence scheme in the z-direction. The resulting semi-discrete problem
is advanced in time by means of an implicit–explicit scheme, along
the lines described by Bloxham (1986). A Fourier expansion in x
is chosen because, for those configurations which possess an in-
sulating upper boundary, the connection with an exterior potential
solution is conveniently expressed using such a global basis (again,
see Bloxham 1986). The reader is referred to the Appendix for a
complete description of the implementation of the method and a
thorough analysis of its convergence properties.

3 R E S U LT S

For each configuration described above, we systematically vary Rm,
and integrate eq. (2) until a steady state is reached. Snapshots of A
will document the expulsion of flux by the flow towards the edges
of the domain D; in addition, we will monitor the evolution of the z-
component of the magnetic field at the upper boundary, Bz0(x, t) =
Bz(x, z = 0, t), if that boundary is insulating (Configurations 2 and
3). In order to derive scaling laws describing flux expulsion, we
shall follow the time evolution of the total magnetic energy in the
domain, EB ,

EB(t) =
�

D

B2(t)

2
dD, (5)

and for the insulating upper boundary configurations also the evo-
lution of the maximum of Bz0(x, t) = B(x, z = 0, t),

Bmax
z0 (t) = max

x
|Bz0(x, t)|. (6)
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Magnetic flux expulsion from the Earth’s core 1987

Figure 1. Sketch of the three configurations considered in this study. (a) Configuration 1: square cell with perfectly conducting top and bottom boundaries,
containing one anticlockwise vortex. (b) Configuration 2: square cell with an insulating top boundary and a perfectly conducting bottom boundary, containing
one anticlockwise vortex. Note that the represented streamfunctions are different (see text for details). (c) Configuration 3: rectangular domain with insulating
top boundary and perfectly conducting bottom boundary, containing two counter-rotating vortices. Blue and red arrows represent magnetic field lines and field
flow, respectively. Solid and dashed black lines denote perfectly conducting and insulating boundaries, respectively.

To characterize the evolution of these two quantities, we track their
maximum amplitude,

Emax
B = max

t
EB(t), and (Bmax

z0 )max = max
t

Bmax
z0 (t), (7)

and the time τmax to reach the latter. The three different configu-
rations each involves at least one perfectly conducting boundary
(the lower one). As the magnetic field in a perfectly conducting
medium is static, the magnetic field line on this boundary is kept
fixed (see the Appendix for details). This condition prevents the
magnetic energy from decaying, thereby enabling the establishment
of a non-trivial steady state. We also characterize the steady state,
defined as the moment at which the first order derivative in time of
the monitored quantities remains under a threshold value close to
zero. The criterion is set as follows:∣∣∣∣∂EB

∂t

∣∣∣∣ < C1, and

∣∣∣∣∂(Bmax
z0 )max

∂t

∣∣∣∣ < C2 for t ≥ τss, (8)

with τss the time at which the steady state is reached, and C1 and C2

two constants. Once τss is identified, the corresponding amplitude
for each of the quantities is determined. The threshold value C1 is
fixed at C1 = 5 × 10−3. C2 is fixed depending on the order of mag-
nitude reached by (Bmax

z0 )max. We also determine the instantaneous
rate of change of Bmax

z0 at an instant tn defined as

R(tn) = dBmax
z0

dt
≈ Bmax

z0 (tn+1) − Bmax
z0 (tn)

�t
, (9)

with tn+1 − tn = �t = 0.1τadv ; we track its maximum

Rmax = max
t

R(t). (10)

In the following section, we describe the results for the 3 chosen
configurations. Emax

B , E ss
B and τss are mainly used to compare our

findings with those obtained in previous studies in order to validate
our numerical implementation. Those previous studies do not in-
vestigate the behaviour of τmax. Here, the quantities (Bmax

z0 )max, τmax

and Rmax are used to analyze the process of flux expulsion through
an insulating boundary and to discuss this process with regards to
extreme archeointensity events.

3.1 Configuration 1: flux expulsion from one eddy with a
perfectly conducting upper boundary

This configuration presents a square domain D of unit length L
and contains a single counter-clockwise eddy. The top and bot-
tom boundaries are perfectly conducting. The initial magnetic
field is horizontal. The magnetic field lines are ‘attached’ to the
left and right boundaries such that A[x = (0, L), z, t] = A[x =
(0, L), z, t = 0]. Two different streamfunctions � are considered,
following Weiss (1966, Fig. 2a), see Fig. 1(a) and Charbonneau
(2013, chap. 2, Fig. 2.8), see Fig. 1(b)

�1(x, z) = 1

π

(
1 − 4x2

)4
sin (π z), (11)

�2(x, z) = 1

4π
[1 − cos (2πx)] [1 − cos (2π z)] , (12)

respectively. Figs 2(a)–(c) illustrate the evolution of the scalar poten-
tial A after 0.5, 2 and 11 advection times respectively, for the stream-
function �1 and for a magnetic Reynolds number Rm = 1000. On
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(b)(a)

(d)(c)

(e)

Figure 2. Time evolution of the magnetic field for Configuration 1 if the prescribed streamfunction is �1 (eq. 11). The black lines are iso-contours of the
vector potential A (therefore magnetic field lines), shown every 0.1B0Lz. The colourscale represents the current magnetic field strength normalized by its initial
value. The second row represents the magnetic field in the final stage (steady state) for a magnetic Reynolds number Rm = 1000 (c) and for Rm = 40 (d). (e)
shows the temporal evolution of the magnetic energy normalized by its initial value for each computed Rm. The squares (resp. circles) denote the time when
the maximum (resp. steady-state) stage of the evolution is reached. See text for details.
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Magnetic flux expulsion from the Earth’s core 1989

each panel, isolines of A correspond to magnetic field lines, and
the colour scale represents the local strength of the magnetic field,
F = √

B2
x + B2

z . Likewise, Fig. 3 displays the same quantities when
the chosen streamfunction is �2, all other parameters being the
same. Figs 2(a) and (b) show that the initially horizontal field lines
are wound by the eddy. This leads to the formation of magnetic
stripes of alternating polarity whose width decreases with time,
driving enhanced magnetic diffusion. After eleven advection times,
the flux is expelled from the eye of the eddy and concentrated near
the edges (Fig. 2c). This evolution is similar to the evolution ob-
tained by Weiss (1966) for the same Rm. The initial shear of the
field lines leads to an increase of EB , as shown in Fig. 2(e) [to be
compared with Weiss (1966, Fig. 5)]. This first stage is dominated
by the advection of the magnetic field. When magnetic diffusion
becomes significant, the energy reaches a maximum Emax

B and starts
to decrease until a steady state is obtained. The comparison of the
energy evolution determined in our study and in Weiss (1966) study
(for the same range of Rm) shows the same behaviour with a slight
difference in energy amplitude (see below).

We follow the analysis by Weiss (1966) to derive theoretical scal-
ing laws describing the behaviour of EB . During the first phase of
evolution, the velocity field builds the component of the magnetic
field parallel to flow motions. This corresponds to an advective
term of magnitude UB0/L in the induction eq. (1). In the mean-
time, as the magnetic field lines are wrapped, the stripes so formed
become closer and closer to one another, leading to the decrease
of the actual characteristic lengthscale of magnetic field variations,
�, and thus inducing the gradual expulsion of the magnetic field
towards the edges of the eddy (Fig. 2b) by reconnection of field
lines. This expulsion is the product of magnetic diffusion in the
fluid which becomes significant before the characteristic diffusion
time is reached due to the decreasing lengthscale. The energy then
reaches a maximum Emax

B (see the squares in Fig. 2) found by equat-
ing the advective term previously discussed with the diffusive term
in the induction eq. (1) based on the characteristic lengthscale of
magnetic variations

U B0/L ∼ ηB/�2.

Replacing � using the conservation of magnetic flux B� ∼ B0 L ,
with B the current magnetic field strength and B0 its initial value,
it follows that, at t = τmax (squares in Fig. 2), B ∼ R1/3

m B0 and
hence Emax

B ∼ R2/3
m B2

0 . As diffusion gradually balances advection,
the energy starts to decrease, and at time t = τ ss (see the circles in
Fig. 2), a steady state is reached when all the flux has been expelled
from the cell and the magnetic energy becomes constant. This final
state is represented in Fig. 2(c). At that point, all the remaining flux
is concentrated at the edges of the cell, inside a boundary layer of
width �ss. The local diffusion time

τld ∼ �2
ss/η

decreases until it reaches τld ∼ τadv, leading to �ss ∼ R−1/2
m L . All

the magnetic energy is concentrated inside these boundary layers
(Fig. 2c). Conservation of flux implies that in these boundary layers
Bbl ∼ R1/2

m B0. The total magnetic energy in the domain finally scales
as

E ss
B ∼ R1/2

m B2
0 .

Rhines & Young (1983) show that in general, the expulsion of a
passive scalar presents two stages: a rapid stage of expulsion during
which the scalar quantity is rapidly mixed along streamlines by ad-
vection and a slow stage during which this quantity is homogenized
by diffusion. In the case we are interested in, the mixing along the

streamlines leads directly to the homogenization of the field due
to the initial condition (uniform magnetic field) and the geometry
of the flow. As underlined by Moffatt & Kamkar (1983), the effect
of diffusion is cumulative which prevents the determination of a
simple scaling by the evaluation of this term at time t but requires
an integration of the diffusion term from 0 to t. Their analysis leads
to τss ∼ R1/3

m τadv. It also prevents one from finding a scaling law
for τmax, that is the time at which diffusion starts to equilibrate ad-
vection but is still not predominant. However, this quantity should
present a low dependency to Rm as Emax

B is reached quickly, after a
few turnover times, even for large Rm (Fig. 2e).

As stressed by Rhines & Young (1983), the actual expulsion of the
flux from the inside of the eddy towards its edges is a mechanism
of ‘shear-augmented dispersion’. During the stage of increasing
magnetic energy, the field lines are stretched and wrapped by the
flow. It leads to the formation of stripes of alternating polarity.
If the magnetic Reynolds number is large (�50), the advection
time is small compared to the diffusion time and magnetic field
lines are further wrapped before the equilibrium between advection
and diffusion occurs. When two field lines of opposite polarity are
separated by a distance smaller than the diffusion scale, diffusion
leads to the destructive folding of the field (Charbonneau 2013). On
the contrary, when the magnetic Reynolds number is low, advection
is not strong enough to sufficiently fold magnetic field lines. In this
case, the balance between advection and diffusion is reached before
the destruction of the field (Fig. 2d) and the decrease of energy is
consequently less marked (see Fig. 2e, obtained for Rm = 40).

Fig. 4(a) illustrates the scaling laws (summarized in Table 1) that
can be extracted from our suite of simulations. For comparison with
the work of Weiss (1966), Rm lies between 40 and 103 (including
larger values of Rm does not alter our findings significantly).

The maximum value of the energy Emax
B is found to scale as

R0.645±0.004
m ; Weiss (1966) numerically finds R0.59

m over the same
range of Rm. Our results are close to the theoretical scaling law,
R2/3

m . In addition, the value of the energy of the steady state E ss
B

scales as R0.504±0.005
m . Weiss (1966) gives R0.42

m , while the theoretical
expectation is R1/2

m , again close to our numerically determined value.
With regard to the time taken to reach this steady value, we find

that it scales as R0.254±0.026
m , while the theoretical scaling law is R1/3

m ,
which is markedly different. Interestingly, if we use �2, the same
characteristic time is found to scale as R0.412±0.001

m (see Fig. 4b).
This quantity appears to be highly dependent on the prescribed
streamfunction (this will be discussed in the following). Here the
theoretical exponent lies in between the two numerical values. To
summarize, our results are close to the results obtained by Weiss
(1966). As Weiss (1966) does not provide the details of his compu-
tational method, the small discrepancies noted between his results
and ours most probably arise from a difference in the numerical
approach. Note that to further ensure the accuracy of our model, the
results of additional tests are provided in the Appendix. We conclude
this part by stating that the agreement between the theoretical ex-
pectations, previously published results and our numerical findings
convinces us of the validity of our numerical implementation.

The streamfunction �2 gives qualitatively the same results as
previously described (Figs 3a–d). The evolution of the field and
of the magnetic energy are similar and correspond to the results
presented by Charbonneau (2013, chap. 2, Fig. 2.9). However, the
scaling laws that can be numerically extracted are somewhat differ-
ent from the ones obtained with �1. Fig. 3(e) shows the evolution of
the magnetic energy as a function of time and it is interesting to note
that the amplitude of the resulting energy for the same Rm is lower
for �2 (see Fig. 3e, where the dashed lines show for comparison the
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(b)(a)

(d)(c)

(e)

Figure 3. Time evolution of the magnetic field for Configuration 1 if the prescribed streamfunction is �2 (eq. 12). The black lines are iso-contours of the vector
potential A, shown every 0.1B0Lz. The colourscale represents the current magnetic field strength normalized by its initial value. The second row represents the
magnetic field in the final stage (steady state) for a magnetic Reynolds number Rm = 1000 (c) and for Rm = 50 (d). (e) shows the temporal evolution of the
magnetic energy normalized by its initial value for each computed Rm for the streamfunction �2 (solid lines) compared with �1 (dashed lines). The squares
(resp. circles) denote the time when the maximum (resp. steady-state) stage of the evolution is reached. See text for details.
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Magnetic flux expulsion from the Earth’s core 1991

(b)(a)

Figure 4. Dependency of the monitored quantities on the magnetic Reynolds number Rm in Configuration 1, when the imposed streamfunction is �1 (a, see
eq. 11) and �2 (b, see eq. 12). Blue squares (circles) represent the maximum (steady-state) magnetic energy Emax

B (E ss
B ); the time to reach steady-state energy

τ ss is shown with orange circles. The y-axis on the left features the scale for magnetic energy EB , while the y-axis on the right that for the time τ . The straight
lines illustrate the corresponding scaling laws found by least-squares fitting, whose form is given in the label at the top, β denoting the exponent found in each
case. Slopes of 1/3, 1/2 and 2/3 indicated for reference.

Table 1. Summary of the scaling laws determined in this study, compared with the theoretical expectations. Emax
B and E ss

B are the maximum energy and the
energy at the steady state, respectively, with τmax(Emax

B ) and τ ss their corresponding characteristic timescales. (Bmax
z0 )max is the maximal amplitude of the

z-component of the field at the insulating top boundary, with τmax((Bmax
z0 )max) its associated timescale. For Configuration 2, �1, the scalings indicated for the

latter quantities are the scalings at the steady state, which are the same only in this case (see text for details).

Emax
B τmax(Emax

B ) E ss
B τss (Bmax

z0 )max
τmax((Bmax

z0 )max)
Rmax

Theoretical scalings R2/3
m B2

0 – R1/2
m B2

0 R1/3
m τadv – – –

Conf. 1
�1 R0.645

m B2
0 R0.231

m τadv R0.504
m B2

0 R0.254
m τadv – – –

�2 R0.644
m B2

0 R0.313
m τadv R0.334

m B2
0 R0.412

m τadv – – –

Conf. 2
�1 R0.641

m B2
0 R0.283

m τadv R0.533
m B2

0 R0.578
m τadv R0.435

m B0 R0.569
m τadv –

�2 R0.645
m B2

0 R0.313
m τadv R0.335

m B2
0 R0.418

m τadv R0.201
m B0 R0.477

m τadv –

Conf. 3 � – – – – R0.495
m B0 R0.152

m τadv R0.447
m

B0
τadv

evolution that is obtained for �1). The time to reach the maximum
amplitude is equivalent for a given Rm. As a general rule, the steady
state is reached later and the corresponding amplitude of the energy
is lower for �2. For example, for Rm = 1000, using �1, a steady
state is already reached at t = 6.5 whereas for �2, Rm = 1000, it is
reached later than t = 8.

The scaling laws obtained for the evolution of the magnetic en-
ergy with �2 are shown in Fig. 4(b). Note that these laws are
computed for 200 ≤ Rm ≤ 2 × 105, and this will be the case in the
remainder of this paper (in particular for the computation of the
scaling laws), where we are interested in the large Rm limit. The
maximum value of the energy Emax

B is found to scale as R0.644±0.004
m ,

similar to the scale previously determined. The energy at the steady
state E ss

B scales as R0.334±0.0001
m , much lower than previously (R0.504

m )
and lower than the anticipated value of R1/2

m . Likewise the time
taken to reach the steady state is found to scale as R0.412±0.001

m , as
mentioned above. These differences can be ascribed to the choice
of the streamfunction. �1 falls off rapidly at the upper and lower
boundaries. This leads to a greater shear of the magnetic field lines
close to these boundaries which in turn enhances the energy pro-
duced by the shear. Conversely, �2 produces a stronger shear close

to the lateral boundaries compared to �1. The magnetic stripes are
thus subject to a greater folding, subsequently leading to an increase
of the relaxation time and a decrease of the total magnetic energy.
As the efficiency of advection increases with the magnetic Reynolds
number, the shear of the magnetic field lines becomes larger with
higher Rm, thereby enhancing this relaxation. This illustrates the
fact that the flow pattern (in particular the occurrence of strong flow
gradients) has a strong impact on the timing and intensity of the
flux expulsion mechanism.

3.2 Configuration 2: flux expulsion from one eddy with an
insulating upper boundary

Of importance (in particular when considering geophysi-
cal/astrophysical implications) is the nature of the magnetic bound-
ary condition that is imposed at the top of the domain. Our goal in
Configuration 2 is to quantify this effect, using the previous con-
figuration as a reference. In Configuration 2 (recall Section 2), the
vertical component of the field can also diffuse through the upper
boundary. Fig. 5 shows the results for the same cases as considered
in the previous section (Figs 2 and 3), using �1 as our imposed
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(a) (b)

(d)(c)

Figure 5. Time evolution of the magnetic field for Configuration 2 if the prescribed streamfunction is �1 (eq. 11). The black lines are iso-contours of the
vector potential A, shown every 0.1B0Lz. The colourscale represents the current magnetic field strength normalized by its initial value. Above each panel the
blue curve shows the variation of the z-component of the magnetic field along the top boundary, Bz0, at the corresponding time. The second row represents the
magnetic field in the final stage (steady state) for a high magnetic Reynolds number Rm (c) and for a low Rm (d).
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Magnetic flux expulsion from the Earth’s core 1993

streamfunction. In the different panels of Fig. 5, each blue curve
shows the vertical component of the magnetic field at the upper insu-
lating boundary, Bz0, as a function of x. For Rm = 1000 (Figs 5a–c),
the results are comparable with those obtained in the previous con-
figuration (compare with Fig. 2). During the first (mainly advective)
phase, magnetic field lines are twisted and folded (Fig. 5a). Then
magnetic field lines start to reconnect to each other, leading to a
progressive expulsion of the flux from the inside of the eddy toward
its edges, which in turn leads to the increase of the amplitude of Bz0

(Fig. 5b). The steady state is represented in Figs 5(c) and (d) for two
values of Rm. For Rm = 1000 (Fig. 5c), the flux is entirely expelled
from the eye of the eddy at steady state. For Rm = 50 (Fig. 5d),
advection is not strong enough for reconnection to occur and the
expulsion of the magnetic field lines from the centre of the eddy to
be completed. Consequently, the amplitude of Bz0 reached at steady
state is lower in this low-Rm case.

The same cases (same Rm and same times for snapshots) are
presented in Fig. 6 for �2. The general behaviour is similar. Note
that the overall amplitude of the magnetic field intensity is lower
in this case. The concentration of magnetic flux close to the upper
boundary lead to an increase of the amplitude of the z-component
of the field in z = 0. The maximum amplitude reached at the top
and bottom is lower in this case, leading to lower values of Bz0.
Another difference due to the geometry of the flow is that more flux
is concentrated close to the lateral boundaries.

Fig. 7(a) shows the evolution of the energy for �1 (dashed lines)
and for �2 (solid lines) for different Rm. Again, the amplitude of
the energy is higher with �1. The same behaviour as described
in the previous section (Figs 2 and 3) is observed. The first stage
involves an increase of the energy corresponding to the advection
phase. Then diffusion starts to be significant and the energy reaches
a maximum and decreases, as magnetic field lines reconnect to each
other, until all the flux is expelled from the eye, and steady state is
reached. The scaling laws (Figs 7b and c, summarized in Table 1)
obtained to characterize the energy at its maximum and at steady
state are close to those obtained for the previous configuration. Emax

B

is found to scale as R0.641±0.001
m and as R0.645±0.004

m for �1 and �2,
respectively (exponents equal to 0.645 and 0.644 resp. for Config-
uration 1). In the first configuration, energy amplitudes are slightly
higher; the scaling law shows that there is no difference regarding
the trend of the evolution. E ss

B is found to scale as R0.533±0.003
m and

R0.335±0.0002
m for �1 and �2, respectively, similar to Configuration 1

in both cases (0.504 and 0.334, resp.). The time to reach the steady
state scales also as in Configuration 1 for �2: the exponent is 0.418
± 0.001 (against 0.412). It is rather different for �1: 0.578 ± 0.030
(against 0.254). These results show that the effect of the insulat-
ing boundary on the energy variations is limited. However, it has
a noticeable effect on the characterization of the steady state. The
diffusion of the flux through the insulating boundary takes longer
than the expulsion of the flux from the centre of the eddy which
leads to longer relaxation time at higher Rm.

The same systematic analysis is applied to the evolution of Bmax
z0

(Fig. 8). Fig. 8(a) shows the evolution with time of Bmax
z0 for �1

(dashed lines) and for �2 (solid lines). It is striking that for �1, the
amplitude of Bmax

z0 is significantly higher than that obtained with �2.
For the latter, Bmax

z0 grows rather slowly until reaching a maximum,
then it decreases to the steady state value (see the solid curves in
Fig. 8). In contrast, for �1, Bmax

z0 grows faster (over a longer time
than for �2, several tens of advection times for the largest values of
Rm), until it plateaus at a maximum value (Bmax

z0 )max coinciding with
the steady state. The resulting scaling laws (see Table 1) are repre-
sented in Figs 8(b) and (c) for �1 and �2, respectively. (Bmax

z0 )max

is found to scale as R0.201±0.009
m (for �2). The threshold value C2

used to define the steady state (recall eq. 8) is chosen as C2 =
5×10−4 for �1 and C2 = 5×10−5 for �2. At steady state, (Bmax

z0 )ss

scales as R0.435±0.007
m and R0.237±0.003

m for �1 and �2, respectively.
The time to reach the steady state is found to scale as R0.569±0.007

m

and R0.425±0.012
m for �1 and �2, respectively. The different results

for the different streamfunctions are again a consequence of the
behaviour of the different flows at the boundaries. The larger flow
gradients at the top and bottom boundaries lead to a greater energy
concentration for �1, particularly at the top: this enhances the am-
plitude of Bmax

z0 . Conversely, the slightly stronger flow gradients on
the lateral boundaries for �2 generate a stronger destructive fold-
ing of magnetic fields lines on those boundaries, and consequently
to a decrease of Bmax

z0 . We do not observe this behaviour if �1 is
prescribed. These results show that �1 is more efficient for the
expulsion of flux from the eddy and through the insulating upper
boundary. We ascribe its efficiency to its geometrical properties.
As described in the previous configuration, strong flow gradients
enhance the magnetic energy at the boundary. Here, gradients in
both z and x are important: the former allows the flux to concentrate
in the vicinity of the boundary, while the latter concentrates the flux
near downwellings, thereby enabling an amplification of Bz0.

In this configuration, the evolution of (Bmax
z0 )max is primarily con-

trolled by the lateral boundary conditions. The magnetic field lines
being fixed on lateral boundaries, they are driven downward by the
downwelling on the left boundary which increases the z-component
of the field in x = 0. (Bmax

z0 )max is thus located at x = 0, where the
magnetic field lines are fixed.

3.3 Configuration 3: flux expulsion from two eddies with
an insulating upper boundary

The third configuration retains the same top and bottom boundary
conditions for the vector potential as those for Configuration 2, with
an upper insulating boundary and a perfectly conducting bottom
boundary. As shown in Fig. 1c), the domain D is rectangular with
a 2:1 aspect ratio (Lz = 1, Lx = 2), and the fluid is set in motion
by two eddies producing a convective upwelling at the centre of the
domain. This flow is defined by the streamfunction

�(x, z) = 1

π
sin (πx) sin (π z). (13)

This streamfunction has the same behaviour as �1 along the z-
direction and should therefore maximize concentration of flux near
the top boundary. The initial magnetic field is again horizontal (see
the blue arrows in Fig. 1c). A noticeable difference with regard to
Configurations 1 and 2 is that the magnetic field lines are no longer
tied to the lateral sides, as was the case in the one-vortex canonical
configuration, in order to reproduce exactly the configuration used
by Bloxham (1986). This choice is further motivated by the fact that
it is not relevant to fix the field lines at the lateral boundaries as they
are supposed to reflect the behaviour of the toroidal magnetic field
in the Earth’s outer core.

Results are presented in Fig. 9 for Rm = 1000 at t = 1.5 (Fig. 9.a),
t = 3.5 (Fig. 9.b) and t = 30 (Fig. 9.c). As previously seen in the
single-eddy configurations for high Rm cases, the magnetic field
lines initially inside the eddies are at first wound and concentrated
near the edges of the domain (Fig. 9a, bottom panel). Reconnection
of field lines occurs when two stripes of opposite polarity are close
enough (Fig. 9b, bottom panel); this leads to the progressive expul-
sion of magnetic flux from the interior of each eddy to its edges.
The evolution of Bz0 (top panels of Figs 9a–c) is however different
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(a) (b)

(d)(c)

Figure 6. Time evolution of the magnetic field for Configuration 2 if the prescribed streamfunction is �2 (eq. 12). The black lines are iso-contours of the
vector potential A, shown every 0.1B0Lz. The colourscale represents the current magnetic field strength normalized by its initial value. Above each panel, the
blue curve shows the variation of the z-component of the magnetic field along the top boundary, Bz0, at the corresponding time. The second row represents the
magnetic field in the final stage (steady state) for a magnetic Reynolds number Rm = 1000 (c) and for Rm = 50 (d).
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Magnetic flux expulsion from the Earth’s core 1995

(a)

(c)(b)

Figure 7. Evolution of the total magnetic energy for Configuration 2. (a): evolution of the magnetic energy with time for a range of magnetic Reynolds number
Rm in the case of the streamfunction �1 (dashed lines) and �2 (solid lines). (b) and (c): evolution of the maximum of the magnetic energy Emax

B , its amplitude
at the steady state E ss

B , and their corresponding characteristic times, τmax and τssτ ss, respectively, as a function of Rm (ranging from 200 to 20 000), for �1

and �2, respectively. The straight lines illustrate the corresponding scaling laws found by least-squares fitting, whose form is given in the label at the top, β

denoting the exponent found in each case.

from that observed in Configuration 2: it is now antisymmetric with
respect to the centre of the upwelling, with two intensity peaks of op-
posite signs and same amplitude, located above the downwellings.
As the flux is further concentrated near the top left and right corners
of the domain, the amplitude of the peaks of Bz0 increases with time
(Fig. 9b), until it finally reaches a steady state (Fig. 9c).

The behaviour of the peak amplitude, Bmax
z0 , normalized by the

initial magnetic field strength B0, is documented as a function of
time for different magnetic Reynolds numbers in Fig. 10 (left-hand
panel). Note that the integration times necessary to reach a steady
state at large Rm are substantially longer (several tens of τadv) than
those considered by Bloxham (1986), whose range of Rm was re-
stricted between 10 and 200. When compared with Configuration 2,
the same increase is seen at first, over a few τadv, following the initial
shear-augmented diffusion of flux. At any given Rm, the maximum
amplitude that is reached is however larger than the one obtained for
Configuration 2 (Fig. 8a). The evolution of Bmax

z0 is not controlled by
the lateral boundary conditions (as in Configuration 2), but by the
flow gradients in x concentrating the flux near downwellings. The
magnetic field lines move freely along the lateral boundaries, so the

flow drags them downward and no vertical component is created as
the magnetic field lines are not distorted. Once the maximum (of
Bmax

z0 ) is obtained at time t = τmax, relaxation to steady state occurs.
This relaxation can be oscillatory in nature, and its amplitude in-
creases with Rm. We interpret these oscillations as originating from
the arrival near the top of the domain of the magnetic field stripes of
alternating polarity created by the distortion of magnetic field lines
and their subsequent diffusion. Such oscillations do not occur in the
case of Configuration 2 precisely because the evolution of Bmax

z0 is in
this case governed by field lines being tied to the lateral boundaries.
In addition, note that these oscillations can exist by virtue of the
2-D geometry. Flux can not escape in the third direction of space.
In three dimensions, for instance in the case of a helical upwelling
flow, the situation may be different.

Our systematic survey of Rm values allows us to derive scaling
laws describing the evolution of Bmax

z0 (see Table 1). To define the
steady state, we used a threshold value C2 = 5 × 10−3 (recall eq. 8).
As shown in Fig. 10(right-hand panel), we find that

τmax = 1.002 ± 0.012R0.152±0.004
m ,

(Bmax
z0 )max/B0 = 0.267 ± 0.019R0.495±0.006

m (14)
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(a)

(b) (c)

Figure 8. Evolution of the maximum of the z-component of the magnetic field at the top insulating boundary, Bmax
z0 (eq. 6), for Configuration 2. (a) shows

the evolution of Bmax
z0 with time for a range of magnetic Reynolds number Rm for the streamfunction �1 (dashed lines) and �2 (solid lines). (b) and (c) show

the evolution of the monitored quantities as a function of Rm together with the associated scales for �1 and �2, respectively. The straight lines illustrate the
corresponding scaling laws found by least-squares fitting, whose form is given in the label at the top, β denoting the exponent found in each case.

provide an adequate least-squares fit (in log–log space) to the data.
Restoring dimensions, these scaling laws become

τmax = 1.002
L

U

(
U L

η

)0.152

,

(Bmax
z0 )max = 0.267B0

(
U L

η

)0.495

. (15)

To reiterate, the pseudo-convective flow prescribed here causes
a more intense flux concentration near the top left- and right-hand
corners of the domain, regardless of the value of Rm.

The increase of Bmax
z0 between the initial state at t = 0 and the

maximum at t = τmax can be averaged, under the assumption of
a linear increase. The ratio of (Bmax

z0 )max to τmaxtherefore gives an
estimate of this average variation rate and its dependency on Rm.
We find that this average variation rate scales as ∼ R0.343

m B0U/L .
However, as shown by the evolution of Bmax

z0 (recall Fig. 10, left-
hand panel), the instantaneous rate of change R (eq. 9) can be faster
than this average at some instants. We determine the scale for the
maximum instantaneous rate of change (defined by eq. 10) by a

systematic survey of this quantity for the same range of Rm. We
find a stronger dependency on Rm (with an exponent equal to 0.447)
which yields the following dimensional law

Rmax = 0.300B0
U

L

(
U L

η

)0.447

. (16)

4 D I S C U S S I O N

In order to provide plausible estimates for magnetic field variations
that could be produced by flux expulsion from the Earth’s core,
we base the discussion on results obtained from Configuration 3.
Although simplified, this configuration appears to be the most ef-
ficient at generating flux expulsion through the upper boundary. In
addition, the specific geometry and fluid flow pattern imposed by
Bloxham (1986) produces a pair of peaks with opposite sign ob-
tained at the top insulating boundary (taking the periodicity of the
solution into account, recall Fig. 9) which is reminiscent of pairs of
flux patches of opposite polarity seen at the top of the core (see for
example Jackson & Finlay 2015).
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Magnetic flux expulsion from the Earth’s core 1997

(a)

(b)

(c)

Figure 9. Time evolution of the magnetic field for Configuration 3 if the prescribed streamfunction is � (eq. 13), for a magnetic Reynolds number Rm = 1000.
The black lines are iso-contours of the vector potential A, shown every 0.1B0Lz. The colourscale represents the current magnetic field strength normalized by
its initial value. Above each panel the blue curve shows the variation of the z-component of the magnetic field along the top boundary, Bz0.
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(a) (b)

Figure 10. (a) Evolution of the maximum of the z-component of the field at z = 0, Bmax
z0 (eq. 6), for a range of magnetic Reynolds number Rm. (b) Shows the

evolution of the monitored quantities as a function of Rm together with the associated scales. The straight lines illustrate the corresponding scaling laws found
by least-squares fitting, whose form is given in the label at the top, β denoting the exponent found in each case.

Configuration 3 is however based on a number of assumptions,
the consequences of which need to be discussed. First, we consider
a 2-D domain. As mentioned in the previous section, the same evo-
lution for (Bmax

z0 )max(t) is not expected in 3-D and the oscillations
observed before the steady-state is reached may disappear. In their
study, Galloway et al. (1978) argued that in 3-D, in the large Rm

limit, the flow concentrates the flux in a rope, amplifying the field
inside as a function of ∼RmB0, instead of ∼ R1/2

m B0 obtained in
the 2-D, sheet-like configuration. A fully 3-D geometry therefore
increases (Bmax

z0 )max, since it increases the concentration of mag-
netic flux. The work by Galloway et al. (1978) focuses on the solar
dynamo, which is not dramatically influenced by the background
rotation of the Sun. On Earth, however, rotational effects are of fore-
most importance, and the Coriolis force imparts an invariance of
the flow in the direction of Earth’s background rotation, making the
flow 2-D in practice. Our 2-D model could in this respect represent
the situation occurring in the equatorial plane (or any plane paral-
lel to the equatorial plane), where two counter-rotating eddies may
contribute to the expulsion of magnetic flux. Secondly, we consider
two perfectly symmetric counter-rotating eddies. If this symmetry
were broken, the z-component of the magnetic field at the upper
insulating boundary would no longer be symmetrical, as the shear
of the magnetic field lines by the two eddies would no longer be the
same. The stronger eddy would give rise to a stronger flux expelled
through the boundary. (Bmax

z0 )max would still depend on the stream-
function, in particular on the gradient that controls the shear of the
magnetic field lines. Thirdly, we consider an initial magnetic field
that is horizontal and uniform. Were this initial field not uniform, in
the high Rm limit, magnetic field lines would still be rapidly swept
aside and concentrated at the boundaries. We therefore do not expect
a significant change in the scaling laws from a change in the initial
magnetic configuration (provided that the average magnetic field
strength remains the same). Fourthly, the steady flow considered
here is extremely efficient in concentrating and shearing magnetic
field lines in the vicinity of the upper boundary. In the case of a
non-steady flow, this optimal geometry would not be sustained over
the time span it takes to generate the expulsion of flux. This would
lower the efficiency of the process. We thus expect (Bmax

z0 )max to be
either lower and/or achieved over a longer duration τmax. Finally, it
is also important to stress that this 2-D model is kinematic and does
not account for the Lorentz force: the above rates overestimate the

rate of flux expulsion. In a dynamic context, the Lorentz force is
likely to exert a feedback on the fluid flow, in particular in the case
of a strong toroidal field. Magnetic tension decreases the flow speed,
which is detrimental to both the amount of flux advected towards
the boundary and the magnitude of the field gradients. In spite of
these intrinsic limitations, we think that Configuration 3 gives rel-
evant information to understand whether flux expulsion events can
generate geomagnetic spikes as documented in the recent literature.

The extrapolation of our deduced scaling laws (eq. 15) to the
Earth requires constraints on the fluid velocity and on the magnetic
diffusivity at the CMB, as well as on the intensity of the toroidal
magnetic field close to the CMB and the typical lengthscale of
the convective process. Reasonable estimates are available at least
for the two first parameters. The rms velocity of the fluid at the
CMB is ∼15 km yr–1 (Jones 2015), a value derived from the study
of the magnetic flux patches advection at the CMB. The magnetic
diffusivity is also usually assumed to take a value close to η ∼
0.6 m2s−1 (Pozzo et al. 2012). Below we discuss the impact of
other, more speculative, choices for these parameters.

Constraining the two remaining parameters is more challenging.
The degree 13 of spherical harmonic decomposition is the smallest
wavelength of the contribution of the core field that is observable
at the Earth’s surface, the crustal magnetic field hiding its smaller
wavelength contribution. Truncation at degree 13 is a common prac-
tice used for core field models, for instance those contributing to the
IGRF (Thébault et al. 2015). The corresponding minimum distance
L at the CMB is then ∼800 km. Adopting U = 15 km yr–1, η =
0.6 m2s−1, L = 800 km leads to a local Rm ∼ 630. Application of
our scaling laws characterizing flux expulsion then gives a duration
of τmax ∼ 140 yr associated with a total duration of τ tot ∼ 280 yr
accounting for an increase and a decrease of the intensity (to obtain
a peak, cf. Table 2). Based on these estimates, 140 yr is therefore the
shortest timescale that may be detected at the Earth’s surface due to
flux expulsion at the CMB. On the other hand, one can instead take
as the relevant lengthscale the thickness of the outer core, that is
L ∼ 2 × 103 km, which corresponds to spherical harmonic degree
∼5 at the Earth’s surface. This leads to a local Rm ∼ 1590 and a
duration τmax ∼ 410 yr, leading to a total duration τ tot � 820 yr.

Turning to the toroidal field confined within the Earth’s core, it
is clear that determining its intensity is far from trivial. Hori et al.
(2015) suggest a lower bound of 3 mT from the analysis of the
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Table 2. Extrapolation of the scaling laws given by eqs (15) and (16) at the CMB and at the Earth’s surface for various choices of characteristic scales. The
last two columns give variation rates at the CMB and at the Earth’s surface respectively. These rates are comprised between the average variation rate (lower
value) and the maximum instantaneous variation rate (higher value).

L (km) �

U
(km yr–1) Rm τmax (yr) (Bmax

z0 )max (μT) CMB (μT yr–1) Surf. (μT yr–1)

800 13 15 630 140 20 × 103 137−302 0.016−0.035
2000 5 15 1590 410 31 × 103 75−182 1.09−2.64
175 62 15 140 25 9 × 103 372−700 0.6−1.1 × 10−14 ≈ 0
175 62 28 260 15 13 × 103 860−1726 1.3−2.7 × 10−14 ≈ 0

secular variation in terms of Rossby waves in numerical dynamo
simulations but stressed that this value could be much higher (up
to approximately 10 mT). The results reported in this study for
Configuration 3 suggest that the maximal proportion of Bz expelled
evolves as ∼ R1/2

m . Taking 3 mT as the toroidal field strength in
the vicinity of the CMB, the minimal and maximal lengths L given
above lead to an intensity of the expelled field of between 20 mT
(L = 800 km) and 31 mT (L = 2 × 103 km). This corresponds to
average intensity variation rates at the CMB of 75–137 μT yr–1. As
for the maximum instantaneous rate Rmax, it reaches 302 μT yr–1

for L = 800 km and 182 μT yr–1 for L = 2000 km, twice as much
as the average rates. Assuming an attenuation of the field through
the mantle on the order of ∼(rc/ra)� + 2, with � the degree of the
spherical harmonic decomposition, rc the radius of the core and ra

the radius of the Earth, allows us to roughly estimate the intensity
variation rates that would be observed at the Earth’s surface. Such
attenuation would lead to average intensity variation rates at Earth’s
surface of ∼0.016 μT yr–1 (L = 800 km) to ∼1.09 μT yr–1 (L =
2000 km, cf. Table 2). Turning to the maximum instantaneous rate
of change (eq. 10), using the same parameters than previously, the
extrapolation leads to values ranging from 0.035 to 2.64 μT yr–1.

Having established geophysically plausible ranges for the rate
of flux expulsion according to our simple model, it is now of in-
terest to compare these with field intensity variations reported for
geomagnetic spikes. It should first be mentioned that the intensity
variation rates that have been associated with the latter, as well as
their duration, are only approximate from an experimental point of
view. On the basis of the available archeomagnetic data, it is not
yet possible to know precisely whether the values that have been
proposed characterize the spikes as a whole (with an estimate of the
average variation rate and of the total duration of the rising or falling
part of the intensities), or only part of the spikes. For this reason,
in our discussion, we have considered both the average intensity
variation rate and the maximum of the instantaneous rate of change
over τmax. Concerning the duration of geomagnetic spikes, it has
been argued that their total duration may not exceed ∼50 yr, that is
τmax ∼ 25 yr (Ben-Yosef et al. 2009; Shaar et al. 2011). Assuming
the same characteristic velocity and magnetic diffusivity as used
above, the observation of such a short lasting event would require a
characteristic lengthscale of ∼175 km at the CMB and thus a local
magnetic Reynolds number Rm ∼ 140. These values would lead to
a maximum amplitude of 9 mT and an average variation rate at the
CMB of ∼372 μT yr–1. The maximum instantaneous variation rate
would reach ∼700 μT yr–1 in this case. However, and regardless of
the variation rate we consider, such an event would not be detected
at the Earth’s surface, because of the geometric attenuation through
the mantle, as it would correspond to degree � ∼ 62 (the signal
would be practically invisible at the Earth’s surface).

From the scaling laws reported in eqs (15) and (16), a more gen-
eral analysis can be performed to determine if geomagnetic field
intensity peaks suggested by recent archeomagnetic data sets could

be reasonably attributed to the signature at the Earth’s surface of
flux expulsion events at the CMB. As we aim to give optimistic es-
timates of the intensity rate of change produced by flux expulsion,
we will therefore rely only on the results obtained from the scal-
ing law of the maximum instantaneous rate Rmax, associated with
the duration τmax, corresponding to the time needed to reach the
maximum of Bmax

z0 (i.e. half the total duration of an intensity peak).
Fig. 11 shows colour scale plots of the extrapolated maximum in-
stantaneous variation rates at the Earth’s surface as a function of
the characteristic velocity and the characteristic wavelength of the
process, for two different magnitudes of the toroidal field (3 and
10 mT, taken as plausible lower and upper values, see Hori et al.
(2015)) and exploring two possible values of the magnetic diffu-
sivity (0.6 and 2 m2s−1). The durations are represented by white
dashed lines (τmax being half of the total duration). The solid lines
show values for variation rates, given in μT yr–1. From this figure,
it is observed that the dashed line corresponding to τmax ≤ 50 yr
(τ tot ≤ 100 yr), that is roughly two or three times the total duration
initially suggested for geomagnetic spikes (Shaar et al. 2011), never
cross the line corresponding to a variation rate of 4 μT yr–1. Shaar
et al. (2016) and Ben-Yosef et al. (2017) suggest a less extreme ge-
omagnetic spike during the 8th century BC that would be associated
with variation rates of ∼0.75–1.5 μT yr–1. Considering the lowest
intensity variation rate of 0.75 μT yr–1 and a total duration of 100 yr,
flux expulsion could account for geomagnetic spikes only if the in-
tensity of the toroidal magnetic field was increased to 10 mT and
if the lengthscale of the flow pattern was on the order of 1000 km.
Such values would however correspond to a flow speed greater than
50 km yr–1 a rather extreme value according to inferences based on
the present geomagnetic field (Hulot et al. 2002; Finlay & Amit
2011; Holme 2015). For a total duration of 200 yr (τmax = 100 yr),
a characteristic flow speed of 35 km yr–1 would be needed. For the
same duration, a variation rate as high as 4 μT yr–1 would require a
characteristic flow speed of 50 km yr–1. Adopting a higher value of
the magnetic diffusivity (2 m2s−1, Figs 11c and d) does not signif-
icantly change these results. To summarize, Fig. 11 clearly shows
that according to our analyses magnetic flux expulsion can con-
ceivably produce extreme variation rates only for large-scale events
(>1000 km at the CMB) and for a minimum total duration longer
than a century.

Although less extreme, other periods characterized by strong in-
tensity variation rates are proposed both in Western Europe and the
Near-East. In the Near-East, Yutsis-Akimova et al. (2018a,b) report
during the 6th millennium BC two intensity peaks of about one
century or less (see also Kovacheva et al. 2014), associated with
variation rates bounded between ∼0.1 and ∼0.25 μT yr–1. Consid-
ering a total duration of 100 yr, a variation rate of 0.1 μT yr–1, and
the commonly accepted value of 0.6 m2s−1 for the magnetic diffu-
sivity, such features would be reachable for a flow speed greater than
40 km yr–1, more than twice its current rms value (∼15 km yr–1).
For the third millennium BC, Gallet et al. (2020) also report two
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Figure 11. Instantaneous rate of change of the intensity of the field generated by flux expulsion as a function of the characteristic velocity of the fluid in the
Earth’s core and the characteristic scale of the process in the core, given for different initial intensity and magnetic diffusivity. Urms is the root mean square
velocity at the top of the core. The solid lines represent some constant rates of change. The dashed lines give different values of τmax corresponding to half of
the total duration of the expected peak of intensity induced by flux expulsion at the CMB.

intensity peaks in Mesopotamia associated with durations of ∼200
yr and variation rates of ∼0.10−0.20 μT yr–1. These events would
be compatible with flux expulsion over large spatial scale, with a
reasonable flow speed of 20−30 km yr–1. In Western Europe, Hervé
et al. (2017) report a field intensity peak centred around 550 BC.
This peak would have lasted about 400 yr and is associated with vari-
ation rate of ∼0.25 μT yr–1 during its ascending branch (7th century
BC), about twice the maximum value known in the modern field
(Livermore et al. 2014). In this case, according to our experiments,
such variations could be compatible with magnetic flux expulsion

over large spatial scale (∼1000 km corresponding to degree 10),
associated with a flow speed of 15 km yr–1, the rms flow speed at
the CMB. Genevey et al. (2013, 2016) also show the existence in
Western Europe of a series of geomagnetic field intensity peaks
over the past ∼1500 yr. The total duration of these peaks is ∼200 yr
and they are associated with intensity variation rates from ∼0.05
μT yr–1, to a maximum of ∼0.15 μT yr–1, as for instance during the
10th century AD. For such durations and variation rates, explaining
these events by flux expulsion process appears also possible with
a quite reasonable flow speed not exceeding 20–30 km yr–1 and a
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lengthscale for the eddies that would approximately correspond to
degree 13. This range of lengthscales for magnetic flux expulsion
at the CMB would result in an extended large-scale signature at the
Earth’s surface, of about 1500−2000 km for � ∼ 10−13.

Our analyses therefore lead to different interpretations of the
geomagnetic intensity peaks reported in the Near-East and in West-
ern Europe. In the Near-East, the peaks during the 6th millennium
BC are obtained only for unrealistically high characteristic flow
speeds (for the considered lengthscales and durations) while for the
intensity peaks of the third millennium BC and those observed in
Western Europe, they could reasonably be attributed to a flux expul-
sion process. It is worth recalling that the kinematic configuration
considered in this study constitutes a particular limit (leading to
high variation rates), for which the feedback of the Lorentz force
on the velocity field is not considered, and the intensity variation
rates estimated at the CMB are roughly extrapolated to the Earth’s
surface. Analysis of outputs from numerical dynamo simulations
could help to determine whether flux expulsion events in a 3-D set-
ting with self-consistent dynamics follow the scaling laws proposed
here, or whether they are enhanced or attenuated by other processes.

5 C O N C LU S I O N

The analysis of simple 2-D kinematic models of magnetic flux ex-
pulsion allows the determination of scaling laws governing the two
physical processes involved in flux expulsion, namely the expulsion
of magnetic flux from closed streamlines and subsequent expul-
sion through an insulating boundary, depending on the magnetic
Reynolds number Rm.

Of the different cases studied here, Configuration 3 gives a bet-
ter indication of the conditions prevailing in the outer core. For
this configuration, we consider a rectangular domain containing
two counter-rotating eddies with an insulating upper boundary. The
maximum vertical component of the field that diffuses through
the upper boundary Bmax

z0 presents an intensity peak, characterized
by a maximum amplitude reached over a time τmax which scales
as ∼ R0.15

m . The maximum instantaneous rate of change scales as
∼ R0.45

m .
The extrapolation of the above scaling laws to the Earth (using

reasonable estimates for the material properties and the flow mag-
nitude at the CMB) shows that extreme intensity variations rates
proposed for geomagnetic spikes are difficult to obtain solely by
magnetic flux expulsion. According to our experiments, extremely
fast variations over a duration shorter than a century do not appear
to be compatible with flux expulsion events. Durations and variation
rates of more moderate intensity peaks detected in the Near-East
and Western Europe during the Holocene are more compatible with
our results.

An extension of this study to the dynamic case, considering
the Lorentz force, would help to better characterize the expected
signature of flux expulsion in the outer core. Dynamic variations
rates are however expected to be lower than the kinematic ones
we have investigated, since the feedback of the Lorentz force on
the flow should lower the efficiency of expulsion (from the ed-
dies and thereby through the insulating boundary). Recent stud-
ies of inverse geodynamo modelling covering the historical period
during which direct measurements of the magnetic field are avail-
able (1840–2010) identify magnetic flux expulsion at low latitudes
(Aubert 2014), arising from columnar vortices. To strengthen this
conclusion, it would be interesting to look in details at outputs from
numerical dynamos simulations presenting more realistic turbulent

flows (Schaeffer et al. 2017) to seek magnetic flux expulsion events
and study the underlying flow. It would also allow an assessment of
whether the scaling laws determined in this study hold in the 3-D,
fully dynamic case.
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A P P E N D I X : N U M E R I C A L
A P P ROX I M AT I O N

A1 Numerical scheme and boundary conditions

To numerically approximate eq. (3), we use a pseudospectral method
involving a Fourier expansion along the x-direction together with
a second-order accurate finite-difference scheme in the z-direction.
The Fourier expansion depends on the lateral boundary conditions
one intends to impose.

In configurations 1 and 2, magnetic field lines are anchored in the
lateral boundaries. We decompose the vector potential A according
to

A(x, z, t) = A0(z) + Av(x, z, t), (A1)

where A0(z) = A(x, z, t = 0) is the initial vector potential (which
is a function of z only), and the time-dependent Av vanishes on
the lateral boundaries, at x = 0 and x = Lx. To satisfy exactly this
vanishing requirement, Av is expanded in x using sine functions.
This amounts to rewriting eq. (A1) as

A(x, z, t) ≈ A0(z) + 1

2M

M−1∑
k=0

Âvk(z, t) sin

(
πk

x

Lx

)
, (A2)

where x ∈ ]0, Lx[ is discretely sampled at M − 1 equally spaced
internal points

xk = kLx

M
, k = 1, . . . , M − 1, (A3)

and

Âvk(z, t) ≡
M−1∑
m=1

Av(xm, z, t) sin
(
πk

m

M

)
. (A4)

In configuration 3, magnetic field lines move freely along the lateral
boundaries. The vector potential can then be approximated using a
generic Fourier expansion, such that

A(x, z, t) ≈ 1√
M

M−1∑
k=0

Âk(z, t) exp

(
−2iπk

x

Lx

)
, (A5)

where x ∈ [0, Lx[ is sampled at M equally spaced points

xk = kLx

M
, k = 0, 1, . . . , M − 1, (A6)

and each Fourier mode Âk reads

Âk(z, t) ≡ 1√
M

M−1∑
m=0

A(xm, z, t) exp
(

2iπk
m

M

)
≡ Fk[A(x, z, t)], k = 0, 1, . . . , M − 1. (A7)

Regardless of the configuration, note that the Âvk and Âk undergo
the same treatment. We will use the latter notation in the following
to discuss in a common manner the treatment of configurations 1,
2 and 3.

If Ĵk(z, t) denotesFk[J (x, z, t)], the Fourier expansion of eq. (3)
yields
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1√
M

M−1∑
k=0

{
∂

∂t
− 1

Rm

[
∂2

∂z2
− k2

p

]}
Âk(z, t) exp

(
−2iπk

x

Lx

)

= 1√
M

M−1∑
k=0

Ĵk(z, t) exp

(
−2iπk

x

Lx

)
.

with kp = 2πk/Lx. The orthogonality of the Fourier basis then allows
solving

[
∂

∂t
− 1

Rm

(
∂2

∂z2
− k2

p

)]
Âk(z, t) = Ĵk(z, t), (A8)

for each mode k.

Time t ∈ [0, T] is sampled at discrete times tn = n�t and the
vertical direction z ∈ [0, Lz] is sampled at a set of discrete zj =
jLz/(N − 1) = j�z. This prompts us to define Âk( j�z, n�t) ≡ Ân

k, j

and Ĵk( j�z, n�t) ≡ Ĵ n
k, j . The centred finite difference scheme in

z yields

Ân+1
k, j − Ân

k, j

�t
− 1

Rm

[
Ân+1

k, j+1 − 2 Ân+1
k, j + Ân+1

k, j−1

2�z2

+ Ân
k, j+1 − 2 Ân

k, j + Ân
k, j−1

2�z2
− k2

p

2

(
Ân+1

k, j + Ân
k, j

)]
= Ĵ n

k, j (A9)

for the interior points zj, j = 1, . . . , N − 2. This equation is

modified near the boundaries in order to accommodate boundary
conditions.

The lower boundary (j = N − 1) is supposed to be perfectly
conducting for all three configurations. As the field in a perfectly
conducting medium is static, the vector potential for all non-zero
modes is forced to zero at the lower boundary, and the k = 0 mode
remains equal to its initial value

Ân
k,N−1 = 0 ∀ k = 0, ∀n, (A10)

Ân
0,N−1 = Â0

0,N−1 ∀ n. (A11)

In configuration 1, the top is also perfectly conducting. The same
condition is then applied

Ân
k,0 = 0 ∀ k = 0, ∀n, (A12)

Ân
0,0 = Â0

0,0 ∀ n. (A13)

If An
k denotes the column vector of unknowns[

Ân
k,0, Ân

k,1, . . . , Ân
k,N−2, Ân

k,N−1

]T
(in which T implies trans-

position), the linear system to solve at each time step for
configuration 1 reads

M(1)
k An+1

k = N(1)
k An

k + Jn
k = Fn

k , (A14)

where

M(1)
k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · · · · · · · 0

0 γk ρ
. . .

...

0 ρ
. . .

. . .
. . .

...
...

. . .
. . . γk

. . .
. . .

...
...

. . .
. . .

. . . ρ 0
...

. . . ρ γk 0
0 · · · · · · · · · 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,∀k, (A15)

with γk = 1
�t + 1

Rm

(
1

�z2 + k2
p

2

)
and ρ = − 1

Rm

1
2�z2 ;

N(1)
k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bk 0 0 · · · · · · · · · 0

0 χk −ρ
. . .

...

0 −ρ
. . .

. . .
. . .

...
...

. . .
. . . χk

. . .
. . .

...
...

. . .
. . .

. . . −ρ 0
...

. . . −ρ χk 0
0 · · · · · · · · · 0 0 bk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ∀k, (A16)

with χk = 1
�t − 1

Rm

(
1

�z2 + k2
p

2

)
; b0 = 1 and bk = 0 for k = 0,

leading to

Fn
0 =

[
Â0

0,0, χ0 Ân
0,1 − ρ Ân

0,2 + Ĵ n
0,1 + Â0

0,0

Rm�z2
, . . . ,

−ρ Ân
0, j−1 + χ0 Ân

0, j − ρ Ân
0, j+1 + Ĵ n

0, j , . . . ,

−ρ Ân
0,N−3 + χ0 Ân

0,N−2 + Ĵ n
0,N−2 + Â0

0,N−1

Rm�z2
, Â0

0,N−1

]T

(A17)

for the k = 0 mode and

Fn
k =

[
0, χk Ân

k,1 − ρ Ân
k,2 + Ĵ n

k,1, . . . ,

−ρ Ân
k, j−1 + χk Ân

k, j − ρ Ân
k, j+1 + Ĵ n

k, j , . . . ,

−ρ Ân
k,N−3 + χk Ân

k,N−2 + Ĵ n
k,N−2, 0

]T

(A18)

for each k = 0 mode.
In configurations 2 and 3, the top boundary is insulating. By using

the fact that the magnetic field in the z < 0 region is a potential field,
Bloxham (1986) showed that the corresponding boundary condition
reads

kp Âk(z, t) = ∂ Âk(z, t)

∂z
, ∀k = 0. (A19)

Using a centred finite difference scheme, this becomes

Ân
k,−1 = Ân

k,1 − 2kp�z Ân
k,0. (A20)

using a ghost node located at z−1 = −�z. For k = 0, we impose
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Ân
0,0 = 0. (A21)

Adopting the same notations than for Configuration 1 (eq. A14),
the components of the linear system to solve for Configuration 2/3
become

M(2/3)
k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξk 2ρ 0 · · · · · · · · · 0

ρ γk ρ
. . .

...

0 ρ
. . .

. . .
. . .

...
...

. . .
. . . γk

. . .
. . .

...
...

. . .
. . .

. . . ρ 0
...

. . . ρ γk 0
0 · · · · · · · · · 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, k = 0; (A22)

with ξk = 1
�t + 1

Rm

(
1+k p�z

�z2 + k2
p

2

)
;

M(2/3)
0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · · · · · · · 0

0 γ0 ρ
. . .

...

0 ρ
. . .

. . .
. . .

...
...

. . .
. . . γ0

. . .
. . .

...
...

. . .
. . .

. . . ρ 0
...

. . . ρ γ0 0
0 · · · · · · · · · 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; (A23)

N(2/3)
k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζk −2ρ 0 · · · · · · · · · 0

−ρ χk −ρ
. . .

.

.

.

0 −ρ
. . .

. . .
. . .

.

.

.
.
.
.

. . .
. . . χk

. . .
. . .

.

.

.
.
.
.

. . .
. . .

. . . −ρ 0
.
.
.

. . . −ρ χk 0
0 · · · · · · · · · 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, k = 0; (A24)

with ζk = 1
�t − 1

Rm

(
1+k p�z

�z2 + k2
p

2

)

N(2/3)
0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · · · · · · · 0

0 χ0 −ρ
. . .

...

0 −ρ
. . .

. . .
. . .

...
...

. . .
. . . χ0

. . .
. . .

...
...

. . .
. . .

. . . −ρ 0
...

. . . −ρ χ0 0
0 · · · · · · · · · 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; (A25)

leading to

Fn
k =

[
ζk Ân

k,0 − 2ρ Ân
k,1, −ρ Ân

k,0 + χk Ân
k,1 − ρ Ân

k,2 + Ĵ n
k,1, . . . ,

−ρ Ân
k, j−1 + χk Ân

k, j − ρ Ân
k, j+1 + Ĵ n

k, j , . . . ,

−ρ Ân
k,N+2N−3 + χk Ân

k,N−2 + Ĵ n
k,N−2, 0

]T

(A26)

for each k = 0 mode and

Fn
0 =

[
0, χ0 Ân

0,1 − ρ Ân
0,2 + Ĵ n

0,1, . . . ,

−ρ Ân
0, j−1 + χ0 Ân

0, j − ρ Ân
0, j+1 + Ĵ n

0, j , . . . ,

−ρ Ân
0,N−3 + χ0 Ân

0,N−2 + Ĵ n
0,N−2 + Â0

0,N−1

Rm�z2
, Â0

0,N−1

]T

(A27)

for the k = 0 mode, respectively.
This pseudospectral method has been implemented using python

and its linear algebra and Fourier transform libraries.

A2 Validation tests

A2.1 Diffusive limit: theoretical solution inside the domain

Drew (1993) tested his numerical results for the diffusion equation

∂B

∂t
= ∇2B, (A28)

in the case of a perfectly conducting boundary at the bottom and an
insulating boundary at the top. For a purely horizontal initial field
B = B(z, t)x̂, this equation becomes scalar

∂ B(z, t)

∂t
= ∂2 B(z, t)

∂z2
, (A29)

subject to the boundary conditions,

∂ B(z, t)

∂z
= 0 at z = 1, ∀t, (A30)

B(z, t) = 0 at z = 0, ∀t. (A31)

Assuming an exponential decay e−pt of the field gives the following
diffusive modes

Bp(z, t) = B0 cos
[√

p(1 − z)
]

e−pt , ∀p (A32)

with B0 a constant and
√

p = (2q+1)π
2 , q = 0, 1, 2, ... the decay rate.

The fundamental (q = 0) mode is

Bp0(z, t) = B0 cos
[π

2
(1 − z)

]
e− π2

4 t . (A33)

The problem is solved using the same set of parameters than those
used by Drew (1993), with Lz = L = 1 and Lx = 2L = 2. Using
our method, the magnetic field is expressed in terms of the vector
potential in the Fourier domain. Consequently, the condition

Âp(z = 1, t) = 0 ∀t, ∀p (A34)

is imposed at the bottom. At the top, an insulating boundary is
specified for all modes as follows

∂ Âp(z = 0, t)

∂z
= 0 ∀t,∀p. (A35)

The initial field is set to Bp(z, t = 0) = cos
[√

p(1 − z)
]

and in
terms of vector potential

Ap(z, t = 0) = 1√
p

sin
[√

p(1 − z)
] ∀p. (A36)

Calculations are carried out using a time step size �t = 1.10−4 and
N = 200 points in the z direction. Fig. A1 shows the evolution of the
vector potential at the centre of the domain (xc = 1, zc = 0.5), for
the analytical (straight lines) and the numerical (symbols) solutions
as a function of time (expressed in advection time units). The slopes
for the different modes give the corresponding decay coefficient p.
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Figure A1. Decay of the vector potential in the centre of the layer as a func-
tion of time (expressed in advection time units) for the first three diffusive
modes computed for N = 200 and �t = 1.10−4.

Table A1. Theoretical and numerical values of the decay coefficient of the
vector potential for different modes q (for q = 2, as the numerical solution
reaches the numerical accuracy after t = 0.6, see Fig. A1, the slope is
computed for the previous time steps, from t = 0 to t = 0.6).

√
p theo

√
p num

q = 0 1.57079633 1.57078058 ± 2.26 × 10−15

q = 1 4.71238898 4.71204979 ± 9.69 × 10−8

q = 2 7.85398163 7.93229119 ± 1.76 × 10−1

For the fundamental mode q = 0, the numerical solution gives a
decay coefficient very close to the theoretical expectation (

√
p =

1.5708). The accuracy of the numerical computation is also checked
for modes corresponding to q = 1 and q = 2 (cf. Table A1). Again,
the numerical solution is very close to the analytical solution, al-
though not as close as for the q = 0 mode.

We define the average cumulative error e

e = 1

T

∫ T

0

{
1

D
�
D

[Aref (z, t) − Anum(z, t)]2dD
} 1

2

dt, (A37)

with Aref(z, t) and Anum(z, t) the analytical and numerical solutions,
respectively; D is the domain and T the integration time. This error
is computed for different sets of �t and �z. Results are shown in
Fig. A2.

As expected, with decreasing �t and �z, the error tends to zero,
in an algebraic fashion. In either case, the slope is close to 2, as
expected for the Crank-Nicholson scheme in time and the centred
finite difference scheme we chose in space.

A2.2 Diffusive limit: analytical solution in the case of an
insulating upper boundary condition

In order to assess the numerical treatment of the insulating boundary
condition (see eqs A20 and A21), an analytical solution for the
diffusion equation is determined for a domain D of aspect ratio 2 :
1, with a insulating top boundary and a perfectly conducting bottom
boundary. The Fourier expansion of the diffusion equation for the
vector potential is[

∂

∂t
−

(
∂2

∂z2
− k2

p

)]
Âk(z, t) = 0, (A38)

with Rm = 1 and kp = πk/Lx ∀k. This equation can be solved for
each mode k.

As this is a simple diffusion problem, we apply a root finding
procedure. To satisfy the boundary conditions, we have to solve

tan (μL) = −μ

kp
, (A39)

with μ =
√

−(λ + k2
p) and λ + k2

p < 0, with λ < 0 a decay time

coefficient. Let λm denote the m-th eigenvalue for m = 1, 2, 3, ...
The solution of eq. (A38) is given by

Âk(z, t) =
∑

m

Emeλm t

[
μm

kp
cos (zμm) + sin (zμm)

]
, (A40)

with μm =
√

−(λm + k2
p). At t = 0, eq. (A40) becomes

Âk(z, t = 0) =
∑

m

Em

[
μm

kp
cos (zμm) + sin (zμm)

]
=

∑
m

Em Gm .

Multiplying with Gm′ and integrating over z gives:∫ 1

0
Âk(z, t = 0)Gm′ dz =

∫ 1

0

∑
m

Em Gm Gm′ dz.

The orthogonality of the eigenfunctions leads to Gm Gm′ = 0 if m
= m

′
and therefore∫ 1

0
Âk(z, t = 0)Gmdz = Em

∫ 1

0
G2

mdz,

which leads to

Em =

∫ 1

0
Âk(z, t = 0)Gmdz∫ 1

0
G2

mdz

.

Let us define the initial field as

Âk(z, t = 0) = μm

kp
cos (zμm) + sin (zμm),

and focus on the m = 1 case. Fig. A3 shows the evolution of the
numerical and theoretical solutions at the centre of the domain (xc

= 1, zc = 0.5), precisely for m = 1, taking a time step size �t =
10−3 and 200 points in the z direction. Both exhibit a decrease of
the amplitude, following the decay rate −λ1. The numerical value
of λ1, λnum = −15.992412 is close to the theoretical expectation
λtheo = −15.991856.

The components of the magnetic field are

Bx (x, z, t) = −∂ A(x, z, t)

∂z
, (A41)

Bz(x, z, t) = ∂ A(x, z, t)

∂x
. (A42)

In the Fourier domain the latter expands as

B̂zk(z, t) = −ikp Âk(z, t). (A43)

Using eq. (A40), this yields

B̂zk(z, t) = −ikp

∑
m

Emeλm t

[
μm

kp
cos (zμm) + sin (zμm)

]
. (A44)

To assess the imposition of the insulating top boundary condition,
an average cumulative error is computed using a diagnostic similar
to eq. (A37), restricted to the upper boundary for the z-component
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Figure A2. Convergence analysis for the fundamental mode q = 0. Left-hand panel: error as a function of the grid size �z. Right-hand panel: error as a
function of the time step �t. The slope of the straight line is the order of the numerical scheme in the z-direcion (left-hand panel) and in time (right-hand panel).

Figure A3. Decay time for the 0 mode computed for a model with N = 200
and �t = 1.10−3. A(xc, zc, t) is the value of the vector potential at the centre
of the layer, normalised by its initial value A(xc, zc, t = 0).

of the field

e = 1

T

∫ T

0

{
1

Lx

∫ x=Lx

x=0
[Bz,ref (x, z = 0, t)

−Bz,num(x, z = 0, t)]2dx

} 1
2

dt, (A45)

As previously, Fig. A4 shows that the numerical scheme is as
expected of order 2 in both space and time.

A2.3 Advective limit

In order to test the numerical approximation of the advection term
in the induction equation (eq. 2) and to check that the time evolution

is well-controlled in our modelling, we study the evolution of the
vector potential in a domain D of aspect ratio 2:1, periodic along the
x-direction, with perfectly conducting upper and lower boundaries.
A high magnetic Reynolds number Rm = 105 is chosen to mimic a
diffusionless setting. The initial magnetic field is a Gaussian bell of
the form

A(x, z, t = 0) = exp

[
− (x − x0)2 + (z − z0)2

2σ 2

]
, (A46)

and the imposed velocity field is

ux = −∂�

∂z
= −U0 x̂ (A47)

uz = ∂�

∂x
= 0,

which amounts to a translation in the x direction.
The initial state is represented in Fig. A5. The magnetic field takes

the form of a bell whose size is controlled by the amplitude of σ

in the Gaussian function. In order to meet the boundary conditions,
we require σ � Lz. Here we choose to impose σ = 0.1Lz, with x0

= L and z0 = 0.5L. Taking the periodicity of the problem along the
x-direction into account, with the chosen velocity field, the bell is
expected to get back to its initial position after one advection time
τ adv. Fig. A5 depicts an evolution in line with what is expected in
this configuration. To assess the order of the scheme, we define the
error as

e = max(|A − Aref |) (A48)

with A = A(x, z, t = 1) and Aref = A(x, z, t = 0). The error is
computed for different �z and �t. Results are given in Fig. A6. As
expected for the advection term, the scheme is of order 1 in time.
For very small �t the error increases as �t decreases. The imposed
Rm is finite (though very small) which means that, at a certain point,
diffusion eventually occurs, preventing the error to decrease with
smaller �t as expected.
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Figure A4. Convergence analysis for Bz in z = 0. Left-hand panel: error as a function of the grid size �z, right-hand panel: error as a function of the time step
�t. The α value gives the computed slope for each case.
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Figure A5. Evolution of a Gaussian-shaped vector potential. The upper, middle and lower panels shows vector potential at the initial time, after one half of an
advection time and one advection time, respectively. The colour scale represents the intensity of the magnetic field.
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Figure A6. Convergence analysis for the advective component of the in-
duction equation. The error is represented as a function of the time step �t.
Each straight line of slope α is obtained for each �z by least-squares fitting.
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