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High-latitude ionospheric electrostatic turbulence studied by means 
of the wavelet transform 

D. LAG0UTTE,* J. C. CERISIER,t J. L. PLAGNAUD,t J. P. VILLAIN* and B. FoRGETt* Laboratoire de Physique et Chimie de !'Environnement, 3A avenue de la recherche scientifique, 45071Orleans cedex, France; 't Centre de Recherches en Physique de !'Environnement, 4 avenue de Neptune, 94107 Saint Maur des Fosses cedex, France 
Abstract-The wavelet transform, after performing a time-scale decomposition by means of wavelet coefficients, displays the energy of a signal simultaneously in time and frequency. According to the uncertainty principle, at each frequency an optimal compromise between time resolution and frequency resolution is provided. The Morlet (complex-valued) wavelet is applied to the study of high-latitude electrostatic turbulence recorded onboard the AUREOL-3 satellite. The transforms of electron density and of one electric field component (approximately perpendicular to the Earth's magnetic field) are presented. The modulus of wavelet coefficients show vertical structures that are due to intensifications of the signal at a high frequency occurring at the same time as at a low frequency. At each frequency, the duration of a turbulent event is of the order of a few periods, which implies that electrostatic turbulence is highly inhomogeneous. We can compare the two signals by calculating the ratio of the modulus of their wavelet transform and the phase difference. This comparison illustrates the differences between the frequency-time behaviours of the two fields, which are probably related to the nonlinear regime of turbulence. 

l. INTRODUCTION 

In recent years, a high-latitude ionospheric plasma 
turbulence has received considerable attention. Since 
the initial measurements by KELLEY and MOZER 
(1972) of correlated electric and density fluctuations 
poleward of the plasmapause, numerous authors have 
reported spacecraft and ground observations of tur­
bulence. Among these, TEMERIN (1978) has shown 
that these fluctuations are polarized perpendicular to 
the static magnetic field and that their phase velocity 
is close to zero in the plasma frame. This corresponds 
to frozen turbulence. When observed onboard a mov­
ing spacecraft, the data are fluctuations in the time 
domain. The observed frequency is a Doppler-shifted 
frequency due to the movement of the spacecraft rela­
tive to the plasma. 

Several authors have recently reviewed the theor­
etical aspects of fluid turbulence in the ionosphere 
(KINTNER and SEYLER, 1985; TSUNODA, 1988). In the 
wavelength range of interest in this study (between 
100 m and 10 km), the gradient drift instability has 
been identified as the main source of plasma structure 
(CERISIER et al., 1985). In auroral arcs, narrow zones
of shear driven turbulence are observed with intense 
electric field fluctuations (BASU et al., 1988).

In the nonlinear regime, the power spectrum of the 
turbulence has been shown to be close to power laws 

characterized by a spectral index (the slope of the 
spectrum in logarithmic coordinates) and in good 
agreement with experimental results (KESKINEN and 
OSSAKOW, 1983). However, electrostatic turbulence is 
a non-stationary phenomenon. The description of this 
non-stationarity is essential, inasmuch as it is directly 
linked to the spatial inhomogeneity of the turbulence. 
The usual method is to decompose the signal in a two­
dimensional space, displaying the wave energy as a 
function of time (or space) and of frequency (or wave­
length). The interest of this description is that it poten­
tially allows one to study the connection between the 
different scales which exist simultaneously in the 
plasma. Furthermore, it can provide information on 
the nature of the cascading processes, which are 
believed to operate in the nonlinear regime. 

Different representations are mostly used. The first 
one, called the time-windowed Fourier transform, is 
obtained by dividing the signal into successive time 
intervals of constant duration, during which the signal 
is assumed to be stationary. The GABOR (1946) rep­
resentation, in particular, is obtained when the signal 
is windowed by a gaussian function. The main handi­
cap of such a technique is that time resolution and 
frequency resolution are kept constant, which makes 
it difficult to study simultaneously phenomena which 
occur at different scales. The way to overcome this 
difficulty is to increase the time resolution with fre-
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quency. This leads to the 'constant-Q short-time spec­
tral analysis' (FLANDRIN, 1990a), which is the fun­
damental characteristic of any wavelet analysis 
developed initially by Morlet (GoUPILLAUD et al.,
1984). The wavelets gh_a(t) are built from an analysing 
wavelet g(t) by time translation with a delay b and 
time dilatation by a factor l/a. The aim of the wavelet 
transform is to decompose an arbitrary signal into 
localized elementary contributions in both time and 
scale (the latter word is more general than frequency 
and applies to any wavelet). The dilatation parameter 
governs the scale analysis and allows one to study 
phenomena simultaneously with very different scales. 
The wavelets of the Mor!et family, which are modu­
lated gaussians, realize the constant-Q analysis with 
the optimal window shape of Gabor. Within the 
uncertainty principle, they also offer the possibility of 
adjusting the equilibrium between the time and 
frequency resolutions by changing the modulation 
frequency. 

The aim of this paper is to evaluate the potential 
interest of the wavelet analysis for the study of iono­
spheric and, more generally, plasma turbulence. The 
paper is organized as follows. First the basic defi­
nitions about the wavelet transform are introduced 
and the wavelet coefficients are normalized to give 
time�frequency spectrograms in physical units. The 
notion of an optimal compromise between time and 
frequency resolutions is also given in a quantitative 
meaning. In Section 3, the wavelet transform (Morlet 
wavelet) is applied to the turbulent signal measured 
by the AUREOL-3 satellite in the high-latitude iono­
sphere. The signals are one component of the electric 
field fluctuation and the simultaneous electron density 
fluctuation. Finally, Section 4 is devoted to a dis­
cussion of the results and their physical meaning. It is 
shown, in particular, how the wavelet analysis leads 
to a description of the relation between the different 
scales and of a characterization of the inhomogeneity 
of the turbulence. 

2. THE WAVELET TRANSFORM 

In this section, we develop the basic concepts of the 
wavelet transform. A more detailed presentation of 
the wavelet transform can be found in GROSSMAN et
al. (1990), GouPILLAUD et al. (1984) and the ref­
erences in both papers. 

2.1. Basic definitions
Let g(t) be a complex-valued function. To be called 

an analysing wavelet, it cannot be chosen arbitrarily 
and must fulfil a set of conditions, the more important 
of which are : 

--g(t) has a finite energy J lg(t)l 2 dt < + ::x:i. 
The vertical bars denote the modulus. A plane 
wave does not have a finite energy and thus can­
not be an analysing wavelet. 

-g(t) has zero-mean value J g(t) dt = 0.
This leads g(t) to be an oscillating function (at
least over several oscillations).

-g(t) satisfies the admissibility condition
J IG(w)l 2/w dw < +::x:i whereG(w) is the Fourier
transform of g(t) defined as:

f'+,J.J 

G(w) = J_," g(t)e- 1"'' dt. (I) 

If G(w) is differentiable, the above condition 
implies that G(w) has no d.c. component (i.e. 

G(0) = 0), which is not independent from the 
zero mean value. 

From the analysing wavelet g(t), a family of wave­
lets gh_a(t) is generated by time translation indexed by 
the parameter b, and by time dilatation (or con­
traction) indexed by the parameter a. For a « I, the 
wavelet gh,aCt) is strongly concentrated in time and 
contains small scales; conversely, for a » I, the 
wavelet spreads out and contains mostly large scales. 
The general function of that family is: 

where the factor I/ J a ensures that the energy is con­
served between the wavelets corresponding to differ­
ent values of the dilatation factor. 

The wavelet transform of a real time-dependent 
signal x(t) is a continuous function C(b, a) given by 
convolution of the signal with the dilated wavelet: 

1 f+"· (t-b) 
C(b,a) = -r x(t)g* --- dt

v a . ·� a 

where g*(t) is the complex conjugate of g(t).

(3) 

Another way to calculate the wavelet transform is 
with the help of the Fourier transforms of the signal 
x(t) and of the analysing wavelet g(t) : 

The transform C(b, a) has properties that make it 
a practical tool for signal analysis. The total energy 
of the signal can be found from the wavelet transform, 
since it satisfies Parseval's relation of energy con­
servation: 

2



(5) 
where K" is a constant that depends only on the ana­lysing wavelet and is given by the following relation, which justifies the admissibility condition: 

(6) 
The signal x(t) can be reconstructed from C(b, a) . More details about the inverse method of the wavelet transform are given by DAUBECHIES (1990). 

2.2. The Mo rlet wavelet 
The Morlet wavelet (GouPILLAUD et al., 1984) is a continuous and complex-valued modulated gaussian, thus giving modulus and phase in the spectral domain. We have selected this type of wavelet for two main reasons. First, a gaussian function gives the smallest time-bandwidth product (PAPOULIS, 1977). Second, a simple relation exists between scale and frequency relations that will be further explained in Section 2.3. The Morlet wavelet is expressed by: 

The second term in g(I) maintains the zero-mean value. For cv0 > 5, this term is much smaller than the first one and can be neglected. From now on, we shall use the simplified expression: 

Fourier transform, half of the total power is supported by the negative frequencies. Consequently, the wavelet transform will be calculated with w0 > 0 and we adopt the formalism : 
C(b, a) = J2 f x(t)gfa(t) dt w E [O, + oo] 
C(b, a) = 0 wE [-oo, OJ. 
2.3. Scale�frequency conve rsion 

(10) 

In spectral analysis of geophysical signals, the usual representation is in the time-frequency plan, for which it is necessary to convert scale a into frequency .f The frequency localization of the Morlet wavelet can be deduced from the maximum of the Fourier transform of its dilated form given by relation (2), which 1s centred around the frequency (FLANDRIN, 1990b): 

and that represents the 'instantaneous frequency' of the time-scaled wavelet (derivative of the phase with respect to time). As, at each time b, the integrated power over scale is equal to the integrated power over frequency: 

]f+x] ]f+xf+" ] -- -2 IC(b, a) l 2 da = -. - . Kq _ ,x a Kq _ ,x _ , .f 0 

X IC(b, .f�J.f) l 2 df 

with a Fourier transform: 
(8) and more as normalized quantities have to be used togive a physical meaning to the coefficients, we definedthe normalized wavelet coefficients H(b, f;,/1') by:
(9) 

This expression is maximum for w = w0 , which islocated on the positive frequency side or on the nega­tive frequency side, according to the sign of the wave­let pulsation w0 • For instance, with a scale parameter a > 0 and a wavelet pulsation w0 > 0, only the posi­tive frequencies of the Fourier component X(w) will play a significant role in equation (4) to calculate the transforms C(b, a). More generally, DAUBECHIES (1990) shows that this result is valid for wavelets with an even Fourier transform. For a complex-valued sig­nal x(t), the transform Cw> 0(b, a) at positive fre­quencies is calculated with w0 > 0, and the transform C,,,< 0(h, a) at negative frequencies with w0 < 0. For a real-valued signal, we can consider only the positive frequencies (w0 > 0) that are analogous with the one­sided spectral density functions (BENDAT and PIERSOL, 1971). Introducing the relation X*(w) = X(-w), we find C.» o(h, a)= C,� < 0(b, a) . So, as with a classical 

Parseval's relation now becomes: 

f+x f+x f+J a: x2(t) dt=
0 _

, IH(b,f 0/f °) l 2 dfdb. (13) 
The coefficients H(b, f0/f) are complex-valued. The modulus gives the distribution of the energy density in the frequency-time plane, while the isophase lines in this plane converge towards the most irregular parts (or singularities) of the signal (KRONLAND-MARTINET et al., 1987). 
2.4. Discretization 

The previous definitions are made for continuous signals. In practice, however, one works with sampled signals obtained from x(t) by measurements at the 
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instants tn = n!'J.t. where le =  1//'J.t is the sampling 
frequency. We chose to discretize the frequency 
fn = fttao"', where f Mis the maximum frequency that 
we wanted to analyse Utt �fe/2). Thus the dilatation 
parameter is am = fo lfMct;;. Increasing values of the 
frequency index m represent more spread-out 
wavelets. We discretized the translation step so that it 
is proportional to the width of the wavelet at each 
frequency. by choosing bk = karnb0• The parameters 
a0 and b0 (a0 > I, b 0 ?, 0), which define the sampling 
of the wavelet transform, will be explained at the end 
of this section. Therefore, formula (12) should be 
replaced by its discrete version taking into account 
the normalization: 

. - MJ2" -m12 (/�1)112 
H(k,m) -K-

j
.-L..x(n/'J.t)a0 T _q O n JO/ 

The discretization step in frequency (6 /) is given by: 

6/ -- = I -a0 = cte 
f 

which shows that [Jf is proportional to the frequency. 
The discretization step in time [Jb is linked to [J .f by: 

[Jb • f,f = bofo O -ao 1) = cte.

We now have to select the elementary steps in scale 
a0 and time b0 in such a way that they cover the 
entire time-frequency plane. The choice is guided by 
practical considerations of continuity of the time­
frequency representation. A lattice containing N1 
points per octave and lh points per fundamental 
wavelet period T0 (T0 = I /.{0), defines the parameters 
a 0 and b0: 

(15) 

When the spectrum of the signal covers a large number 
of octaves (for example in audioacoustics with more 
than JO octaves). the implementation of formula (14) 
turns out to be suitable for normal computer work. 
In this case, an appropriate algorithm is necessary 
(HOLSCHNEIDER et al., 1989). 

The wavelet decomposition can be made on an 
orthonormal basis. The terminology 'orthonormal 
basis' means that the signal decomposition into wave­
lets is unique and that the wavelet coefficients are 
independent. In other words, the wavelet coefficients FJ(k. m) are not correlated. In the continuous case, 
knowing a signal is equivalent to knowing the function C(b, a), but this is no longer automatically true for 
a discrete signal and its discrete set of coefficients 
H(k, m). Several conditions on the basic wavelet g(t), 

and parameters a0 and b0 are required. These condi­
tions lead to construct wavelets which do not pennit 
a good localization in the time---frequency plane and, 
consequently, these wavelets are not useful for signal 
analysis (DAUBECHIES, 1990). For practical purposes, 
it is preferable to work with functions g(t) that are 
concentrated in time and/or in frequency, such as 
the Morlet wavelet. DAUBECHIES (1990) provided an 
algorithm that can be applied to any wavelets, to 
reconstruct with acceptable accuracy the initial signal 
from the wavelet coefficients, the accuracy being 
dependent on the values of the increments a0 and b0 • 

2.5. Time and .frequency resolutions of the Mor/et 
waz,elet 

From (9) and from the dilatation formula (2), we 
can calculate the frequency resolution at 3 dB (cor­
responding to an amplitude ratio = J2) : 

/'J.f 1.67 
f CO,i 

This relation shows that, contrary to the Fourier 
transform. the frequency resolution of the wavelet 
transform is proportional to the frequency itself. The 
relative frequency resolution can be adapted to the 
physical problem by the correct choice of the value of 
the wavelet pulsation w0 • For the 'classical Morlet
wavelet' (w 0 = 5.34 which means that the amplitude 
decreases to half its maximum value in one period of 
the wavelet), the relative frequency resolution is: 

If one also defines the duration /'J.T of the wavelet 
by its -3 dB amplitude relative to its center, one 
obtains: 

l .67w0 !'J.T = ---2n.f 

For the 'classical Morlet wavelet', i'1T is equal to 
1.42/.J: 

3. APPLICATION TO TURBVLENT ELECTRIC FIELD Ai',D 
ELECTRON DENSITY FLUCTUATIONS 

We have chosen to apply the wavelet transform to 
the study of the fluctuations of the electron density 
and the ELF electric field, which characterize the tur­
bulent structure of the ionospheric plasma. The exper­
imental data were recorded onboard the AUREOL-3 
satellite. The satellite, placed into a quasi-polar orbit 
(apogee: 2000 km, perigee: 400 km. inclination: 
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82.5°, period : 109.5 min), was three-axis stabilized 
with its z axis close to the vertical. 

The electron density was obtained from the ISO­PROBE experiment (Bf:GHIN et al., 1982), which was 
based on the mutual impedance probing technique. 
Density fluctuations along the orbit can be deduced 
with a time resolution of 1 ms in the fastest mode. 

The ELF-VLF wave characteristics are given by 
the multicomponent TBF-ONCH experiment 
(BERTHELIER et al., 1982). Three magnetic and two 
electric waveforms of the a.c. field were measured in 
the frequency range 10-1500 Hz. The electric com­
ponent used in this paper (called £11) is almost hori­
zontal 2.nd perpendicular to the satellite velocity. At 
high latitude, this component is also approximately 
perpendicular to the Earth's magnetic field. 

The data discussed in this paper were recorded on 
1 0  March 1 982 (orbit 2242) at 1740 : 29.500 UT. The 
geophysical parameters of this particular event were : 
invariant latitude 73.2°, geographic latitude 79°, geo­
graphic longitude 70.2", altitude 410 km, 2330 local 
time. As is usual with satellite data, a time variation 
measured in the satellite frame can also be considered 
as a space variation, Doppler-shifted by the orbital 
motion of the satellite. The frequency f is then related 
to the wavelength ). of the structure by f = VjA, where 
V, is the satellite velocity (about 8 km · s- 1 ) .

For this study, the wavelet pulsation is w 0 = 5.34, 
which appears to be the best compromise in order to 
achieve a good time resolution together with a 
sufficient frequency resolution. The frequency range 
covers six octaves with a maximum frequency of 
320 Hz, which is close to the upper frequency limit 
of electrostatic turbulence observed onboard 
AUREOL-3 satellite. The number of frequencies 
per octave is N1 = 8 and the parameter y is equal 
to 0.25. The wavelet transform is applied to a l s 
period of electron density N, and electric field data 
£11 (Fig. 1). 

Tho:: coefficients are normalized so that standard 
units are obtained. For example, we analyse a com­
ponent of the electric field, the unit of which is volts 
per meter ( = V m -1 ). The dilatation parameter is with­
out unit, the time parameter is in seconds ( = s) . The 
normalized wavelet coefficients calculated for the elec­
tric field from equation ( 14) are expressed in V m -
Hz · 12. Similarly, the relative density coefficients are 
expressed in Hz- 1 12• 

In Fig. 1, the time- frequency diagrams show the 
square modulus of the wavelet coefficients and the top 
panels show the waveform of the signals. Both signals 
are highly non-stationary. The mean value of the elec­
tron density is around 4.3 105 cm- 3• It shows abrupt 
variations of less than 5%. The mean value of the 

electric field component is around 0.15 m V /m. 
Although the waveforms look very different, the time­
frequency distributions are similar, with maxima at 
the same time and frequency. As the frequency 
increases the power generally decreases, with a 
maximum value around 10 Hz. Vertical structures 
appear in the diagram which are narrowing and 
forking, principally following the edges of the large 
scale structures. For each diagram, electric field and 
density, the frequency width of the structures is much 
larger than the frequency resolution of the analysing 
wavelet (Cl.f/.f � 30% for the classical Morlet wavelet 
as it was shown in Section 2.5). In other words, inten­
sifications of the signal at high frequency occur at the 
same time as those at low frequency. Concerning the 
width in time of the structures in the time- frequency 
diagrams of Fig. 1, the duration of a turbulent event 
is at most a few periods, which corresponds to the 
time resolution of the wavelet analysis. If we translate 
this result into the space domain, we observe that the 
spatial extension of turbulence is only a few wave­
lengths. Especially at higher frequencies (or smaller 
scale structures), the turbulence appears as very loca­
lized and isolated structures. 

The characteristics of these diagrams can be 
appreciated if we refer to the equivalent diagram, 
which should be produced by the analysis of a station­
ary white noise (see for instance GROSSMANN et al., 
1987). In the latter case, the dimensions of the struc­
tures are equal to the resolution of the analysis, both 
in time and in frequency. Furthern1ore the patches are 
uniformly spread over the diagram. Note that the 
phase of the wavelet transform is not easy to interpret. 

Two experimental signals that belong to the same 
physical phenomenon can be compared through the 
relations between their wavelet coefficients. In Fig. 2, 
the ratio of the amplitudes of the coefficients (on 
the left) and their phase difference (on the right) 
are shown. The power ratio is mainly of the order of 
10 mV2 m - 2 (yellow in the colour plot on the left of 
Fig. 2). Strong fluctuations around that value are 
observed, which can reach a factor of 10 in a specific 
area of the time-frequency plane. At low frequencies 
(less than � 15 Hz, which corresponds roughly 
to the maximum power of electron density) , the ratio 
is relatively uniform except for several holes 
corresponding to low values of £11 power. Above 
� 15 Hz, the power ratio presents elongated struct­
ures of a few periods wide, which resemble those of 
the power distribution. 

One has to be careful in the interpretation of the 
phase difference diagram because of discontinuities in 
the phase of the wavelet coefficients occurring at zeros 
of the modulus. These points are indicated in white in 
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the two diagrams of Fig. 2. We can observe that the 
phase difference is constant over several periods, con­
firming that both EH and Ne belong to the same physi­
cal process. For some vertical structures, the same 
phase difference is observed along the structures over 
several octaves. 

If the wavelet transform can provide more infor­
mation about turbulence than a classical Fourier 
method, it can also give the same results as can be 
deduced from power spectrum analysis. Spectral indi­
ces (slope of the spectra in logarithmic coordinates) 
deduced from the wavelet analysis, have been com­
pared with those computed from a classical Fourier 
transform for the same data sample of Fig. I. In the 
wavelet analysis, the square modulus of the wavelet 
coefficients are time averaged at each frequency over 
the I s period. In the Fourier analysis, the transform 
is performed over the I s period. In order to calculate 
by a least-square method the slope of the logarithmic 
power spectrum, we have to average the Fourier 
coefficients proportionally to the frequency itself. In 
this case a moving average is made over a number 
of frequencies m = 7 x (INT {J/25} + I), where INT 
denotes the integer part . This solution gives a fre­
quency resolution of the same order as for the wavelet 
transform. The results are presented for both density 
and electric fluctuations in Fig. 3. The calculated 
power spectra compare extremely well. The powers 
are almost identical and most of the features observed 
through the FFT are also present in the wavelet spec­
trum. 

Spectral slopes computed between 12 and 180 Hz 
are close. The slightly shallower slope of the wavelet 
spectra of density fluctuations is due to somewhat 
larger power at high frequencies. For this turbulent 
event, the power spectral indices of the electron den­
sity and electric field fluctuations are almost identical, 
taking into account the error bounds. 4. DISCUSSION 

The turbulence event presented in Figs 1-3 has been 
observed in the polar cap at an invariant latitude of 
73° in the night time sector (2330 MLT). For this 
specific event, the instability responsible for the tur­
bulence has been identified as the gradient-drift insta­
bility (MouNIR et al., 1991), which destabilizes a 
convection density gradient when the angle between 
the gradient and the convection velocity is smaller 
than 90° . TSUNODA (1988) has shown that the gra­
dient-drift instability is the dominant instability mech­
anism in the high-latitude ionosphere and in the short 
wavelength regime (). < 10 km). We will now discuss 

what new information the wavelet analysis brings to 
the study of the fine structure of the turbulence. 

The wavelet analysis allows us to obtain the same 
results as the Fourier method, in particular for the 
power spectra. We have shown that, at least for power 
law spectra that are the usual method of analysing 
turbulent fields, both methods of analysis give the 
same value of the spectral index. We have confirmed 
for this particular event that the spectral indices of the 
electric field and of the density fluctuations are equal. 
It was shown by CERISIER et al. ( 1 985) that the equality 
of these two spectral indices shows that the plasma is 
not in the diffusive regime, which occurs when the 
instability source has disappeared. However, one has to 
be careful in the interpretation of the wavelet spectra, 
because of the inability of the method to describe 
the sharp features of a power spectrum, due to the 
relatively large bandwidth of the wavelet and 
especially for low values of the w 0 parameter. 

The vertically elongated structures present on both 
diagrams of Fig. I, with a time dimension of the order 
of the time resolution of the analysis, but extending 
over a frequency range much larger than the frequency 
resolution of the analysis, lead to several interpret­
ations concerning the physical properties of the tur­
bulence. 

I. The turbulence is highly inhomogeneous in the
time domain or in space if we assume, as it is the case 
for the linear theory of the gradient-drift instability 
or in numerical simulations of the nonlinear state 
(KESKINEN and OssAKOW, 1 983), that the turbulence 
is stationary in the plasma frame. The resolution of 
the wavelet analysis of the order of 0.15 s at 10 Hz 
and 0.05 s at 30 Hz, which corresponds to the duration 
of the increases in the modulus of the wavelet 
coefficients. So, the first characteristic of the tur­
bulence is its inhomogeneity in space at all wave­
lengths . 

2. The time periods of intensification of the tur­
bulence in the low (5-20 Hz) range, which occur 
between 0.0 and 0.1 s and also between 0.5 and 0.8 s, 
correspond to an increase in the turbulence level in 
the 40-80 Hz range, although, as discussed previously, 
the turbulence is more structured in the high frequency 
range. This simultaneity in the occurrence of an 
increased turbulence level over the whole spectrum is 
coherent with the cascading process, in which the 
short wavelengths develop on the gradients associated 
to longer wavelength turbulence, 

3. From Fig. I it can be deduced that the maxima
in the electric field and in the electron density are 
generally co-located in the low frequency range (below 
25 Hz) as well as in the elongated structures occurrillg 
at high frequencies. For example, the maxima at 10 Hz 

6



:;---
46

0 
0

 ::::::
 4

40
 

.. ·s 
42

0
(.)

 • 

Pl
as

m
a 

De
ns

it
 

Cl)
 

40
0<=-

-
�

-
-

�
-

-
�

-
�

-
-

-' 

°N'
 

:i::
 

.__,
 

>.
 

(.)
 c:: Cl)
 

::,
 

O'
 

Cl)
 

1-,
 

c...
 

0.0
 

32
0 

16
0 BO
 

40
 

20
 

10
 

5 0.
0 

0.2
 

0.2
 

0.
4

 
0.6

 

0.4
 

0.6
 

Se
co

nd
s 

W
av

el
et

 M
od

ul
e 0.8

 
1.

0 

0.8
 

1.
0 

-4 -5
�

 
:i::

 - 6 ::---­ z ::---­
-

7 
Z � QI)

 

-
8 

.2

-9

Si
 

'-..
 

>
 El .__,

0.3
0 

0.2
5 

0.2
0 

El
ec

tr
ic

 F
ie

ld
 

EH
 

� 
0.

15
 

,3 
0.

10
 

;g_
 0

.05
 

s
o .

oo
 "--

-
�

-
-

�
-

-
�

-
-

�
-

--­
<

 
0.

0 

°N'
 

:i::
 

.__,
 

>.
 

(.)
 c:: Cl)
 

::,
 

O'
 

Cl)
 

1-,
 

c...
 

32
0 

16
0 BO
 

40
 

20
 

10
 

5 0.
0 

0.2
 

0.
2 

0.4
 

0.6
 

0.
4

 
0.

6 Seconds Wavelet Module 0.8
 

1.
0 

0.
8 

1.
0 

-3 -4
�

 
:i::

 -5 ::---­ ::e [- 6 t 
-7

 .
2

-8

Fi
g.

 I
. W

av
ele

t t
ra

ns
fo

rm
 o

f e
lec

tro
n 

de
ns

ity
 a

nd
 e

lec
tri

c 
fie

ld
 fl

uc
tu

at
io

ns
 re

co
rd

ed
 o

nb
oa

rd
 th

e 
A

V
R

EO
L-

3 
sa

te
lli

te
 o

n 
lO

 M
ar

ch
 !

98
2 

a!
 17

40
: 2

9.
50

0 
U

T
. 

Th
e m

ai
n 

w
av

ele
t p

ar
am

et
er

s a
rc

: M
or

let
 w

av
dc:

t p
ul

sa
tio

n 
w

0 
= 

5.3
4 

an
d 

y 
= 

0.
25

 (r
at

io
 be

tw
ee

n 
tim

e 
in

cr
em

en
t a

nd
 w

av
ele

t p
er

io
d)

. U
pp

er
 p

an
els

 sh
ow

 th
e 

w
av

ef
or

m
s. 

T
he

 ti
m

e-
fr

eq
ue

nc
y 

re
pr

es
en

ta
tio

ns
 o

f t
he

 sq
ua

re
 m

od
ul

us
 o

f w
av

ele
t t

ra
ns

fo
rm

s 
of

 el
ec

tr
on

 d
en

sit
y 

flu
ct

ua
tio

ns
 (o

n 
th

e 
lef

t) 
an

d 
of

 E
H

 el
ec

tr
ic 

fie
l!l

 co
m

po
ne

nt
 fl

uc
tu

at
io

ns
 (o

n 
th

e r
ig

ht
) a

re
 re

pr
es

en
te

d 
in

 c
ol

ou
r p

lo
ts

. F
re

qu
en

cy
, in

 o
rd

in
at

e,
 is

 in
 a

 lo
ga

rit
hm

ic 
sc

al
e, 

wh
ile

 ti
m

e, 
in

 a
bs

ci
ss

a.
 is

 in
 a

 li
ne

ar
 

sc
al

e. 
A

 lo
ga

rit
hm

ic
 c

ol
ou

r s
ca

le
 is

 u
se

d 
fo

r t
he

 m
od

ul
us

 re
pr

es
en

ta
tio

n.
 

7



AR
CA

D 
3 

-
TB

F /
IS

OP
R

OB
E 

Wa
ve

let
 P

ow
er

 R
at

io 
an

d 
Ph

as
e 

Dif
fer

en
ce

32
0 �

i � 
/ t � � iy1-

� 1 
160 }{ 

'.� ' 
,.,k 

I k:'.
 ! 

80 f
i 

,i ! 
1 i ,�

 I I! 
..-

,r 
! 

2:,
 

" 

u � 
40

O"'
 

Q)
 

20 10 5 \
'�

0.0
 

0.2
 

0.4 
0.6

0.8
Sec

on
ds

Eh
/N

e 
Po

we
r R

at
io

3 2 

Ql
 ..., C
 

O 
tie

 
0

 

-
1 -2

1.
0 

03
/1

0/
19

82
 

17
:40

:29
.50

0 
UT

 
Or

bit
: 2

24
2

N :::x: >- u C
 

Q)
 ::, O"'
 

Q)
 

(%..,
 

w0
:::; 5

.34
 

ram
p:::;

0.0
10 

dec
mp

:::;0
.25

320
 I,

I

1 60 i1,1 1 11 
nnu

1 1P
�1

I 
_ 

) I 
;,, 

I 
.I 

\ 
l1ll

 l1
l 360

i'I � : 
r 

80 40 20 10 5 0.0 
0.2

 

rt
270

I rBO 90

·r
,�

•- -
,.,.�

L
o

.J1
1�·

 
. _;_:

. ,
. 

0.4 
0.6

Sec
ond

s 
Ph

as
e 

Dif
fer

en
ce

0.8 
1.

0 

Fi
g. 

2. 
Po

we
r r

at
io

 a
nd

 p
ha

se
 d

iff
er

en
ce

 o
f w

av
el

et
 tr

an
sf

or
m

s 
of

 th
e 

E 
ele

ct
ric

 fi
el

d 
co

m
po

ne
nt

 a
nd

 o
f e

le
ct

ro
n 

de
ns

ity
 f

luc
tu

at
io

ns
. A

 lo
ga

ri
th

m
ic

 co
lo

ur
 sc

al
e 

is
 us

ed
 fo

r t
he

 ra
tio

 p
an

el.
 P

ow
er

 ra
tio

 a
nd

 p
ha

se
 d

iff
er

en
ce

 a
re

 n
ot

 sh
ow

n 
w

he
n 

th
e r

es
pe

ct
iv

e p
ow

er
s o

f e
ac

h 
qu

an
tit

y 
ar

e 
to

o 
w

ea
k.

 

8



., 
::i:: 
::---z ' 
:z; 

� ..."
;: 0 
0.. 
a 0 
:;:: 
(<) 
;:l _, 0 
;:l 

&: 
� 
·.; c:: "
Cl 

10-4 FFT 
slope=-2.13:1:0.10 1 0-5 1 0-61 0-710-81 0-9 1 0  100 1 000 

Frequency (Hz) 

FFT 
1 o-3 ,,---,-.,........,....,.,.,,...�,..,....,..,. ..... .,....-.-........ ..,....,'"' 

slope=-2.03±0.08 

10 1 00
Frequency (Hz) 

1 000 ., 
:i:: 
::---z ' 
! 
...";: 0 
0.. 
c:: 0 
:;:: 
(<) 

3 0 
;:l 

&: 
>-. .., 
·.;c:: 
Q.> 

Cl 

10-4 WAVELET 
slope= - 1 .96 ±0.08 10-51 0-61 0-7 10-810-91 1 0  100 1000 

Frequency (Hz) 

WAVELET10-3 �-.-��������-.-��= 
slope=-2.04±0.10 10-8 ._ ................. �"'-'-_,_..,_,'--'-'-'........___._,_........,........, 1 1 0  1 00 

Frequency (Hz) 
1 000 Fig. 3. Comparison between FFT power spectra and the time-averaged wavelet square modulus. The two upper panels show the power spectra of electron density fluctuations, while the two lower ones represent the power spectra of EH electric field component. Power spectra are calculated from FFT analysis (on the left) and wavelet transform (on the right) over 1 s data presented in Fig. 1 .  

9



are simultaneously observed at 0.05 and 0.6 s for both 
fields, and have a phase difference (Fig. 3) taking well 
defined values in the range 270---300°. A third local 
maximum at 30 Hz and 0.47 s exhibits a phase differ­
ence close to 0° . The elongated structures generally 
also have a constant phase difference over more than 
one octave, as can be observed at 0.9 s above 30 Hz. 
This kind of feature could, for example, be regarded 
as the signature of the plasma instability mechanism 
(namely the gradient-drift instability) acting on the 
plasma in the growing phase of turbulence devel­
opment. A more extended study over a larger data set 
is certainly needed before one can draw definitive 
conclusions, but this falls outside the scope of this 
preliminary presentation. In order precisely to com­
pare experimental results with those of numerical 
models of nonlinear development of the turbulence, 
it would be useful to apply the wavelet analysis to the 
results of numerical simulations of several plasma 
instability mechanisms. 

5. CONCLUSION 

We have applied the wavelet analysis to turbulent 
electric and density waveforms that are caused by 

gradient-drift instability in the ionospheric plasma. 
This method of analysis is well adapted to the study 
of the small scale structures of the turbulence and 
in particular to the determination of its degree of 
inhomogeneity. Furthermore, the comparison of the 
wavelet transforms of the two fields belonging to the 
same physical phenomenon allows a determination of 
the relation between these fields in the time�frequency 
plane, and could certainly be very helpful in under­
standing and identifying the plasma instability mech­
anisms responsible for the growth of the observed 
electrostatic turbulence. 

The method could also be applied to the analysis of 
two components of a vector field (electric, magnetic, 
velocity) and to the study of the polarization charac­
teristics of transient signals. This will be the subject 
of further work. 
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