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S U M M A R Y
The existence of a stably stratified layer underneath the core–mantle boundary (CMB) has been
recently revived by corroborating evidences coming from seismic studies, mineral physics and
thermal evolution models. Such a layer could find its physical origination either in compo-
sitional stratification due to the accumulation of light elements at the top or the core or in
thermal stratification due to the heat flux becoming locally subadiabatic. The exact properties
of this stably stratified layer, namely its size Hs and the degree of its stratification characterized
by the Brunt–Väisälä frequency N, are however uncertain and highly debated. A stable layer
underneath the CMB can have crucial dynamical impacts on the geodynamo. Because of the
inhibition of the convective motions, a stable layer is expected to primarily act as a low-pass
filter on the magnetic field, smoothing out the rapidly varying and small-scale features by skin
effect. To investigate this effect more systematically, we compute 70 global geodynamo models
varying the size of the stably stratified layer from 0 to 300 km and its amplitude from N/� = 0
to N/� � 50, � being the rotation rate. We show that the penetration of the convective flow in
the stably stratified layer is controlled by the typical size of the convective eddies and by the
local variations of the ratio N/�. Using quantitative measures of the degree of morphological
semblance between the magnetic field obtained in numerical models and the geomagnetic field
at the CMB, we establish an upper bound for the stable layer thickness Hs < (N/�)−1Ls , Ls

being the horizontal size of the convective flow at the base of the stable layer. This defines a
strong geomagnetic constraint on the properties of a stably stratified layer beneath the CMB.
Unless unaccounted double-diffusive effects could drastically modify the dynamics of the
stable layer, our numerical geodynamo models hence favour no stable stratification atop the
core.

Key words: Composition and structure of the core; Core; Dynamo: theories and simulations;
Numerical modelling.

1 I N T RO D U C T I O N

The convective motions that develop in Earth’s liquid outer core are
considered as the primary source of power to sustain the geomag-
netic field via dynamo action. This results from the combination
of thermal and compositional buoyancy sources. The Earth secular
cooling and the latent heat release due to the solidification of iron
at the inner core boundary (ICB) provide the thermal heat sources,
while the expulsion of light elements from the iron-rich inner core
into the fluid outer core constitutes another source of buoyancy of
compositional origin (e.g. Lister & Buffett 1995).

The exact convective state of the Earth liquid core is however
uncertain. The usual assumption posits that the outer core is en-
tirely convective, well-mixed by the turbulent convective motions.
This hypothesis has been however questioned by seismic studies
that rather suggest the presence of inhomogeneous layers above
the ICB (e.g. Souriau & Poupinet 1991) or below the core–mantle

boundary (CMB) (e.g. Tanaka 2007; Helffrich & Kaneshima 2010;
Kaneshima 2018). Those layers could arise because of stable strat-
ification of thermal or compositional origin. The degree of stratifi-
cation can be quantified by the Brunt–Väisälä frequency expressed
by

N 2 = − g

ρ

∂ρ

∂r
− ρg2

KS
, (1)

where g is the gravity, KS the isentropic bulk modulus and ρ the
fluid density. The possible stable layer underneath the CMB has
been recently the focus of a large array of studies that span various
scientific fields encompassing seismic studies, mineral physics and
geomagnetic analyses (for a review, see Hirose et al. 2013).

On the seismology side, several studies, based on the analysis
of traveltimes of SmKS waves, report P-wave velocities between
0.1 and 1 per cent slower than PREM at the top of the core. They
attribute this deviation to an inhomogeneous stably stratified layer
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which would yield a mean density profile that would significantly
depart from the adiabat. The inferred thickness Hs of this layer has
evolved from Hs ∼ 100 km in earlier studies (e.g. Lay & Young
1990; Tanaka 2007) to larger values ranging from 300 to 450 km in
more recent analyses (Helffrich & Kaneshima 2010; Kaneshima &
Matsuzawa 2015; Tang et al. 2015; Kaneshima 2018). The evalu-
ation of the associated Brunt–Väisälä frequency is always delicate
since it directly depends on the chemical composition of the core
(e.g. Brodholt & Badro 2017) but tentative estimates yield N ∼
0.5−1 mHz (Helffrich & Kaneshima 2010). There is, however, no
consensus on the interpretation of these seismic observations, and
some seismic studies rather favour no stratification at the top of the
core (e.g. Alexandrakis & Eaton 2010; Irving et al. 2018). Irving
et al. (2018) for instance explain the deviations to PREM by a re-
fined equation of state that yields steeper density profiles close to
the CMB.

Stable stratification of thermal origin arises when the temperature
gradient becomes subadiabatic. This directly depends on the heat
flux at the CMB and on the outer core thermal conductivity. The
latter has been the subject of intense debates over the recent years.
Ab-initio first principle numerical calculations yield conductivity
values ranging from 100 to 150 W m−1 K−1 (de Koker et al. 2012;
Pozzo et al. 2012, 2013) significantly larger than previous estimate
of 30 W m−1 K−1 (Stacey & Loper 2007). On the other hand, high-
pressure experiments yield contradictory results: while some are
supportive of the ab initio findings (Gomi et al. 2013; Ohta et al.
2016), others rather favour the lower previously accepted conduc-
tivity value (Konôpková et al. 2016). A CMB heat flux of roughly
QCMB = 15 TW would be required to accommodate a fully convec-
tive core for the highest thermal conductivities. Although estimates
of the actual heat flux at the CMB are rather uncertain (e.g. Lay et al.
2008), QCMB = 15 TW certainly lies in the high range of commonly
accepted values. Stable thermal stratification below the CMB is
hence the favoured scenario (Pozzo et al. 2012; Gomi et al. 2013),
would the actual core conductivity lies in the current high-range
estimate.

Geomagnetic observations provide another source of constraints
on the physical properties of a stable layer underneath the CMB,
since this layer would damp radial motions and/or harbour waves for
which gravity would act as a restoring force. The geomagnetic sec-
ular variation (SV) is governed for the most part by fluid flow at the
top of the core. The presence of a stably stratified layer underneath
the CMB implies that the radial velocity is weaker than the hori-
zontal components. Using arguments based on a careful analysis of
the Navier–Stokes equations under the tangentially geostrophic and
Boussinesq approximations in a stratified layer, Jault & Le Mouël
(1991) showed that the corresponding flow is not strictly toroidal,
as its large-scale components can be partly poloidal. In short, even
if the radial flow is much smaller than the horizontal one, its ra-
dial gradient can not be neglected against the horizontal divergence
of the flow for the large scales of motion. In that sense, trying to
establish that the core is stratified considering purely toroidal core
surface flow for the analysis of the SV may be overkill, especially
when one is restricted to analyse the large scales of motion. Ac-
cordingly, Lesur et al. (2015) found that a large-scale core surface
flow permitting up- and downwellings was more adapted to account
for the secular variation during the magnetic satellite era than its
strictly toroidal equivalent precluding radial flow underneath the
CMB. The latter hypothesis led typically to a 15 per cent increase
in the root-mean-squared misfit to low-latitude satellite data com-
pared to the misfit obtained with the former. There are regions at
the core surface (for instance underneath the Indian Ocean), where

Table 1. Selected publications that propose values for the physical prop-
erties of the stably-stratified layer underneath the CMB using � = 7.29 ×
10−5 s−1.

Reference Name Hs (km) Nm/�

Braginsky (1993) B93 80 2
Buffett & Seagle (2010) BS11 70 55
Helffrich & Kaneshima (2010) HK10 300 7–14.7
Gubbins & Davies (2013) GD13 100 20.6
Buffett et al. (2016) BKH16 130–140 0.74–0.84
Irving et al. (2018) ICL18 0 � 0

some radial flow is mandatory to account for the data (e.g. Amit
2014; Baerenzung et al. 2016). That does not mean that there is no
stratified layer, it simply implies that SV data alone do not have a
real resolving power on the properties of a hypothetical stratified
layer at the top of core. In fact, in this study we shall stress that much
stronger constraints are obtained by studying the morphology of the
magnetic field at the top of the core. With regard to wave motion,
Braginsky (1993) hypothesized that the decadal variations of the
magnetic field could be related to the excitation of MAC waves in a
stable layer with Hs = 80 km and N ∼ �, � being Earth’s rotation
rate. This idea was more recently revisited by Buffett (2014) who
attributes the 60 yr period observed in the secular variation of the
axisymmetric dipole to MAC waves. Best-fitting linear models yield
Hs = 130 − 140 km and N = 0.74 − 0.84 � (Buffett et al. 2016),
a degree of stratification much weaker than the estimates coming
from seismic studies. In practice, the reference models are assumed
to be spherically symmetric and yield a function N(r). Table 1 lists
selected publications which provide estimates ofHs and Nm/�, with
Nm = max rN(r).

In this study, we aim to analyse the physical influence of a stable
layer below the CMB by means of 3-D global geodynamo mod-
els. Takehiro & Lister (2001) analysed the propagation of thermal
Rossby waves in presence of a stably stratified temperature gradient
in the limit of an inviscid fluid. They showed that the distance of pen-
etration Dp of a convective eddy of size Ls is inversely proportional
to the ratio of the Brunt–Väisälä and the rotation frequencies

Dp ∼
(

N

�

)−1

Ls . (2)

Hence, the larger the ratio N/�, the smaller the penetration dis-
tance. The above theoretical scaling can be seen as the result of two
competing linear physical effects: on the one-hand rapid-rotation
goes along with quasi bi-dimensional Taylor columns aligned with
the rotation axis, while on the other hand the stable stratification
promotes motions in horizontal planes perpendicular to the radial
stratification. Subsequent analyses by Takehiro (2015) have how-
ever questioned the validity of this hydrodynamic scaling relation
in presence of a magnetic field. Based on the penetration distance
of Alfvén waves, he instead suggests that the above hydrodynamic
scaling could be replaced by

Dp

d
∼ ωA

ωdiss
, (3)

where ωA is the typical frequency of the Alfvén waves, ωdiss is
a diffusion frequency resulting from the average between kine-
matic and magnetic diffusivities and d is the extent of the fluid
domain. However, the validity of the above linear scaling has only
been tested by Takehiro & Sasaki (2018b) in the context of non-
linear models of rotating convection in presence of an imposed
background magnetic field. Global 3-D numerical simulations of
stellar (Brun et al. 2017) and planetary (Dietrich & Wicht 2018)
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convection in spherical shells under the anelastic approximation
have shown little support for the hydrodynamic scaling (2). This
is likely because of the important role played by inertia in these
numerical computations where rotation has a moderate influence
on the convective flow (e.g. Zahn 1991; Hurlburt et al. 1994).
Geodynamo models that incorporate a stable layer are either lim-
ited to moderate degrees of stratification N/� < 5 (Olson et al.
2017; Yan & Stanley 2018; Christensen 2018) or to weakly su-
percritical convection (Nakagawa 2015), hence restricting further
tests of the relevance of the above scalings. The first goal of the
present study is precisely to estimate the penetration distance in
rapidly rotating geodynamo models to assess the validity of eqs (2)
and (3).

Numerical dynamo models have also shown that stable layers
can have a strong impact on the magnetic field. In the limit of
vanishing penetrative convection, a stably stratified region can be
roughly approximated by a stagnant conducting fluid layer. The
magnetic field parts which vary rapidly with time are then strongly
damped by the magnetic skin effect. In the context of modelling
Mercury’s dynamo, Christensen (2006) has for instance shown that
the magnetic field atop a stable layer becomes more dipolar and
more axisymmetric (see also Gubbins 2007; Christensen & Wicht
2008; Stanley & Mohammadi 2008; Takahashi et al. 2019). The
second objective of this study consists in quantifying the influence
of a stable layer on the magnetic field morphology at the CMB. To
assess the agreement between the numerical models fields and the
geomagnetic field at the CMB, we resort to using the four rating
parameters introduced by Christensen et al. (2010).

To meet these main objectives, we conduct a systematic parameter
study varying Hs from 0 to 290 km and Nm/� from 0 to more than
50 for different combinations of Ekman, Rayleigh and magnetic
Prandtl numbers. This work complements previous studies on the
same topic that have assumed weaker stratification degrees Nm/� <

5 (Olson et al. 2017; Yan & Stanley 2018; Christensen 2018).
The paper is organized as follows. The details of the numeri-

cal geodynamo model and the control parameters are introduced
in Section 2. Section 3 presents the numerical results, while Sec-
tion 4 describes the geophysical implications. We conclude with a
summary of our findings in Section 5.

2 DY NA M O M O D E L

2.1 Model equations and control parameters

We consider a spherical shell of inner radius ri and outer radius ro

filled with an incompressible conducting fluid of constant density
ρ which rotates at a constant frequency � about the z-axis. We
adopt a dimensionless formulation of the magneto-hydrodynamic
equations under the Boussinesq approximation. In the following, we
use the shell thickness d = ro − ri as the reference length scale and
the viscous diffusion time d2/ν as the reference time scale. Velocity
is expressed in units of ν/d and magnetic field in units of

√
ρμλ�,

where μ is the magnetic permeability, ν is the kinematic viscosity
and λ is the magnetic diffusivity. The temperature scale is defined
using the value of the gradient of the background temperature Tc at
the inner boundary |dTc/dr |ri

multiplied by the lengthscale d.
The dimensionless equations that control the time evolution of

the velocity u, the magnetic field B and the temperature perturbation
ϑ are then expressed by

∇ · u = 0 , ∇ · B = 0 , (4)

∂u

∂t
+ u · ∇u + 2

E
ez × u = −∇ p + Ra

Pr
g ϑ er

+ 1

E Pm
(∇ × B) × B + ∇2u , (5)

∂ B

∂t
= ∇ × (u × B) + 1

Pm
∇2 B , (6)

∂ϑ

∂t
+ u · ∇ϑ + ur

dTc

dr
= 1

Pr
∇2ϑ , (7)

where p is the pressure, er is the unit vector in the radial direction and
g = r/ro is the dimensionless gravity profile. The dimensionless set
of eqs (4)–(7) is governed by four dimensionless control parameters,
namely the Ekman number E, the Rayleigh number Ra, the Prandtl
number Pr and the magnetic Prandtl number Pm defined by

E = ν

�d2
, Ra = αgod4

νκ

∣∣∣∣dTc

dr

∣∣∣∣
ri

, Pr = ν

κ
, Pm = ν

λ
, (8)

where α is the thermal expansivity, go is the gravity at the outer
boundary and κ is the thermal diffusivity.

The location and the degree of stratification of the stable layer are
controlled by the radial variations of the gradient of the temperature
background dTc/dr. In regions where dTc/dr < 0, the flow is indeed
convectively unstable, while stably stratified regions correspond to
dTc/dr > 0. We adopt here a simplified parametrized background
temperature gradient to easily vary the location and the amplitude
of the stably stratified region.

To do so, one possible approach, introduced by Takehiro & Lis-
ter (2001), consists in assuming an homogeneous volumetric heat
source in the convectively unstable region and a constant positive
temperature gradient dTc/dr in the stably stratified outer layer. A
continuous profile is then obtained by introducing a smooth tanh
function centred at the transition radius rs. This approach has the dis-
advantage of introducing an additional parameter σ which controls
the stiffness of the transition between the two layers (e.g. Nakagawa
2011, 2015).

A possible way out to remove the ambiguity of defining a suitable
value for σ consists in rather assuming that the degree of stratifica-
tion grows linearly with radius across the stably stratified layer (e.g.
Rieutord 1995; Lister & Buffett 1998; Buffett 2014; Vidal & Scha-
effer 2015; Buffett et al. 2016). In this case, the maximum degree of
stratification is reached at the CMB and linearly decreases to zero at
the top of the convective part, in broad agreement with some seis-
mic studies (e.g. Helffrich & Kaneshima 2013). The temperature
background dTc/dr is now entirely specified by the transition radius
rs and the maximum degree of stratification �. In the following, we
adopt a piecewise function defined by

dTc

dr
=

⎧⎨
⎩

−1, r < rs,

�
r − rs

Hs
+ r − ro

Hs
, r ≥ rs,

(9)

where Hs = ro − rs corresponds to the thickness of the stable layer.
The control parameter � is related to the value of the Brunt–Väisälä
frequency at the CMB Nm via

Nm

�
=

√
Ra E2

Pr
� . (10)

The set of eqs (4)–(7) is supplemented by boundary conditions.
We assume here rigid mechanical boundaries at both the ICB and
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the CMB. We use mixed thermal boundary conditions with

ϑ |r=ri
= 0,

∂ϑ

∂r

∣∣∣∣
r=ro

= 0 .

This choice of thermal boundary conditions grossly reflects a fixed
solidification temperature at the inner core boundary and a fixed flux
extracted by the mantle at the CMB. The magnetic field is matched
to a potential field at the outer boundary, while the inner core is
treated as an electrically conducting rigid sphere which is free to
rotate about the z-axis.

2.2 Numerical method

The majority of the simulations computed in this study have been
carried out using the open-source code MagIC (Wicht 2002, freely
available at https://github.com/magic-sph/magic), while some com-
plementary simulations were integrated using the PARODY-JA code
(Dormy et al. 1998; Aubert et al. 2008).

The set of eqs (4–7) is solved in the spherical coordinates (r, θ ,
φ) by expanding the velocity and the magnetic fields into poloidal
and toroidal potentials

u = ∇ × (∇ × W er ) + ∇ × Z er ,

B = ∇ × (∇ × G er ) + ∇ × H er .

The unknowns W, Z, G, H, ϑ and p are expanded in spherical
harmonic functions up to degree �max in the angular directions. In
the radial direction, MagIC uses a Chebyshev collocation method
with Nr radial gridpoints rk defined by

rk = 1

2
(xk + ro + ri ), xk = cos

[
(k − 1)π

Nr − 1

]
,

for k ∈ [1, Nr], while PARODY-JA adopts a second-order finite differ-
ence scheme with Nr grid points. For both codes, the equations are
advanced in time using an implicit-explicit Crank-Nicolson second-
order Adams–Bashforth scheme, which treats the nonlinear terms
and the Coriolis force explicitly and the remaining terms implicitly.
The advection of the background temperature gradient ur dTc/dr
is handled implicitly when N > � to avoid severe time step lim-
itations that would otherwise occur because of the propagation of
gravity waves (for a comparison, see Brown et al. 2012). Glatzmaier
(1984), Tilgner & Busse (1997) or Christensen & Wicht (2015)
provide a more comprehensive description of the numerical method
and the spectral transforms involved in the computations. In both
MagIC and PARODY-JA, the spherical transforms are handled using
the open-source library SHTns (Schaeffer 2013, freely available at
https://bitbucket.org/nschaeff /shtns)

Standard Chebyshev collocation points such as the Gauss–
Lobatto nodal points xk feature a typical grid spacing that decays
with N−2

r close to the boundaries. In presence of a sizeable mag-
netic field, this imposes severe time step restrictions due to the
propagation of Alfvén waves in the vicinity of the boundaries (e.g.
Christensen et al. 1999). To alleviate this limitation, we adopt in
MagIC the mapping from Kosloff & Tal-Ezer (1993) defined by

yk = arcsin(αmap xk)

arcsin(αmap)
, k = 1, · · · , Nr

where 0 ≤ αmap < 1 is the mapping coefficient. This mapping
allows a more even redistribution of the radial grid points (see Boyd
2001, section 16.9). To maintain the spectral convergence of the
radial scheme, the mapping coefficient αmap has to be kept under a

threshold value defined by

αmap ≤
[

cosh

( | ln ε|
Nr − 1

)]−1

where ε is the machine precision. Comparison of simulations with
or without this mapping shows an increased average time-step size
by a factor of two.

2.3 Parameters choice and diagnostics

A systematic parameter study has been conducted varying the Ek-
man number between E = 3 × 10−4 and E = 10−6, the Rayleigh
number between Ra = 3 × 106 and Ra = 9 × 1010 and the mag-
netic Prandtl number within the range 0.5 < Pm < 5. For all the
numerical models, Pr is kept fixed to 1. The influence of the stable
layer has been studied by varying its degree of stratification within
the range 0 ≤ Nm/� < 52 and its thickness using the following val-
ues Hs ∈ [0, 53, 87, 155, 200, 290] km. Throughout the paper, the
conversion between dimensionless and dimensional lengthscales is
obtained by assuming d = 2260 km. To ensure a good statistical
convergence, the numerical models have been integrated for at least
half a magnetic diffusion time τ λ, except for the simulation with
E = 10−6 which has been integrated over 0.2 τλ. In total, 70 direct
numerical simulations detailed in Table A1 have been computed in
this study.

In the following, we use overbars to denote time averages and
angular brackets to express volume averages:

〈 f 〉 = 1

V

∫
V

f dV, f = 1

τ

∫ to+τ

to

f dt,

where V is the spherical shell volume, to is the starting time for
averaging and τ is the time-averaging period. The integration over
a spherical surface is expressed by

〈 f 〉s =
∫ π

0

∫ 2π

0
f (r, θ, φ) sin θdθdφ .

The typical flow amplitude is expressed by the magnetic Reynolds
number Rm defined by

Rm = 〈u2〉1/2 Pm , (11)

while the mean magnetic field amplitude is given by the Elsasser
number �

� = 〈B2〉 . (12)

To characterize the typical convective flow lengthscale, we introduce
the mean spherical harmonic degree at the radius r

�̄(r ) =
∑

� � u2
�(r )∑

� u2
�(r )

,

and the corresponding lengthscale

L(r ) = π r

�̄(r )
,

where u2
�(r ) corresponds to the kinetic energy content at the spher-

ical harmonic degree � and at the radius r (Christensen & Aubert
2006). In the following we will mainly focus on the convective flow
lengthscale at the transition between the stably-stratified outer layer
and the inner convective core, denoted by

Ls = π rs

�̄s

, �̄s = �̄(r = rs) . (13)
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The morphological agreement between the magnetic fields pro-
duced in the numerical models and the geomagnetic field is as-
sessed by four criteria introduced by Christensen et al. (2010).
This involves physical quantities defined using the spectral prop-
erties of the magnetic field at the CMB for spherical harmonic
degree and order lower than 8. The ratio of power between the
axial dipole and the non-dipolar contributions defines the param-
eter AD/NAD. The degree of equatorial symmetry of the CMB
field is measured by the parameter O/E, while the ratio of power
between the axisymmetric and the non-axisymmetric contributions
for the non-dipolar field is given by Z/NZ. Finally, the magnetic flux
concentration factor FCF is defined by the variance of the square
of the radial component of the magnetic field at the CMB. The
combination of the time-average of these four quantities allow to
estimate the degree of compliance χ 2 between the numerical model
field and the geomagnetic field (see Christensen et al. 2010, for the
details).

Table A1 summarizes the values of the main diagnostics for all
the simulations computed in this study.

3 R E S U LT S

3.1 Penetrative rotating convection

A stably stratified layer lying above a convective region does not
act as a simple rigid wall that would quench all convective motions.
In practice, the parcels of fluid which are moving outward in the
vicinity of the interface rather penetrate over some distance Dp into
the stably stratified layer, gradually loosing their momentum. An
easy and practical way to visualize this phenomenon (e.g. Rogers &
Glatzmaier 2005) resorts to looking at the radial profile of poloidal
kinetic energy averaged over time

E p = 1

2

∑
�,m

�(� + 1)

[
�(� + 1)

r 2
|W�m |2 +

∣∣∣∣dW�m

dr

∣∣∣∣
2
]

, (14)

where W�m is the poloidal potential at degree � and order m. Fig. 1(a)
shows the comparison of Ep for one fully convective model and for
five simulations with Hs = 200 km and an increasing degree of
stratification Nm/�. All models exhibit comparable profiles in most
of the convective core and only start to depart from each other
in the upper part of the convective region. In the stably stratified
outer layer, the poloidal energy content decreases with increasing
values of Nm/�. While the simulation with Nm/� = 0.26 is com-
parable to the fully convective model in this region, the case with
the strongest stratification Nm/� = 51.96 features an energy con-
tent roughly four orders of magnitude below its fully convective
counterpart.

The radial profiles of Ep can be further used to estimate the dis-
tance of penetration Dp either by measuring the point where Ep

drops below a given fraction of its maximum value (e.g. Rogers
& Glatzmaier 2005), or by measuring the e-folding distance of
Ep at the edge of the convective layer (e.g. Takehiro & Lister
2001). Both methods carry their own limitations: the former is
very sensitive to the threshold value when Ep shows a stiff decay at
the transition; while the latter can yield Dp larger than the actual
thickness of the stably-stratified layer (see Dietrich & Wicht 2018,
Fig. 10).

A complementary approach, which has proven to be insightful in
the context of Solar convection (e.g. Browning et al. 2004; Deng
& Xiong 2008; Brun et al. 2017), resorts to studying the radial
variations of the convective flux or of the buoyancy power (see

Takehiro & Sasaki 2018b) expressed by

P = Ra E

Pr
g 〈urϑ〉s . (15)

Fig. 1(b) shows the radial profiles of P for the same numerical
simulations as in Fig. 1(a). In the convective core, the eddies which
are hotter (colder) than their surroundings are moving outward (in-
ward), yielding a positive buoyancy powerP . But when a convective
parcel overshoots in the subadiabatic layer, the positive radial veloc-
ity becomes anticorrelated with the negative thermal fluctuations,
yielding P < 0 at the base of the stably stratified layer (e.g. Take-
hiro & Sasaki 2018b). As shown in the inset of Fig. 1(b), the radial
extent of the fluid region where P < 0 is a decreasing function
of Nm/�. Following Browning et al. (2004), the upper boundary
of the overshooting region can be defined by the radius at which
the buoyancy power attains 10 per cent of its minimum negative
value

P(rp) = 0.1 min(P) and rp > rmin, (16)

where rmin corresponds to the radius where the buoyancy power
reaches its minimum. This definition still involves an arbitrary
threshold value, but rp has been found by previous studies to be
fairly insensitive to this (e.g. Brun et al. 2011). The location of rp

using this definition are marked by vertical segments in Fig. 1(b).
We then define the penetration depth Dp by

Dp = rp − rs . (17)

The adopted definition of rp guarantees that the penetration depth
remains bounded by Hs , that is max(Dp) ≤ Hs .

We now examine howDp evolves with the degree of stratification
Nm/�. In the physical regime of rapidly rotating convection and in
absence of magnetic field, the linear stability analysis by Takehiro
& Lister (2001) suggest that the distance of penetration is inversely
proportional to the ratio of the Brunt–Väisälä and the rotation fre-
quencies (eq. 2). It is however not entirely clear whether this scaling
should still hold in presence of a magnetic field (Takehiro 2015).

Fig. 2(a) shows Dp as a function of (Nm/�)�̄s for all the nu-
merical simulations computed in this study. For each stable layer
thickness Hs , the evolution of Dp with (Nm/�)�̄s is comprised of
two parts: one nearly horizontal part where the degree of stratifica-
tion is weak enough such that Dp � Hs ; and a second branch for
(Nm/�)�̄s > 100 where Dp decreases with the degree of stratifica-
tion. However, a dependence to Hs is still visible in the decaying
branch. At a fixed value of (Nm/�)�̄s , the penetration distance can
indeed vary by a factor of roughly two (see also Dietrich & Wicht
2018). We attribute this remaining dependence to the local radial
variations of the Brunt–Väisälä frequency (eq. 9). Since the degree
of stratification almost linearly increases from neutral stability at
the edge of the convective layer to Nm/� at the CMB, a convective
eddy that penetrates deep in the stable layer does not feel the same
stratification as one that would hardly scratch into it. To account for
this effect, we introduce an effective stratification N /� defined by
the averaged Brunt–Väisälä frequency between the spherical shell
radii rs and rp

(N
�

)2

= RaE2

Pr

∫ r p

rs

g
dTc

dr
r 2dr∫ r p

rs

r 2dr
. (18)

Fig. 2(b) showsDp as a function of (N /�)�̄s . In contrast to Fig. 2(a),
the measured penetration distances Dp now collapse on one single
scaling behaviour. A best fit for the strongly stratified simulations
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(a) (b)

Figure 1. (a) Time-averaged poloidal kinetic energy (eq. 14) as a function of radius for numerical models with E = 3 × 10−5, Ra = 3 × 108, Pm = 2.5, rs =
1.45 (Hs = 200 km) and different values of Nm/�. The vertical dashed line corresponds to r = rs. (b) Time-averaged buoyancy power P (eq. 15) as a function
of radius. The vertical dashed line corresponds to r = rs, while the horizontal dashed line corresponds to the neutral buoyancy line P = 0. The zoomed-in inset
highlights the radial profiles of P in the stably stratified layer. The small coloured vertical segments mark the extent of the convective penetration rp defined in
eq. (16).

(a) (b)

Figure 2. Distance of penetration of the convective flow Dp (eq. 17) as a function of (Nm/�) �̄s (left-hand panel) and as a function of (N /�) �̄s (right-hand
panel). The colour of the symbols correspond to the thickness of the stratified layer Hs , while the shape correspond to different (E, Ra) combination of
parameters listed in Table A1. In each panel, the coloured dashed lines correspond to the maximum extent of the penetration, that is Dp = Hs . The solid black
in panel (b) line corresponds to a best fit for the models with (N /�) �̄s > 80.

with (N /�) �̄s > 80 yield

Dp = (3.19 ± 0.67)

(N
�

�̄s

)−1.00±0.04

(19)

in excellent agreement with the theoretical scaling (2) from Takehiro
& Lister (2001).

Although this scaling has been theoretically derived in absence
of magnetic field, the penetration distance of convective eddies
in dynamo models is found to still only depend on the ratio of
the local Brunt–Väisälä frequency to the rotation rate and on the
typical horizontal size of the convective flow at the transition ra-
dius. This implies that at a given stratification degree, small scale
eddies will penetrate over a shorter distance than the large ones.
To illustrate this physical phenomenon, Fig. 3 shows snapshots

of the radial component of the convective flow ur for four nu-
merical simulations with comparable Nm/� but decreasing Ekman
numbers from E = 3 × 10−4 (a) to E = 10−6 (d). The typi-
cal convective flow lengthscale in the upper part of the convec-
tive region decreases with the Ekman number and the penetration
distance decreases accordingly. For the two cases with the low-
est Ekman number, we observe a clear separation between larger
flow lengthscales in the bulk of the convective core and smaller
scale features at rs. To quantify this scale separation, we thus intro-
duce another lengthscale measure deeper in the convective region,
denoted by

Lb = π rb

�̄b

, �̄b = �̄(r = rb) , (20)

where rb = ri + 0.25.
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(a) (b)

(c) (d)

Figure 3. 3-D renderings of the radial velocity ur for four dynamo models with the same stably stratified layer thickness (rs = 1.45, Hs = 200 km) and degree
of stratification Nm/� � 0.94. For each panel, the solid lines delineates the radius of the stratified layer r = rs, the green arrow highlights the rotation axis and
the inner spherical surface corresponds to r = 0.39 ro.

Fig. 4(a) shows Ls and Lb as a function of the Ekman number
for all the numerical models that feature a stably-stratified layer
(i.e. � > 0). At the transition radius rs, the convective flow length-
scale is found to follow a Ls ∼ E1/3 law (solid line). This scaling
reflects the local onset of convection beneath rs where the avail-
able power content drops and yields weaker local convective su-
percriticality (see Fig. 1). The situation differs in the bulk of the
convective core: while the flow lengthscale at Lb is almost iden-
tical to Ls when E ≥ 3 × 10−5, the two lengthscales gradually
depart from each other at lower Ekman numbers with Lb > Ls .
This confirms the scale separation observed in the numerical simu-
lations with the lowest Ekman numbers shown in the lower panels of
Fig. 3.

The deviation from the viscous scaling Lb ∼ E1/3 (e.g. King
& Buffett 2013; Gastine et al. 2016) indicates that the underlying
force balance which controls the convective flow is not dominated
by viscous effects. Following Aubert et al. (2017) and Schwaiger
et al. (2019), we analyse this force balance by decomposing
each term that enter the Navier–Stokes equation (5) into spherical
harmonics

F2
rms = 1

V

∫ ro−λ

ri +λ

∑
�,m

F2
�mr 2dr =

∑
�

F2
� , (21)

where λ is the viscous boundary layer thickness. Fig. 4(b) illus-
trates the normalized force balance spectra in the fluid bulk for a

selected numerical simulation with E = 3 × 10−6, Ra = 1010, rs =
1.45 (i.e. Hs = 200 km) and Nm/� = 0.95 using λ = 10−2d. The
leading order consists of a quasi-geostrophic (QG) force balance
between Coriolis and pressure gradient. The ageostrophic Corio-
lis contribution which accounts for the difference between Coriolis
and pressure forces, is then equilibrated by buoyancy at large scales
and by Lorentz force at small scales. Inertia and viscosity lay one
to two orders of magnitude below this second-order force balance.
This force hierarchy forms the so-called QG-MAC balance intro-
duced by Davidson (2013). This second-order force balance has
been theoretically analysed in the plane layer geometry by Calkins
(2018) using a multiscale expansion and was reported in direct nu-
merical simulations in spherical geometry (e.g. Yadav et al. 2016;
Schaeffer et al. 2017; Aubert et al. 2017). The force balance ob-
tained in the numerical models with a 200-km-thick stably stratified
layer atop the core is thus structurally akin to the force balance
spectra of the fully convective simulations (e.g. Schwaiger et al.
2019).

3.2 Skin-effect and magnetic field smoothing

We now turn to examining the effect of the stable layer on the
magnetic field structure. If one crudely assumes that the stable
region is devoid of any fluid motion, it can be approximated by a
layer of thickness Hs filled with an electrically conducting stagnant
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1440 T. Gastine, J. Aubert and A. Fournier

(a) (b)

Figure 4. (a) Time-averaged convective flow lengthscale at rs (i.e. Ls ) and at rb (i.e. Lb) as a function of the Ekman number E for all the numerical models
with a stratified layer (i.e. � > 0). (b) Force balance spectra in the entire fluid bulk (eq. 21) normalized with respect to the maximum of the pressure force for
a numerical simulation with E = 3 × 10−6, Ra = 1010, Pm = 0.8, rs = 1.45 (i.e. Hs = 200 km) and Nm/� = 0.95. The filled symbols in panel (a) correspond
to the model described in panel (b).

fluid. This then acts as a skin layer that will attenuate the magnetic
field amplitude by a factor exp(−Hs/δ), where δ is the magnetic
skin depth defined by

δ ∼
√

τ�

Pm
,

where curvature effects due to spherical geometry have been ne-
glected. In the above expression, τ � corresponds to the typical
turnover time τ� ∼ Ls/Re, where Re = Rm/Pm is the fluid Reynolds
number. This yields

δ ∼ (Rm �̄s)−1/2 . (22)

The factor of attenuation of the magnetic energy due to the skin
effect can hence be approximated by

ln

[M�(ro)

M�(rs)

]
∼ −Hs(Rm �̄s)1/2 , (23)

where M�(r ) corresponds to the magnetic energy at the spherical
harmonic degree � and at the radius r. From a practical stand-point,
it is more convenient to assess the impact of a stable layer by a direct
comparison of the magnetic energy at the CMB between a stably
stratified case and its fully convective counterpart

Q� = Mstrat
� (ro)

MFC
� (ro)

, (24)

where the superscripts ‘FC’ and ‘strat’ stand for the fully con-
vective and the stably stratified models, respectively. To relate the
above expression to the skin effect (23), we make the two following
hypotheses:

(i)We assume that the magnetic energy at the transition radius rs is
independent of the presence of a stable layer, that is Mstrat

� (rs) �
MFC

� (rs),
(ii)We assume that the magnetic energy of the fully convective
model at rs is comparable to the energy at the CMB, that is
MFC

� (rs) � MFC
� (ro).

The validity of those hypotheses will be further assessed below.
Combining eq. (23) with the two previous assumptions yields the
following scaling for the damping factor

QSK
� = exp

[−αSKHs(Rm �̄s)1/2
]

, (25)

where αSK is a proportionality coefficient that depends on the ge-
ometry. The above scaling should be understood as the maximum
damping that a stable layer could yield in the idealized limit of van-
ishing fluid motions there, that is sup(Q�) = QSK

� when Nm/� �
1.

Fig. 5 shows the time-averaged magnetic energy spectra at the
CMB (panel a) and the damping factor Q� (panel b) for one fully
convective simulation and five numerical models with an increasing
degree of stratification Nm/� (same models as in Fig. 1). The mag-
netic energy content decreases when increasing Nm/�. This energy
drop is more pronounced for the smaller scales of the magnetic
field. A saturation is observed for the models with Nm/� > 10
for which the spectra become comparable. The damping factor Q�

drops accordingly when increasing Nm/� to tend towards the limit
QSK

� , obtained here using the value of Rm of the fully convective
simulation and αSK = 0.5 (dashed line in Fig. 5b). This implies
that for large degree of stratification Nm/� � 1, a stable layer has
a similar dynamic signature on the magnetic field as a passive con-
ductor of the same thickness. This is not the case for intermediate
stratification Nm/� � 1 for which convective motions can penetrate
into the stable layer over some distance Dp .

To further illustrate the magnetic field damping due to the pres-
ence of a stable layer, Fig. 6 shows snapshots of the radial com-
ponent of the magnetic field at the radius rs and at the CMB, for
one fully convective model and three simulations with increasing
Nm/�. At the transition radius rs, the magnetic field structures of
the four cases are relatively similar, featuring a dominant dipo-
lar structure accompanied by intense localized flux concentration.
The first hypothesis involved in the derivation of eq. (25) is hence
roughly satisfied, though a small decay of magnetic field amplitude
with Nm/� is visible. This can be likely attributed to the decreasing
available buoyancy power in the upper regions of the convective
part (see Fig. 1a). For the fully convective simulation, the magnetic
field structure remains very similar at the CMB, validating the sec-
ond assumption used when deriving eq. (25). In contrast, the stably
stratified layer reduces the magnetic field amplitude and acts as a
low-pass filter on the magnetic field structures gradually filtering
out the small-scale features when Nm/� increases. While inverse
polarity patches are for instance still discernible on the Nm/� =
1.64 case (Fig. 6b), they disappear completely in the most stratified
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(b)(a)

Figure 5. (a) Time-averaged magnetic energy at the CMB M�(ro) as a function of the spherical harmonic degree � for numerical models with E = 3 × 10−5,
Ra = 3 × 108, Pm = 2.5, rs = 1.45 (i.e. Hs = 200 km) and increasing values of Nm/� (same models as in Fig. 1). (b) Damping of the magnetic energy at the
CMB relative to the fully convective case Q� (eq. 24) as a function of �. The dashed grey line corresponds to the scaling Eq. (25) using αSK = 0.5 and the
time-averaged magnetic Reynolds number of the fully convective case, that is Rm = 536.

(d)(c)

(b)(a)

Figure 6. 3-D renderings of the radial component of the magnetic field Br for four numerical models with the same control parameters E = 3 × 10−5, Ra = 3
× 108, Pm = 2.5 and increasing degree of stratification Nm/�. The stratified cases have rs = 1.45 (i.e. Hs = 200 km). The inner spheres correspond to r = rs

and the outer ones to the CMB. The magnetic field amplitude is expressed in units of the square root of the Elsasser number.

case with Nm/� = 51.2 (Fig. 6d). We can hence anticipate that large
degree of stratification will yield smooth CMB magnetic fields in-
compatible with the observed geomagnetic field (see Christensen
2018).

3.3 Earth-likeness

For a more quantitative assessment, we now compare the morphol-
ogy of the magnetic fields produced in the numerical models to the
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1442 T. Gastine, J. Aubert and A. Fournier

geomagnetic field at the CMB in terms of the four criteria intro-
duced by Christensen et al. (2010). As shown in Fig. 6, the impact
of the stable layer on the magnetic field morphology directly de-
pends on the ratio Nm/� and hence on the distance of penetration
Dp (Fig. 2). We now define a dynamic effective thickness Heff of
the stable layer, which removes the distance of penetration of the
convective eddies Dp from the actual static thickness Hs , such
that

Heff = Hs − Dp = ro − rp . (26)

We introduce this quantity to better capture the effective length-
scale that controls the magnetic field smoothing via the skin effect.
Fig. 7 shows the time-averages and the standard deviations of the
four rating parameters AD/NAD, O/E, Z/NZ and FCF (Christensen
et al. 2010) as a function of Heff. The series of numerical models
with E = 3 × 10−4 and Ra = 3 × 106 have been excluded from
this plot since the fully convective simulation features a weakly
dipolar magnetic field and χ 2 > 8. The relative axial dipole power
AD/NAD (Fig. 7a) is the criterion that shows the strongest depen-
dence to the presence of a stable layer. The vast majority of the
models with a thin or a vanishing stable layer (i.e. Heff � 0 km)
indeed show AD/NAD values that lie within the 1σ tolerance level
of the nominal Earth’s value. In contrast, the numerical models with
Heff > 10 km yield too dipolar magnetic field with AD/NAD ratios
that grow well above the favoured value. In addition to the increase
of AD/NAD, the stable stratification also makes the CMB mag-
netic field more antisymmetric with respect to the equator (Fig. 7b)
and more axisymmetric (Fig. 7c), yielding O/E and Z/NZ ratios
larger than the expected Earth’s value. The flux concentration FCF
shows a slightly different behaviour since weakly stratified or fully
convective models sometimes present ratios slightly larger than
the nominal value, though they mostly lie within the 1σ tolerance
range.

Overall the observed tendency is very similar for the four rating
parameters: an increase ofHeff goes along with a gradual smoothing
of the CMB magnetic field which becomes more and more dipo-
lar and axisymmetric. This analysis also demonstrates that Heff is
the key physical parameter that governs the Earth-likeness of the
magnetic field independently of the variations of E, Pm and Ra.
The optimal numerical models which show the best agreement with
the Earth CMB field in terms of χ 2 values correspond to a vanish-
ing effective thickness of the stable layer. This implies that to get
a reasonable agreement with the geomagnetic field, the numerical
models require either no stratified layer, or a penetration distance
which is sufficient to span the entire static thickness of the layer.
This yields the following upper bound for the thickness of the stable
layer

Hs ≤ Dp . (27)

Using the scaling for the penetration distance (19), one gets

Hs ≤ 3.2

(N
�

�̄s

)−1

, (28)

in dimensionless units. The above scaling relation could be further
simplified by replacing �̄s by the onset scaling obtained in Fig. 4(a).
Given the uncertainties when extrapolating numerical geodynamo
models to Earth core conditions, we rather keep �̄s for further dis-
cussion of the geophysical implications of eq. (28).

To further test the validity of this upper bound, we focus on
the 36 numerical simulations with E = 3 × 10−5 and Ra = 3
× 108 for which the parameter space (Hs , Nm/�) has been more
densely sampled. Fig. 8 shows the morphological semblance χ 2

in the (Hs, Nm/�) parameter space for this subset of simulations
at fixed Ekman and Rayleigh numbers. For a practical determina-
tion of the upper bound given in eq. (28) and shown as a dashed
line in Fig. 8, we use �̄s = 35 (see Table A1) and make the as-
sumption that N � Nm . The analysis of the distance of penetration
(Fig. 2a) has already shown that this is a rather bold hypothesis that
in practice yields some dispersion of the data around the theoretical
scaling (2). This approximation is however mandatory for a com-
parison of the numerical models with the geophysical estimates.
Indeed, while several studies suggest possible values of the max-
imum of the Brunt–Väisälä frequency Nm for the Earth core (see
Table 1), N cannot be determined without the knowledge of Dp ,
making its geophysical estimate rather uncertain. Despite this ap-
proximation, the scaling relation (28) is found to correctly capture
the transition between the numerical models with a good morpho-
logical agreement with the geomagnetic field (blue symbols with
χ 2 < 4) from those which are non-compliant due their too dipolar
structure.

4 G E O P H Y S I C A L I M P L I C AT I O N S

The condition (27) puts a strong geophysical constraint on the ac-
ceptable degree of stratification. For a comparison with the geo-
physical estimates of the physical properties of a stable layer at the
top of the core coming from both seismic and magnetic studies,
we report in Fig. 8 the values of Hs and Nm/� coming from the
studies listed in Table 1. Due to the magnetic field smoothing by
skin effect, we fail to produce any Earth-like dynamo model with a
stratification degree of Nm/� ≥ 10 even for thicknesses as low as
Hs = 50 km. Hence, a stable layer with Hs ≥ 100 km and a strat-
ification degree of Nm/� � 10 suggested by some seismic studies
(Helffrich & Kaneshima 2010; Tang et al. 2015; Kaneshima 2018)
or of Nm/� > 20 in models with a stable layer of compositional
origin (Buffett & Seagle 2010; Gubbins & Davies 2013) seem hard
to reconcile with our numerical geodynamo models. The condition
(27) can also be confronted to the estimates of outer core stratifi-
cation that come from physical interpretation of the geomagnetic
secular variation (Braginsky 1993; Buffett et al. 2016). In agree-
ment with the previous findings by Olson et al. (2017), Yan &
Stanley (2018) and Christensen (2018), the numerical simulations
with E = 3 × 10−5 yield an Earth-like magnetic field morphology
when Hs ∼ 100 km and Nm ∼ �. However, since the penetra-
tion distance directly depends on the horizontal lengthscale of the
convective flow, the threshold obtained in Fig. 8 using numerical
simulations with E = 3 × 10−5 shall become more stringent at
lower Ekman numbers when the convective flow lengthscale at rs is
smaller.

To document this property, Fig. 9 shows the evolution of χ 2 for
three sets of numerical simulations with Nm/� ∈ [0, 0.47, 0.95]
and Hs ∈ [0, 155, 200] km for Ekman numbers decreasing from E
= 3 × 10−5 to E = 10−6. The numerical models which are fully
convecting remain in excellent morphological agreement with the
geomagnetic field (i.e. χ 2 < 2) for the three Ekman numbers consid-
ered here. A closer inspection of the four rating parameters however
reveals a slow tendency to get more and more dipole-dominated
magnetic fields when E decreases. This increasing AD/NAD ratio
is compensated by the evolution of FCF which is getting closer to
the expected Earth value at lower E. The numerical models with
a stably stratified layer with a weak stratification Nm/� = 0.47 or
Nm/� = 0.95 show a stronger dependence to the Ekman number:
while the E = 3 × 10−5 cases still feature Earth-like magnetic
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(a) (b)

(c) (d)

Figure 7. (a) AD/NAD as a function of the effective thickness of the stably stratified layer Heff = ro − rp . (b) O/E as a function of Heff. (c) Z/NZ as a function
of Heff. (d) FCF as a function of Heff. The colour of the symbols scale with the value of the semblance χ2, while the shape of the symbols change with the
combination of parameters (E, Ra) following the symbols already used in Fig. 2. The errorbars correspond to one standard deviation about the mean values.
The dashed horizontal lines show the nominal values for the geomagnetic field, while the blue shaded area correspond to one standard deviation in logarithmic
scale (Christensen et al. 2010). Given their poor Earth-likeness, the simulations with E ≥ 3 × 10−4 have been excluded from these plots.

Figure 8. Morphological semblance between the numerical magnetic fields
and the geomagnetic field at the CMB quantified by the measure of χ2 in the
(Hs , Nm/�) parameter space for all the numerical simulations with fixed
Ekman and Rayleigh numbers (E = 3 × 10−5 and Ra = 3 × 108). The size
of the symbols is inversely proportional to the value of χ2. The dashed blue
line corresponds to the bound (28) derived using �̄s = 35 (see Table A1)
and assuming that N � Nm . The blue shaded region corresponds to the
condition (27). The different studies listed in Table 1 are marked by grey
squares.

Figure 9. Compliance of field morphology quantified by its χ2 as a func-
tion of the Ekman number E for three fully convective models (circles),
three numerical models with Nm/� = 0.47 and Hs = 155 km (squares)
and four numerical models with Nm/� = 0.95 and Hs = 200 km (trian-
gle)s. The grey shaded regions mark the boundaries of different levels of
agreement with the Earth’s magnetic field introduced by Christensen et al.
(2010).
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fields, the compliance χ 2 quickly degrades at lower E, yielding too
dipolar and too axisymmetric magnetic fields incompatible with
the geomagnetic observations. This is directly related to the de-
crease of the convective flow lengthscale which is found to follow
�̄s ∼ E−1/3 atop the convective core (Fig. 4a). This goes along
with smaller penetration distance Dp and hence larger Heff which
then yield an increased filtering of the CMB field by skin effect.
For the lowest Ekman number considered here, we hence fail to
produce an Earth-like magnetic field at a parameter combination
(Hs, Nm/�) very close to the best-fitting models by Buffett et al.
(2016).

Dynamo models carry their own limitations and we can hence
wonder whether there would be some leeway to viable (from a
geomagnetic standpoint) stratification at Earth’s core conditions.
Here we envision three different scenarios to alleviate the severe
limitation (28):

Larger distance of penetration: A way to maintain Heff = 0 km at
a given value of Hs would require an increase of the penetration
distance. Based on the penetration distance of Alfvén waves, Take-
hiro (2015) for instance suggests that the hydrodynamic scaling (2)
should be replaced by

Dp ∼ Lu

�̄2
s

, Lu = 2

1 + Pm

(
� Pm

E

)1/2

,

when magnetic effects become important, Lu being the Lundquist
number (e.g. Schaeffer et al. 2012). At Earth’s core conditions, this
might yield much larger penetration distances than (2) (see Take-
hiro & Sasaki 2018a). Though a transition to the above scaling at
a parameter range not covered in this study cannot be ruled out,
our simulations do not show any correlation between the penetra-
tion distance Dp and the ratio Lu/�̄2

s . Furthermore, Takehiro (2015)
specifically studied Alfvén wave penetration, which is rather differ-
ent from the problem of penetrating convection in dynamo models.
In the latter, the hydromagnetic waves indeed exist at a signifi-
cantly smaller level than the background magnetic field which is
rather shaped by the slow convective motions (e.g. Hori et al. 2015;
Aubert 2018). In this context, we do not anticipate that Alvén wave
dynamics can have a significant impact on the attenuation properties
of the background magnetic field.
Larger convective flow lengthscale at rs: The penetration distance
directly depends on the horizontal lengthscale of the convective flow
at the base of the stable layer Ls . Given that the local convective
supercriticality drops atop the convective core, the flow lengthscale
at rs follows a local onset scaling of the form Ls ∼ E1/3, or equiva-
lently �̄s ∼ E−1/3. At Earth’s core conditions with E = 10−15 and Nm

∼ �, the penetration distance would be of the order 100 m, would
this onset scaling still hold. Given the large diffusivities of the 3-D
calculations, a transition to a magnetic control of �̄s cannot be ruled
out. The theoretical prediction by Davidson (2013) for a QG-MAC
balance would then yield �̄s ∼ Ro−1/4 and hence Dp ∼ 400 km
when using Ro = ReE ∼ 10−5 and Nm ∼ �. However, while there
is supporting evidence that the convective lengthscale in the bulk
of the convective core departs from viscous control (see Fig. 4a and
Aubert et al. 2017; Schwaiger et al. 2019), our simulations do not
suggest that the interface flow at rs should follow the same scaling.
Additional physical forcings in the stable layer: The last avenue to
alleviate the criterion (28) relies on additional forcings to drive flows
in the stably stratified layer. In contrast to the assumptions made in
this study, the CMB heat flow is expected to be strongly hetero-
geneous and hence drive flows by thermal winds. Using dynamo
models with a stable layer with Nm/� ≤ 4 and an heterogeneous

heat flux pattern, Christensen (2018) has derived a scaling relation
for the flow driven by the CMB thermal heterogeneities. At Earth’s
core conditions, this flow is expected to be very shallow limited
to the first few hundred meters below the CMB and might hence
have a moderate impact on the magnetic field morphology, would
the extrapolation from geodynamo simulations to Earth condition
holds. Because of the strong core–mantle heat flux heterogeneities,
the stratification might not be global but rather confined to localized
regions as suggested by the hydrodynamic numerical simulations by
Mound et al. (2019). Regional stratification could however yield a
heterogeneous magnetic field at the CMB with a weaker field with a
smoother morphology in the stratified area. The viability of this sce-
nario remains hence to be assessed by means of global geodynamo
models. Other physical forcings not accounted for in our models,
such as double-diffusive effects, could possibly impact the dynam-
ics of the outer layer. A promising physical configuration arises
when thermal stratification is stable while compositional stratifica-
tion is unstable, a configuration akin to fingering convection that
develops in the ocean when warm and salty water lies above cold
and fresh water (e.g. Radko 2013). Numerical models by Manglik
et al. (2010) and Takahashi et al. (2019), carried out in the context
of modelling Mercury’s dynamo, indicate that fingering convection
enhances the convective penetration in the thermally stratified layer
when Nm ∼ � (see also Monville et al. 2019; Silva et al. 2019;
Bouffard et al. 2019).

5 C O N C LU S I O N

In this study, we have examined the physical effect of a stably
stratified layer underneath the CMB by means of 3-D global geo-
dynamo simulations in spherical geometry. We have introduced a
parametrized temperature background to independently vary the
thickness Hs and the degree of stratification of the stable layer,
quantified here by the ratio of the maximum Brunt–Väisälä fre-
quency over the rotation rate Nm/�. We have conducted a system-
atic survey by varying Hs from 0 to 290 km and Nm/� from 0
to more than 50 for several combinations of Ekman and Rayleigh
numbers. This parameter range encompasses the possible values
of the physical properties of a stable layer underneath the CMB
that come either from seismic or from geomagnetic studies (see
Table 1). This work complements previous analyses that were ei-
ther limited to moderate stratification degree Nm/� < 5 (Olson
et al. 2017; Yan & Stanley 2018; Christensen 2018) or to mod-
erate control parameters like large Ekman numbers (E = 3 ×
10−4, Nakagawa 2011) or dynamo action close to onset (Nakagawa
2015).

We have first studied the penetration of the convective motions in
the stably stratified layer. When using the radial profile of the buoy-
ancy power to define the penetration distance Dp , we have shown
that Dp ∼ (N �̄s/�)−1 where N incorporates the local variation
of the Brunt–Väisälä frequency and �̄s relates to the typical size
of the convective eddies Ls at the top of the convective core via
�̄s = πrs/Ls . This scaling is in perfect agreement with the theoret-
ical prediction by Takehiro & Lister (2001) which has been derived
in absence of magnetic effects. Because of the drop of the convec-
tive supercriticality at the top of the convective core, the convective
lengthscale at the transition radius rs has been found to follow an
onset scaling, that is Ls ∼ E1/3. Our results hence indicate that
the magnetic field has little influence on the penetration distance,
in contrast with the theoretical expectations by Takehiro (2015).
To explain this somewhat surprising result, we note that when the
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magnetic field is self-sustained -as opposed to the imposed field
considered by Takehiro & Sasaki (2018a)-, hydromagnetic waves
have a much weaker amplitude than the background magnetic field
which is rather shaped by the slow convective motions (e.g. Hori
et al. 2015). We hence anticipate that the dynamics of the Alvén
waves at rs have little impact on the distance of penetration of the
convective features.

Stable stratification has a strong impact on the magnetic field
morphology at the CMB. Because of vanishing convective flows
in the stable layer, the small-scale features of the magnetic field
are smoothed out by skin effect (e.g. Christensen 2006; Gubbins
2007). Using the rating parameters defined by Christensen et al.
(2010) to assess the Earth likeness of the numerical models fields,
we have shown that the physically relevant lengthscale is the ef-
fective thickness of the stable layer Heff, which results from the
difference between the actual static thickness Hs and the penetra-
tion distance Dp . Only models with a vanishing Heff yield a good
agreement with the Earth CMB field. This implies that Earth-like
dynamo models either harbour a fully convecting core or have a
penetration distance which is sufficient to cross the entire stable
layer. The combination of the scaling obtained for the penetra-
tion distance Dp and the condition Heff = 0 km yields the follow-
ing upper bound for the thickness of the stable layer underneath
the CMB

Hs ≤
(

Nm

�

)−1

Ls .

This condition puts severe limitations on the acceptable degree of
stratification. Large degrees of Nm/� ∼ 10 suggested by several
seismic studies (e.g. Helffrich & Kaneshima 2010) yield magnetic
field morphology that are incompatible with the geomagnetic field
observations at the CMB even for a layer as small as Hs = 50 km.
In agreement with previous findings by Olson et al. (2017) and
Christensen (2018), we have shown that geodynamo models with
a smaller stratification Nm ∼ � and Hs ∼ 100 km sustain a mag-
netic field morphology that is compatible with the geomagnetic
observations, as long as the Ekman number is large enough, that
is E ≥ 3 × 10−5. Since the convective lengthscale at the top of
the convective core decreases with the Ekman number, follow-
ing the onset scaling Ls ∼ E1/3, the penetration distance decreases
and the Earth-likeness of the numerical models fields degrades. At
Earth’s core conditions with E = 10−15 and Nm ∼ �, the pen-
etration distance could be reduced to hundreds of metre, yield-
ing a strong magnetic skin effect incompatible with geomagnetic
observations.

Consequently, our suite of numerical models, given the type and
magnitude of physical processes governing the dynamics of the
stably stratified layer that they incorporate, favour the absence of
stable stratification atop Earth’s core.
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for liquid silicon-oxygen-iron mixtures at Earth’s core conditions, Phys.
Rev. B, 87(1), 014110.

Radko, T., 2013. Double-Diffusive Convection, Cambridge Univ. Press.
Rieutord, M., 1995. Inertial modes in the liquid core of the Earth, Phys.

Earth planet. Inter., 91, 41–46.
Rogers, T.M. & Glatzmaier, G.A., 2005. Penetrative convection within the

anelastic approximation, Astrophys. J., 620, 432–441.
Schaeffer, N., 2013. Efficient spherical harmonic transforms aimed at pseu-

dospectral numerical simulations, Geochem., Geophys., Geosyst., 14,
751–758.

Schaeffer, N., Jault, D., Cardin, P. & Drouard, M., 2012. On the reflection of
Alfvén waves and its implication for Earth’s core modelling, Geophys. J.
Int., 191(2), 508–516.

Schaeffer, N., Jault, D., Nataf, H.-C. & Fournier, A., 2017. Turbulent geody-
namo simulations: a leap towards Earth’s core, Geophys. J. Int., 211(1),
1–29.

Schwaiger, T., Gastine, T. & Aubert, J., 2019. Force balance in numerical
geodynamo simulations: a systematic study, Geophys. J. Int., 219, S101–
S114.

Silva, L., Mather, J.F. & Simitev, R.D., 2019. The onset of thermo-
compositional convection in rotating spherical shells, Geophys. Astro-
phys. Fluid Dyn., 113(4), 377–404.

Souriau, A. & Poupinet, G., 1991. The velocity profile at the base of the
liquid core from PKP(BC+Cdiff) data: an argument in favour of radial
inhomogeneity, Geophys. Res. Lett., 18, 2023–2026.

Stacey, F.D. & Loper, D.E., 2007. A revised estimate of the conductivity of
iron alloy at high pressure and implications for the core energy balance,
Phys. Earth planet. Inter., 161, 13–18.

Stanley, S. & Mohammadi, A., 2008. Effects of an outer thin stably
stratified layer on planetary dynamos, Phys. Earth planet. Inter., 168,
179–190.

Takahashi, F., Shimizu, H. & Tsunakawa, H., 2019. Mercury’s anomalous
magnetic field caused by a symmetry-breaking self-regulating dynamo,
Nat. Commun., 10, 208.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/222/2/1433/5841194 by Biblio Planets user on 23 June 2020

http://dx.doi.org/10.1016/j.epsl.2010.06.009
http://dx.doi.org/10.1093/gji/ggt167
http://dx.doi.org/10.1073/pnas.1111841109
http://dx.doi.org/10.1111/j.1365-2966.2008.12969.x
http://dx.doi.org/10.1016/S0012-821X(98)00078-8
http://dx.doi.org/10.1017/jfm.2016.659
http://dx.doi.org/10.1016/0021-9991(84)90033-0
http://dx.doi.org/10.1016/j.pepi.2013.07.010
http://dx.doi.org/ 10.1186/BF03352728
http://dx.doi.org/10.1016/j.pepi.2012.11.001
http://dx.doi.org/10.1038/nature09636
http://dx.doi.org/10.1016/j.pepi.2013.07.005
http://dx.doi.org/10.1146/annurev-earth-050212-124007
http://dx.doi.org/10.1002/2015GL064733
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/doi:10.1126/sciadv.aar2538
http://dx.doi.org/10.1016/0031-9201(91)90009-7
http://dx.doi.org/10.1016/j.pepi.2017.03.006
http://dx.doi.org/10.1016/j.epsl.2013.04.001
http://dx.doi.org/10.1038/nature18009
http://dx.doi.org/10.1006/jcph.1993.1044
http://dx.doi.org/10.1029/GL017i011p02001
http://dx.doi.org/10.1038/ngeo.2007.44
http://dx.doi.org/10.1093/gji/ggv031
http://dx.doi.org/10.1016/0031-9201(95)03042-U
http://dx.doi.org/10.1016/S0031-9201(97)00082-4
http://dx.doi.org/10.1016/j.epsl.2009.12.007
http://dx.doi.org/10.1093/gji/ggz347
http://dx.doi.org/10.1038/s41561-019-0381-z
http://dx.doi.org/10.1016/j.pepi.2011.06.001
http://dx.doi.org/10.1016/j.pepi.2015.02.007
http://dx.doi.org/10.1038/nature17957
http://dx.doi.org/10.1016/j.pepi.2017.07.003
http://dx.doi.org/10.1038/nature11031
http://dx.doi.org/10.1103/PhysRevB.87.014110
http://dx.doi.org/10.1016/0031-9201(95)03040-4
http://dx.doi.org/10.1086/423415
http://dx.doi.org/10.1002/ggge.20071
http://dx.doi.org/10.1111/j.1365-246X.2012.05611.x
http://dx.doi.org/10.1093/gji/ggx265
http://dx.doi.org/10.1093/gji/ggz192
http://dx.doi.org/10.1080/03091929.2019.1640875
http://dx.doi.org/10.1029/91GL02417
http://dx.doi.org/10.1016/j.pepi.2006.12.001
http://dx.doi.org/10.1016/j.pepi.2008.06.016
http://dx.doi.org/10.1038/s41467-018-08213-7


Dynamical effect of a stable layer 1447

Takehiro, S.-I., 2015. Penetration of Alfvén waves into an upper stably-
stratified layer excited by magnetoconvection in rotating spherical shells,
Phys. Earth planet. Inter., 241, 37–43.

Takehiro, S.-I. & Lister, J.R., 2001. Penetration of columnar convection into
an outer stably stratified layer in rapidly rotating spherical fluid shells,
Earth planet. Sci. Lett., 187, 357–366.

Takehiro, S.-I. & Sasaki, Y., 2018a. Penetration of steady fluid motions
into an outer stable layer excited by MHD thermal convection in rotating
spherical shells, Phys. Earth planet. Inter., 276, 258–264.

Takehiro, S.-I. & Sasaki, Y., 2018b. On destruction of a thermally stable
layer by compositional convection in the Earth’s outer core, Front. Earth
Sci., 6, 192.

Tanaka, S., 2007. Possibility of a low P-wave velocity layer in the outermost
core from global SmKS waveforms, Earth planet. Sci. Lett., 259(3-4),
486–499.

Tang, V., Zhao, L. & Hung, S.-H., 2015. Seismological evidence for a non-
monotonic velocity gradient in the topmost outer core, Sci. Rep., 5, 8613.

Tilgner, A. & Busse, F.H., 1997. Finite-amplitude convection in rotating
spherical fluid shells, J. Fluid Mech., 332, 359–376.

Vidal, J. & Schaeffer, N., 2015. Quasi-geostrophic modes in the Earth’s
fluid core with an outer stably stratified layer, Geophys. J. Int., 202(3),
2182–2193.

Wicht, J., 2002. Inner-core conductivity in numerical dynamo simulations,
Phys. Earth planet. Inter., 132, 281–302.

Yadav, R.K., Gastine, T., Christensen, U.R., Wolk, S.J. & Poppenhaeger, K.,
2016. Approaching a realistic force balance in geodynamo simulations,
Proc. Natl. Acad. Sci., 113(43), 12 065–12 070.

Yan, C. & Stanley, S., 2018. Sensitivity of the geomagnetic octupole to a
stably stratified layer in the Earth’s Core, Geophys. Res. Lett., 45, 11.

Zahn, J.-P., 1991. Convective penetration in stellar interiors, A&A, 252,
179–188.

A P P E N D I X

Table A1. Table of model parameters and results. The distances Hs and Dp are expressed in kilometres. The total run time trun is given in magnetic diffusion
time. All simulations have assumed Pr = 1. The numerical simulations with an asterisk in the last column have been computed with the PARODY-JA code.

Pm Hs Nm/� Rm � �̄s Dp AD/NAD O/E Z/NZ FCF χ2 Nr �max αmap trun

E = 10−3, Ra = 3 × 105

15.00 200 0.94 366 7.5 7 200 0.03 1.34 0.12 6.25 39.4 49 85 – 5.40
E = 3 × 10−4, Ra = 3 × 106

5.00 0 – 252 15.0 – – 0.49 2.14 0.31 4.89 8.6 65 106 0.86 1.12
5.00 155 4.35 225 11.2 15 131 1.94 3.53 0.50 2.07 5.6 81 106 – 1.60
5.00 200 0.82 248 13.6 13 200 0.61 2.42 0.33 4.43 7.5 81 106 – 1.15
5.00 200 0.95 246 13.9 13 200 0.68 2.18 0.32 4.08 6.3 65 106 – 1.11
5.00 200 4.35 214 12.4 14 161 2.56 3.41 0.48 1.78 5.6 81 106 – 2.14
5.00 290 0.82 240 13.9 12 290 0.74 2.57 0.31 3.92 6.3 81 106 – 1.50
5.00 290 1.37 229 12.9 13 270 1.11 3.37 0.31 3.24 5.7 81 106 – 2.03
5.00 290 4.35 202 12.7 13 179 3.01 3.88 0.52 1.62 6.9 97 106 – 1.36
5.00 290 7.35 196 12.7 13 129 3.30 4.33 0.55 1.54 8.0 129 106 – 1.31
5.00 290 13.75 189 12.7 13 92 4.02 3.56 0.56 1.39 7.8 145 106 – 1.71
5.00 290 23.24 186 12.6 13 69 4.28 4.22 0.63 1.41 9.4 145 106 – 1.12
5.00 290 43.47 183 12.1 13 48 4.45 4.03 0.94 1.44 10.9 193 106 – 1.13

E = 10−4, Ra = 4 × 107

3.50 200 0.95 407 19.4 20 191 1.19 2.02 0.38 2.63 3.1 81 106 – 1.30
E = 3 × 10−5, Ra = 108

2.50 0 – 302 17.9 – – 1.31 1.53 0.19 3.65 3.0 81 106 0.91 1.12
2.50 200 0.47 288 16.1 25 193 1.86 1.51 0.17 2.80 1.8 81 106 0.91 1.05
2.50 200 0.82 292 12.4 26 191 3.53 2.00 0.29 1.58 3.3 81 106 0.91 1.08
2.50 200 1.64 282 11.5 27 161 6.10 2.73 0.42 1.20 8.0 81 106 0.91 1.04

E = 3 × 10−5, Ra = 3 × 108

1.00 0 – 234 7.6 – – 2.59 1.59 0.24 1.87 1.7 81 128 – 1.00
1.00 200 1.64 213 6.9 34 188 9.29 2.50 0.51 1.04 11.4 81 128 – 1.29
1.00 200 5.20 205 6.3 35 87 16.35 2.77 0.74 0.86 18.8 81 128 – 1.03
2.50 0 – 555 23.2 – – 1.54 1.58 0.28 2.19 1.4 81 128 0.91 1.04
2.50 53 3.29 550 18.1 36 47 3.08 1.98 0.43 1.56 3.6 81 128 0.91 1.09
2.50 53 5.20 543 17.1 41 45 3.85 2.35 0.53 1.31 5.6 145 128 0.97 1.13
2.50 87 0.82 546 22.8 31 83 1.70 1.59 0.30 2.12 1.5 81 128 0.91 1.03
2.50 87 1.64 548 19.9 34 81 2.47 1.90 0.34 1.76 2.4 81 128 0.91 1.18
2.50 87 2.85 535 18.2 38 79 3.91 2.25 0.53 1.40 5.5 81 128 – 0.82
2.50 87 5.20 533 17.4 40 62 5.35 2.40 0.53 1.12 7.5 97 128 0.93 1.38
2.50 87 9.00 522 17.6 39 39 6.82 2.21 0.46 1.02 8.5 161 128 0.97 1.01
2.50 87 16.43 517 18.1 37 27 7.70 2.17 0.40 0.97 9.0 161 128 0.97 1.10
2.50 155 0.47 541 23.3 29 155 1.63 1.73 0.30 2.25 1.8 81 128 0.91 1.10
2.50 155 0.82 535 22.4 31 149 2.07 1.71 0.29 2.02 1.7 81 128 0.91 1.05
2.50 155 1.64 527 18.9 34 144 4.16 2.35 0.53 1.39 5.9 81 128 – 1.17
2.50 155 2.85 516 18.5 36 111 6.00 2.49 0.60 1.14 8.7 81 128 0.91 1.16
2.50 155 5.20 503 18.7 36 75 8.12 2.56 0.58 1.01 10.9 145 128 0.96 1.00
2.50 155 28.46 487 18.5 35 25 10.95 2.22 0.52 0.85 13.0 145 133 0.97 1.15
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Table A1. Continued

Pm Hs Nm/� Rm � �̄s Dp AD/NAD O/E Z/NZ FCF χ2 Nr �max αmap trun

2.50 200 0.26 536 24.2 30 200 1.62 1.66 0.27 2.31 1.6 81 128 0.91 1.07
2.50 200 0.82 526 21.5 31 193 2.41 1.89 0.34 1.90 2.4 81 128 0.91 1.06
2.50 200 0.95 528 20.2 31 192 2.86 1.96 0.36 1.73 3.0 81 133 0.91 1.40
2.50 200 1.64 519 18.7 33 182 4.48 2.90 0.59 1.33 7.4 81 128 – 1.51
2.50 200 5.20 489 18.4 35 88 9.87 2.89 0.65 0.93 13.6 145 170 0.97 1.03
2.50 200 8.22 485 18.4 36 64 11.80 2.60 0.59 0.86 14.6 145 128 – 1.10
2.50 200 16.43 477 17.9 36 40 12.28 2.68 0.57 0.79 15.3 145 128 0.97 1.19
2.50 200 51.96 465 17.5 35 19 12.97 2.16 0.57 0.79 15.0 257 170 0.98 1.03
2.50 290 0.26 524 24.3 28 290 1.61 1.60 0.28 2.38 1.6 81 128 0.91 1.07
2.50 290 0.82 515 19.6 30 281 3.10 2.14 0.39 1.67 3.6 81 128 0.91 1.44
2.50 290 4.35 462 17.9 32 119 13.94 2.86 0.66 0.79 17.2 81 128 0.91 1.08
2.50 290 16.43 447 16.5 37 47 17.04 2.98 0.76 0.70 20.4 145 128 0.97 1.10
4.33 0 – 935 46.2 – – 1.23 1.49 0.27 2.40 1.5 160 133 – 0.48�

4.33 87 2.00 908 38.0 – 79 2.36 1.90 0.40 1.83 2.7 160 133 – 0.55�

4.33 155 1.00 891 42.7 – 147 1.85 1.76 0.29 2.04 1.6 160 133 – 0.54�

4.33 200 0.82 888 43.1 – 192 1.68 1.71 0.27 2.35 1.7 160 133 – 0.71�

4.33 200 0.95 879 41.4 – 192 2.08 1.86 0.32 1.98 2.1 160 133 – 0.73�

4.33 200 1.64 867 37.0 – 174 3.97 2.61 0.51 1.36 6.0 160 133 – 0.68�

4.33 290 0.82 863 40.2 – 278 2.23 2.01 0.30 1.90 2.2 160 133 – 0.74�

4.33 290 0.95 858 38.0 – 278 2.64 2.37 0.37 1.76 3.4 160 133 – 0.67�

4.33 290 1.64 820 36.9 – 224 6.99 2.64 0.48 1.02 9.4 160 133 – 0.64�

E = 3 × 10−5, Ra = 109

1.44 0 – 617 17.3 – – 1.88 2.34 0.58 1.74 3.9 97 170 0.93 1.09
1.44 155 0.87 596 17.2 33 150 2.33 2.31 0.64 1.71 4.6 97 170 0.93 1.07
1.44 155 1.73 583 16.2 36 148 3.79 2.73 0.68 1.49 6.9 97 170 – 1.47
1.44 200 0.87 587 17.4 33 194 2.70 2.35 0.60 1.67 4.8 97 170 0.93 1.08
1.44 200 1.73 578 15.5 36 191 4.57 3.15 0.78 1.33 8.9 97 170 0.93 1.22
1.44 290 1.73 561 14.9 34 275 5.67 3.93 0.81 1.18 11.5 97 170 0.97 1.17

E = 10−5, Ra = 2 × 109

1.20 0 – 442 15.7 – – 2.48 1.52 0.19 1.85 1.2 129 192 0.96 1.05
1.20 155 0.47 429 15.3 43 151 3.57 1.53 0.20 1.57 2.3 129 192 0.96 1.08
1.20 200 0.95 415 13.8 41 189 8.44 2.00 0.33 1.07 8.8 129 192 0.96 1.01

E = 3 × 10−6, Ra = 1010

0.80 0 – 387 13.1 – – 3.29 1.40 0.12 1.71 1.9 161 256 0.97 0.67
0.80 155 0.47 375 12.0 55 150 6.30 1.31 0.17 1.22 5.0 161 256 0.97 0.66
0.80 200 0.95 388 10.0 59 152 10.43 3.11 0.31 0.92 12.5 193 256 0.98 0.60

E = 3 × 10−6, Ra = 3 × 1010

0.80 155 1.64 651 17.6 65 110 10.78 2.13 0.42 0.85 12.2 193 288 0.98 0.51
E = 10−6, Ra = 9 × 1010

0.50 200 0.95 461 9.1 74 152 5.09 6.94 0.50 1.00 13.6 321 426 0.99 0.23
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