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Abstract35

In a recent study, Coppola et al (2020) assessed the ability of an en-36

semble of convection-permitting models (CPM) to simulate deep con-37

vection using three case studies. The ensemble exhibited strong dis-38

crepancies between models, which were attributed to various factors.39

In order to shed some light on the issue, we quantify in this paper40

the uncertainty associated to different physical parameterizations from41

that of using different initial conditions, often referred to as the inter-42

nal variability. For this purpose, we establish a framework to quantify43

both signals and we compare them for upper atmospheric circulation44

and near-surface variables. The analysis is carried out in the context of45

the CORDEX Flagship Pilot Study on Convective phenomena at high46

resolution over Europe and the Mediterranean, in which the interme-47

diate RCM WRF simulations that serve to drive the CPM are run48

several times with different parameterizations. For atmospheric circu-49

lation (geopotential height), the sensitivity induced by multi-physics50

and the internal variability show comparable magnitudes and a similar51

spatial distribution pattern. For 2-meter temperature and 10-meter52

wind, the simulations with different parameterizations show larger dif-53

ferences than those launched with different initial conditions. The54

systematic effect over one year shows distinct patterns for the multi-55

physics and the internal variability. Therefore, the general lesson of56

this study is that internal variability should be analyzed in order to57

properly distinguish the impact of other sources of uncertainty, espe-58

cially for short-term sensitivity simulations.59

Keywords: Internal variability, Regional climate models, Uncer-60

tainty, Physical parameterizations, Ensemble61
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1 Introduction62

The increasing resolution of Regional Climate Models (RCMs) has reached63

the so-called convection-permitting scale (Prein et al, 2015), by approaching64

resolutions of a few kilometers, typically used in Numerical Weather Predic-65

tion (NWP). A recent study by Coppola et al (2020) presented the largest66

multi-model ensemble of convection permitting RCMs to date, with an ini-67

tial experiment exploring the ability of RCMs setup as NWP models and as68

regional climate modelling tools. Strong discrepancies between models were69

found in simulating three heavy precipitation events over the Alps. The70

explanation of these discrepancies was left open, and they speculated on71

three potential explanations: (1) the proximity of the event to the bound-72

aries of the domain, (2) a failure in some RCMs to capture the response to73

the drivers of the event and (3) internal variability being responsible for the74

differences across models. This study is a follow up of Coppola et al (2020),75

where we investigate the role of internal variability in a selected event and76

we also further extend our analysis to a full annual cycle.77

Internal, unforced climate variability is one of the main sources of uncer-78

tainty in global climate simulations (Hawkins and Sutton, 2009). Due to the79

non-linear and chaotic nature of the climate system, small perturbations to a80

given state of the system grow and develop different trajectories in the state81

space (Palmer, 2005). In a relatively short period of time, two slightly per-82

turbed simulations in which initial conditions are modified can differ as much83

as two randomly chosen states of the climate system (Kalnay, 2003). When84

considering coupled systems that exhibit modes of low-frequency variability,85

even mean states over long periods of time can differ considerably. This86

internal or natural variability of the system is commonly explored using en-87

sembles of simulations started from perturbed initial conditions (Haughton88
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et al, 2014). The uncertainty arising from internal variability is not negli-89

gible compared to other sources of uncertainty, such as GCM modelling or90

GHG-scenario uncertainty (Hawkins and Sutton, 2009; Deser et al, 2012;91

van Pelt et al, 2015; Kumar and Ganguly, 2018).92

In contrast, internal variability emerging in regional climate models93

(RCMs) is usually smaller than that in GCMs (Caya and Biner, 2004). This94

uncertainty is also commonly assessed by using a multi-initial-conditions95

ensemble (MICE) in order to separate RCM internal variability from the96

signal of forced variability (Giorgi and Bi, 2000; Christensen et al, 2001;97

Caya and Biner, 2004; Lucas-Picher et al, 2008b; Giorgi, 2019). Several98

studies concluded that at least 5-6 members should be considered to obtain99

robust estimates of internal variability (Lucas-Picher et al, 2008b; Laux et al,100

2017). The amplification of perturbations in the initial conditions is damped101

somewhat by the continuous flow of information through the boundaries of102

the limited area domain. Lucas-Picher et al (2008a) quantified the relation103

between the RCM internal variability and the lateral boundary forcing over104

the domain. In mid-latitudes, internal variability has a seasonal behaviour105

with higher (lower) values in summer (winter), when the boundary forcing106

(e.g. storm track intensity) is weaker (stronger) and the model is more (less)107

free to develop its own circulation (Caya and Biner, 2004; Lucas-Picher et al,108

2008b). According to the general atmospheric circulation, prevalent winds109

(e.g. westerlies in mid-latitudes) force a flow of information through the110

boundary. As a result, this forcing imposes a typical pattern that exhibits111

increasing internal variability as one travels downwind across the domain.112

Flow perturbations develop and grow as they travel through the RCM do-113

main, reaching a maximum near the downwind boundary where they are114

forced back to the flow of the GCM in the relaxation zone (Lucas-Picher115

5



et al, 2008b).116

Despite its relevance, few studies have addressed other RCM uncertain-117

ties in the light of internal variability. Regarding multi-model uncertainty,118

Sanchez-Gomez et al (2009) explored the impact of internal variability for119

four different weather regimes, which showed different sensitivity depending120

on the lateral boundary conditions. The fraction of multi-model uncertainty121

in RCMs that can be explained by internal variability can be relatively large.122

For example, Gu et al (2018) suggest that it could be up to 70% of the to-123

tal uncertainty for the precipitation in Asia. Also, Fathalli et al (2019)124

reported that internal variability was comparable to the inter-model pre-125

cipitation spread in Tunisia during summertime, when the lateral forcing126

constraint is reduced. As for GCMs, the magnitude of RCM internal vari-127

ability depends on the synoptic circulation, model configuration, region and128

season (Giorgi and Bi, 2000; Alexandru et al, 2007).129

The relevance of RCM internal variability is also recognized by the Coor-130

dinated Regional climate Downscaling Experiment (CORDEX; Giorgi and131

Gutowski, 2015), an international ongoing initiative endorsed by the World132

Climate Research Program which coordinates the regional climate downscal-133

ing community. Under this framework, multiple institutions are producing134

and analysing the largest regional multi-model ensemble in history, cover-135

ing all populated areas in the world with a standard set of continental-scale136

domains.137

Multi-RCM ensembles sample the dynamical downscaling methodolog-138

ical uncertainty. As such, it is challenging to discern the contributions to139

uncertainty from other sources (e.g. physical process parameterizations, in-140

ternal variability). This is because RCMs developed by different groups141

differ in so many aspects that the results from different models and mem-142
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bers cannot be used to understand the processes responsible for the spread.143

There have been different attempts to decompose multi-model uncertainty144

into other sources of uncertainty that can be more systematically explored.145

Perturbed-Physics Ensembles (PPE; Yang and Arritt, 2002; Bellprat et al,146

2012) consider a given RCM and explore the uncertainty associated to se-147

lected parameters, by sweeping a range of acceptable parameter values. This148

approach allows to link the resulting uncertainty to a specific parameter.149

Multi-physics ensembles (MPE; see e.g. Garćıa-Dı́ez et al, 2015) provide a150

way to link modelling uncertainties to specific processes. These ensembles151

are generated using a single RCM by switching between different alternative152

physical parameterizations, which are the model components representing153

sub-grid-scale processes such as cloud microphysics, radiation, turbulence,154

etc. Physical parameterization are one of the key differences between dif-155

ferent RCMs and, therefore, MPEs mimic multi-model ensembles with the156

advantage of a fixed dynamical core and the rest of non-sampled physics157

schemes. Of course, these fixed components also limit model diversity and,158

therefore, MPEs cannot replace multi-model ensembles. Quite a few anal-159

yses tested the ability of different MPEs to encompass the regional climate160

in different areas (Fernández et al, 2007; Evans et al, 2012; Solman and161

Pessacg, 2012; Jerez et al, 2013; Garćıa-Dı́ez et al, 2015; Katragkou et al,162

2015; Stegehuis et al, 2015; Devanand et al, 2018). Some of these analyses163

mentioned internal variability as potential source of background noise that164

impacts the sensitivity to the physical parameterization schemes (Tourpali165

and Zanis, 2013; Stegehuis et al, 2015), though internal variability was not166

formally investigated.167

Few studies consider both physics sensitivity and internal variability. For168

instance, Laux et al (2017) explicitly aim to separate the effects of internal169
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variability from those of changes in land-use, suggesting that internal vari-170

ability has a significant impact on precipitation. Crétat and Pohl (2012)171

also studied the effect of physical parameterizations on internal variability172

and questioned the robustness of previous physics sensitivity studies which173

did not take into account internal variability.174

The Flagship Pilot Study on Convective phenomena at high resolution175

over Europe and the Mediterranean (FPS-Convection) is an ongoing ini-176

tiative endorsed by CORDEX. This initiative aims at studying convective177

processes with CPM over the Alpine region (Coppola et al, 2020) by produc-178

ing both multi-model and multi-physics ensembles of RCM simulations. The179

initial results showed large discrepancies between individual ensemble mem-180

bers in their representation of selected heavy precipitation events. In this181

work, we take advantage of the ensembles produced in the FPS-Convection182

to follow up the study of Coppola et al (2020), in which the origin of these183

discrepancies was determined out of the scope. Since causation is difficult to184

address in a multi-model approach, we focus on the multi-physics ensemble185

within the FPS-Convection RCMs that serve to drive the CPM. We quan-186

titatively compare the signal arising from the use of different model compo-187

nents (physical parameterizations) against that associated to the background188

noise referred to internal variability at different time scales. The objective189

is twofold: (1) to assess whether modelling discrepancies in Coppola et al190

(2020) fall within the range of internal variability and (2) to quantify how191

much uncertainty in a multi-physics ensemble can be explained by internal192

variability.193

The paper is structured as follows: The methodology and data used194

in this work are detailed in Section 2. Section 3 presents and discusses the195

results. First, applied to a case study presented in Coppola et al. (2020) and,196
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second, we extend the study to consider the role and relative magnitude of197

internal variability with respect to multi-physics uncertainty over an annual198

cycle. Finally, the conclusions are summarized in Section 4.199

2 Data & methods200

2.1 Multi-physics ensemble201

In this work, we explore the uncertainty associated to physical parameteri-202

zations by using multi-physics ensembles (MPE, hereafter) generated in the203

context of the FPS-Convection. This initiative considers multiple RCMs,204

but here we will focus only on the sub-ensemble of simulations using the205

Weather Research and Forecasting (WRF) model (Skamarock et al, 2008).206

This modelling system provides the ability to switch among different physical207

parameterization schemes for a given sub-grid-scale process. Additionally,208

WRF allows for online telescopic nesting, running several nested domains si-209

multaneously and exchanging information across domains at each time step.210

This approach gives rise to much smaller artifacts close to the borders of211

the inner domains, as compared to the standard procedure of running the212

model offline, nested into the output of a coarser resolution domain.213

All institutions participating in FPS-Convection and using WRF have214

coordinated a MPE by setting different physical configurations so that at215

least one option differs among them (Table 1). The MPE considers different216

options varying the parameterization schemes for cloud micro-physics pro-217

cesses, surface and land processes, planetary boundary layer, and radiative218

processes. All other model configuration and experimental setup are fixed,219

including the model version (ARW-WRF v3.8.1).220

All FPS-Convection WRF simulations consider a high-resolution (∼3km),221
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convection-permitting domain centered over the Alpine region (ALP-3) nested222

into a coarser-resolution (∼12 km), and much larger, pan-European domain.223

Except for the deep convection parameterization scheme, that is switched off224

in ALP-3, physical configuration does not differ between both domains. All225

WRF ensemble members used one-way nesting, so there is no communica-226

tion from the convection-permitting back to the coarser domain. Therefore,227

the convection-permitting inner domain did not alter in any way the results228

for the pan-European domain used in this work. Our analyses focus only229

on this pan-European domain, since we are interested in the uncertainty of230

the synoptic conditions over Europe, which drive the needed moisture that231

leads to unstable conditions over the Alpine area (see Section 3.1). The232

ALP-3 domain is not large enough to alter significantly the large-scale syn-233

optic conditions, so, in order to reproduce the case studies of Coppola et al234

(2020) in the ALP-3 domain, the right sequence of observed events should235

be preserved first in the pan-European domain forcing simulations.236

We use WRF data from two different FPS-Convection experiments driven237

by 6-hourly initial and lateral boundary conditions taken from the ERA-238

Interim Reanalysis (Dee et al, 2011):239

Experiment A is described in Coppola et al (2020) and consisted of a240

preliminary test with all participating models, including WRF. Three heavy241

precipitation events in the Alpine region were simulated in two modes, iden-242

tified as “weather-like” and “climate mode”. Weather-like simulations were243

started one day before the onset of the events, aiming at simulating the event244

as closely as possible to the reality, aided by the predictability provided by245

the initial conditions. As the proximity of the initial conditions constrains246

the internal variability, we did not consider weather-like simulations in this247
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study. Climate-mode simulations were started one month before the event,248

so that initial conditions were not a source of predictability in this case and249

the models were mainly driven by the lateral boundary conditions, which250

is typical in regional climate modeling. We focus on a single event that251

occurred around the 23rd June, 2009, and was covered by climate-mode252

simulations running for the period from 1st June to 1st July, 2009 (see Sec-253

tion 3.1). WRF members of the ensemble showed the largest differences in254

terms of predictability of this particular event. WRF simulations for this ex-255

periment used a pan-European domain at 0.11◦×0.11◦ horizontal resolution256

(EUR-11), corresponding to the official EURO-CORDEX domain setup.257

Experiment B consists of RCM evaluation simulations covering a 15-year258

period starting in 1999. All the WRF simulations started using the same259

initial conditions, with soil states generated by a 1-year spin-up run (1998).260

As in experiment A, the WRF model contributed with a MPE. However, the261

physical parameterizations for this experiment were slightly adjusted with262

respect to those used in experiment A (see Table 1) in order to consider263

more complex physics schemes and to avoid uncertainties from the interac-264

tion between distinct PBL and surface layer schemes. It should be noted265

that WRF simulations for this experiment used a slightly coarser ∼15 km266

horizontal resolution (EUR-15) than those in Experiment A, covering the267

same domain. This change was motivated to comply with the recommended268

odd nesting ratios for telescopic domains (5:1 in this case, from EUR-15 to269

ALP-3), which avoids interpolation between the staggered Arakawa-C grids270

used. In this way, fluxes across nested domains are more accurate and com-271

putationally efficient. In this study we used the first year (1999) of these272

simulations.273
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2.2 Multi-initial-conditions ensemble274

A MICE was run to assess the role of internal variability in explaining the275

uncertainty developed by the MPE. We used WRF configurations AI and BI276

(see Table 1) to match the setup of experiments A and B, respectively, using277

a set of 6 different initial conditions. The set of perturbed initial conditions278

was generated using the lagged method (see e.g. Laux et al, 2017), i.e. by279

starting the simulations the day before (AI-r1), 2 days before (AI-r2), and so280

on, up to a 5-day lag (AI-r5). This is a simple way of perturbing the initial281

conditions while maintaining the physical consistency among variables. The282

extra simulated days are excluded, and we analyze only the period common283

to the MPE. The standard, no-lag runs AI and BI (say, AI-r0 and BI-r0)284

are part of both the 8-member MPE and this 6-member MICE.285

We ran the 1-year MICE corresponding to experiment B (BI-r1 to BI-286

r5) only for the EUR-15 domain, without the inner ALP-3 nesting, so as to287

significantly reduce computational demands. Since no feedback from ALP-288

3 back to EUR-15 was allowed in the MPE, our EUR-15 MICE is fully289

comparable to EUR-15 MPE.290

2.3 Quantification of uncertainty291

In order to quantify the uncertainty (spread) in the two ensembles, we fol-292

lowed the approach of Lucas-Picher et al (2008b), who used an unbiased293

estimator of the inter-member variance:294

σ2X(s, t) =
1

M − 1

M∑
m=1

(X(s, t,m)− 〈X〉(s, t))2 (1)

where X(s, t,m) is the value of a given variable X at position s (summariz-295

ing, in this case, typical bi-dimensional position indices i, j), at time step t296
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and from ensemble member m. M is the total number of ensemble members.297

The term 〈X〉(s, t) is the ensemble mean at a given position s and time t:298

〈X〉(s, t) =
1

M

M∑
m=1

X(s, t,m). (2)

To avoid confusion, we keep in this methodological summary the notation299

of Lucas-Picher et al (2008b) and earlier publications on internal variability,300

although the use of Greek letters (σ2) to refer to a sample variance estimator301

is uncommon, and usually reserved for the population parameters to be302

estimated (Wilks, 2011). Note that even though this measure was proposed303

to quantify internal variability, it is just a measure of spread or uncertainty,304

that can be applied to any ensemble. This is typically employed to quantify305

internal variability on MICE. In this work, we apply it to both MPE and306

MICE.307

The uncertainty, as represented by Eq. 1, is a spatio-temporal field. The308

evolution of uncertainty in time (UT ) is calculated by considering the spatial309

average of the inter-member variance σ2X as310

UT 2 ≡ σ2X
s
(t) =

1

S

S∑
s=1

σ2X(s, t) (3)

where S is the total number of grid cells in the domain. UT 2 represents the311

domain average of the inter-member variance. To emphasize the quadratic312

nature of this uncertainty measure, we use the symbol UT 2 in Eq. 3 but, in313

the following, we consider always its square root UT , which has the units314

of the variable, and allows for an easier interpretation. In the same way, a315

spatial distribution of the uncertainty (US) is obtained by considering the316

time average of the inter-member variance σ2X as317
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US2 ≡ σ2X
t
(s) =

1

T

T∑
t=1

σ2X(s, t) (4)

where T is the total number of time steps in the period. This expression is318

an estimate of the expected value of the inter-member variance over a period319

of interest.320

We consider transient eddy variability (TEV ) as a reference for inter-321

member variability. Passing weather systems create a natural time variabil-322

ity in meteorological fields, which sets a limit to the maximum variability323

attainable at a given location. This variability is seasonally dependent, so324

Caya and Biner (2004) proposed to use a monthly estimator and compute a325

spatial average to make it comparable to UT:326

TEV 2 ≡ σ̂2X(τ,m) =
1

S

S∑
s=1

(
X(s, t,m)−Xτ

(s,m)
)2τ

(5)

where the τ operator computes the monthly average, i.e. the mean for all327

time steps t corresponding to a given month τ . Again, the σ-notation is from328

previous literature but, in the following, we will simply refer to this monthly-329

averaged, transient-eddy variance as TEV. Note that TEV depends on the330

model and also suffers from sampling uncertainty, which will be quantified331

by computing it from different ensemble members.332

Finally, the long-term impact (LTI) of the inter-member uncertainty333

on the climatology of a meteorological field is estimated by calculating the334

variance of the climate among ensemble members as335

LTI2 ≡ σ2
X

(s) =
1

M−1

M∑
m=1

(
X
t
(s,m)−

〈
X
t
〉

(s)
)2

(6)

where X
t
(s,m) is the time average (i.e. the climatology) of each ensemble336
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member m and
〈
X
t
〉

(s) is the ensemble mean of the climatologies. Note337

that LTI measures the ”uncertainty” of climate, while US measures the338

”climate” of the uncertainty. The latter is sensitive to the correspondence339

of meteorological events (e.g. heavy precipitation convective events) in time340

and space, while the former measures systematic deviations among members341

that lead to a different mean state (climate).342

3 Results & discussion343

3.1 Event reproducibility344

As an example, we focus first on a heavy precipitation case study ana-345

lyzed by Coppola et al (2020). The event was mostly driven by large-scale346

features, which consisted of a cut-off low over the Balkans inducing a persis-347

tent northeasterly flow over Austria. This unstable flow was warm and wet348

enough to trigger extreme precipitation by orographic lifting upon reaching349

the Alps. Observations reveal precipitation peaking on the 23rd June, 2009,350

over Austria. RCM simulations consistently reproduced this heavy precipi-351

tation event under weather-like initialization (see Section 2.1), but Coppola352

et al (2020) reported mixed results when considering the climate-mode ini-353

tialization. Some members of the multi-model/multi-physics ensemble com-354

pletely missed the precipitation event or represent highly damped versions355

of it (see Figure 4 of Coppola et al (2020)). They speculated on a poten-356

tially weak background synoptic forcing for this event, which we investigate357

in this work.358

Notably, the WRF MPE alone also exhibited mixed results in reproduc-359

ing the event. For illustration, Figure 1 (left) shows the accumulated pre-360

cipitation on 23rd June for 4 WRF configurations. Only WRF configuration361
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AF is able to reproduce the event, with extended precipitation over Austria.362

Other WRF configurations (AB, AE, AD) miss the event and show some363

precipitation over southern Italy or very scarce precipitation (configurations364

AC, AG, AI, not shown in Figure 1).365

The synoptic situation, as represented by the 850hPa geopotential height366

(Figure 1, right), shows the cut-off low located as observed (ERA-Interim)367

over the Balkans for the AF configuration. For the rest of the MPE mem-368

bers, a low-pressure system is simulated in southern Italy, which alters the369

circulation so that the warm-moist airflow over the Alps is strongly reduced370

and precipitation is eventually not occurring or occurring over other areas371

(southern Italy).372

Given that MPE members differ only in their physical parameterization373

schemes, one might be tempted to assume that configuration AF outper-374

forms the rest. That would imply e.g. that the use of the YSU non-local375

boundary layer scheme somehow helps in developing the cut-off low at the376

right location, as opposite to the MYNN2 local mixing scheme. This is the377

only difference between configurations AF and AD. Moreover, YSU alone378

cannot explain the ability of AF to represent the event, because configuration379

AB also used this PBL scheme. The only difference between configurations380

AF and AB is the land surface model (LSM). AF used Noah-MP, a much ex-381

tended version (Niu et al, 2011) of the Noah LSM (used in AB), considering382

a multi-layer snow model with more realistic snow physics, canopy shadows,383

snow on canopy, an aquifer layer, and many other improvements. Other con-384

figurations used Noah-MP (AD, AE or AI), though, and the low pressure385

system and precipitation still did not occur on the right place. Therefore,386

either the exact parameterization combination of configuration AF is the387

key or there must be a different explanation for the discrepancies.388
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Note that WRF was run using one-way, online telescopic nesting and,389

therefore, we can also rule out the proximity of the high precipitation event390

to the ALP-3 domain boundaries as potential cause for the different model391

results in Coppola et al (2020). Boundary artifacts close to the inner bound-392

aries are greatly reduced in this setup and still some WRF members repro-393

duced the event while others missed it.394

An alternative hypothesis is that the different development of the event395

in the different MPE members is just the result of internal variability. To396

test this hypothesis, we considered a MICE based on configuration AI, which397

did not develop the event under the standard MPE initialization setup (start398

date: 00UTC, 1st June, 2009). Configuration AI (AI-r0) developed a low399

over southern Italy (Figure 2a), as many of the other configurations (Fig-400

ure 1). Many of the MICE members also developed a low over this area401

(see e.g. Figure 2), but member AI-r1 (start date: 00UTC, 31st May, 2009)402

presents a low in the right place, when compared against ERA-Interim.403

This was achieved by perturbing the initial conditions, starting the simula-404

tion one day earlier, and preserving exactly the same model configuration.405

Note that this is not a matter of improved initial conditions, since there are406

more than 20 days simulated from the geopotential height fields shown in407

Figures 1 (right) and 2, well beyond the limit of deterministic predictabil-408

ity of an atmospheric state. This is the result of internal variability. The409

slight perturbations in the initial conditions grew up by the non-linear dy-410

namical model. This process is in competition with the constraints imposed411

by the lateral boundary conditions, which bring the flow towards that of412

ERA-Interim close to border of the domain. This constraint can be seen in413

Figures 1 (right) and 2.414

In this particular flow state, there seem to be two preferred weather415
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regimes over the southern Mediterranean area or, at least, our model sim-416

ulations were only able to generate these two weather regimes: one with417

a low evolving over southern Italy and the other with the low positioned418

over the Balkans. The observed flow took the Balkan low path even though419

the model has difficulties to reproduce this path. Note that these weather420

regimes and their probability of occurrence are likely model dependent. In421

any case, this is just one particular event. Once we have shown that internal422

variability can trigger flow deviations similar to those from different physi-423

cal parameterizations, we focus on quantifying their relative uncertainty, i.e.424

the spread of MPE and MICE ensembles.425

The evolution of inter-member variance in time for MPE and MICE (Fig-426

ure 3) can reach comparable values. MPE member simulations take exactly427

the same initial and lateral boundary conditions from ERA-Interim, hence428

the uncertainty (essentially the member-to-member variability) at the start429

is very small (close to zero during the first day), indicating that all members430

produce similar circulation patterns. As the different physical parameteri-431

zations have an effect on the model, each member simulated a different syn-432

optic situation and the uncertainty increases. Regarding the MICE, since433

its members were initialized before the MPE start date shown in Figure434

3, the spread among members is larger than in the MPE in the beginning435

of June. MICE uncertainty (i.e. internal variability) remains fairly stable436

along the 1-month time span of the simulation. After about 10 days, the437

magnitude of MPE and MICE inter-member variance are comparable, with438

internal variability (MICE spread) generally larger than MPE spread. This439

suggests that the different physical parameterizations used in the MPE in-440

troduce smaller differences among members than those arising from internal441

variability.442
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A qualitative look at the UT evolution (Figure 3) shows that, even if443

uncertainty remains quite stable, there are periods of increased uncertainty444

that seem to be synchronous in both ensembles. These must be periods of ei-445

ther weaker lateral boundary forcing (the only external forcing) or increased446

internal variability due to a particular situation of the internal dynamics.447

Notably, the period 22-26 June, when the heavy precipitation event occurred448

over Austria, is a period of increased uncertainty, where internal variabil-449

ity surpasses MPE spread. Also, MPE spread seems to develop a linear450

trend along the 1-month period. If sustained, this trend would overcome451

internal variability in longer periods. Unfortunately, FPS-Convection ex-452

periment A only considered 1-month-long simulations. In order to explore453

MPE vs. MICE uncertainty over a longer period, we use the output from454

FPS-Convection experiment B in the next section.455

Experiment B produced a MPE with slightly different model configura-456

tions (Table 1) and also on a slightly coarser domain (EUR-15). In order to457

discard a sensitivity to this coarser resolution, we simulated a new MICE458

using AI configuration but on a much coarser 0.44◦ × 0.44◦ horizontal res-459

olution (EUR-44). Its spread (dashed line on Figure 3) is very similar to460

that of EUR-11, which suggests that a major part of the uncertainty is due461

to the large-scale synoptic pattern and not to smaller scale variability.462

3.2 Analysis over an annual cycle463

We extended the analysis to an one-year period taking advantage of FPS-464

Convection experiment B (Section 2.1). In particular, we extended Figure 3465

to one year using the year 1999 from the WRF MPE of experiment B and466

a MICE based on configuration BI. The resulting inter-member variance in467

time (Figure 4) shows a very similar behaviour of MPE spread and inter-468
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nal variability (MICE spread) along the whole year. MPE members started469

again from the same initial conditions. Therefore, they show very low dif-470

ferences on January 1st, which increases after about 10 days. After this471

10-day transient evolution affected by the initial conditions, both ensembles472

show comparable inter-member variance, exhibiting an annual cycle with473

increased uncertainty in summer. Moreover, even weekly to monthly vari-474

ability in these UT time series seems to match in both ensembles. Notably475

in the last months (Oct-Dec), and also in many other peaks along the year.476

This suggests that the differences introduced by the different physics formu-477

lations along the time are amplified by the model in a similar way than the478

perturbations of the initial conditions. No systematic effect is noticeable in479

the circulation. Put in another way, for this variable at least, multi-physics480

uncertainty can be fully explained by internal variability.481

As in previous studies (Caya and Biner, 2004; Lucas-Picher et al, 2008b),482

we used transient-eddy variability (Equation 5) as a reference for uncer-483

tainty. This is the natural variability of a meteorological field associated to484

weather systems traveling along the storm track. TEV can be computed485

from any of the ensemble members. We used simulation BI (top line in486

Figure 4), which is the only member common to both MPE and MICE. To487

evaluate the uncertainty associated to the selection of this particular mem-488

ber, we computed the monthly TEV from each member, and its standard489

deviation for each ensemble and for each month is shown as error bars in490

Figure 4. TEV spread is very low and any member could have been used as491

the reference. As already found in previous studies in mid-latitudes, TEV is492

larger in winter than in summer, due to the more frequent passage of weather493

systems from the Atlantic. The faster atmospheric circulation in winter im-494

poses a strong boundary forcing, which may explain the lower spread among495
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ensemble members. TEV and the associated boundary forcing is lower dur-496

ing summer. As a result, the model has more freedom to develop its own497

circulation features, increasing the spread between the members. During498

summer, the spread reaches approximately half of the TEV, which would be499

the maximum attainable. This maximum is what one would expect from a500

GCM, which has no lateral boundary constraints. For such a model, MICE501

spread (i.e. internal variability) would increase during 1-2 weeks to reach502

the TEV line and remain around this limit along the year. In this sense,503

RCM internal variability is negligible compared to GCM internal variability504

during winter, but it represents an important fraction (approximately one505

half, in this example) during summer.506

The similarity between MPE and MICE uncertainty is not restricted507

to domain averages. In Figure 5, we show the spread in space, by averag-508

ing inter-member variance in time for each model grid point (Equation 4).509

Both maps show a typical spatial distribution of internal variability in mid-510

latitudes, with increasing variability from the southwestern to the north-511

eastern part of the domain. The patterns are remarkably similar, with512

MPE inter-member variance (Figure 5a) only slightly larger than internal513

variability (Figure 5b). Both reach about 35 m over the Baltic Sea and a514

steeper gradient towards the outflow (eastern) boundary than in the inflow515

(western) one. The westerly input flow is slowly modified by the RCM as it516

travels along the domain, but it is suddenly modified at the outflow bound-517

ary to match again the ERA-Interim flow at the eastern border. Christensen518

et al (2001) suggested that, for a domain over Europe, the lower uncertainty519

in south-western Europe is also due to the fact that the area is mainly sea,520

and not only due to the distance to the boundaries. Seasonal winter (DJF)521

and summer (JJA) patterns of MPE and MICE inter-member variance (not522
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shown) are very similar to those in Figure 5. They show higher (lower)523

intensity in JJA (DJF), reaching 45 m (25 m) over the Baltic Sea.524

The systematic effects of the physical parameterizations on the circu-525

lation can be seen in the long-term impact (Figure 6a). LTI summarizes526

the variability of the climatology for the different ensemble members (Equa-527

tion 6). Note that this variability is about one order of magnitude smaller528

than the uncertainty measures shown previously (cf. the scales of Figures 5529

and 6). Nevertheless, LTI has an impact on the simulated climate, while the530

(time) mean inter-member variance explored previously is mainly due to a531

lack of correlation (Caya and Biner, 2004). The largest differences among532

the simulations using different parameterizations occur in the center of the533

domain, between Germany and Poland, and extend towards the Alpine re-534

gion. Remarkably, systematic differences develop also on the northwestern535

boundary.536

The LTI of internal variability (Figure 6b) shows a distinct pattern, with537

the largest values in the northern half of the domain. The magnitude is538

comparable to that of the MPE, though. Therefore, even though the spatial539

patterns are different, the systematic differences among MPE members are540

still comparable to the internal variability. This would suggest that one-year541

simulations are not enough to distinguish the systematic effect of a particular542

parameterization configuration compared to the impact of different initial543

conditions on the circulation. Since the MICE is just composed of multiple544

realizations of the same model configuration, its LTI must tend to zero as the545

simulation length increases and the climatology of all members tends towards546

the “true” model climatology. Longer simulations, such as those currently547

under way in the FPS-Convection, should provide a better assessment of548

the LTI of the MPE. For example, for 10-year simulations, the values on549
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Figure 6b should be divided by a factor of
√

10 ≈ 3.2 (Lucas-Picher et al,550

2008b). Up to this point, we have focused on the circulation (850 hPa551

geopotential height) and we have seen that multi-physics uncertainty is hard552

to distinguish from internal variability. The results for the circulation at 700553

hPa or 500 hPa (not shown) are qualitatively similar.554

3.3 Surface variables555

Since circulation is only indirectly affected by physical parameterizations, in556

this section we focus on near-surface (2-meter) temperature. This is just one557

example of a variable affected by surface radiative and heat flux balances,558

which are parameterized in RCMs. In particular, the set of parameteriza-559

tions tested in the FPS-Convection WRF ensemble (Table 1) directly affects560

cloud cover, surface energy (and mass) exchange and transport. As a re-561

sult, this MPE shows a spread in surface temperature that substantially562

exceeds internal variability (Figure 7). Other near-surface variables, such563

as 10-meter wind, were also checked (not shown) and showed qualitatively564

similar results as near-surface temperature.565

The evolution of inter-member variance for near-surface temperature,566

both for the MPE and MICE is different from the geopotential height shown567

in Figure 4. The annual cycle is clearer in the TEV than in the variance,568

which only shows a hint of a seasonal cycle during April through October.569

In summer, MPE and MICE spread evolution is uncorrelated, with some570

peak MPE uncertainty events (e.g. end of July) clearly standing out of571

internal variability. However, the strong winter variability seems coherent572

between MPE and MICE spread. Even if multi-physics spread is usually573

the greatest, internal variability seems to modulate it. This is in appar-574

ent contradiction with the results of Crétat and Pohl (2012), who claimed575
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that physical parameterizations modulate IV. They show that two MICE576

under different physical parameterization configurations develop a different577

amount of IV on average. However, they also show (their Figure 4b) a co-578

herent evolution in time of the IV between model configurations. In our579

setup, physical parameterizations cannot modulate IV time evolution since580

the model configuration is fixed in the MICE. Still, Figure 7 shows that,581

despite the different spread amounts in MICE and MPE, both evolve coher-582

ently in time. It is likely that a third variable, such as the strength of the583

external forcing (i.e. boundary conditions), modulates the degree to which584

both physics and IV uncertainties can grow.585

Transient-eddy variability for surface temperature (monthly step line in586

Figure 7) shows again the mid-latitude maximum during winter. A key dif-587

ference compared to the geopotential height is the large variability of TEV588

within MPE members, as compared to the MICE members. In fact, un-589

certainty in MPE nearly doubles internal variability during some months.590

Notably, a peak uncertainty event by the end of July reaches the TEV line591

(especially, when considering its uncertainty), indicating that surface tem-592

perature patterns for the different physics differ as much as two random593

temperature patterns in this month. Note, however, that TEV was com-594

puted using a single month and, therefore, this estimate does not consider595

interannual variability. This might explain the reversal of the TEV cycle596

during November and December. The strong uncertainty in the November597

UT estimate is likely pushing up the TEV value for this month.598

The spatial distribution of the inter-member variance for surface tem-599

perature (Figure 8) reveals, as before, a similar pattern of increasing spread600

towards the northeast in both ensembles. In this case, despite the similar601

pattern, MPE shows larger spread values in accordance with Figure 7. MPE602

24



reaches a maximum value of about 3.5 K while MICE reaches about 2 K.603

Finally, apart from the higher day-to-day uncertainty of the MPE for604

surface temperature, a systematic, long-term impact is clearly developed605

for this variable (Figure 9a). Unlike the circulation variable, the long-term606

impact of MPE for temperature is of comparable magnitude to its uncer-607

tainty. Also, it falls well above the long-term impact of internal variability608

(Figure 9b), suggesting that for variables directly influenced by physical pa-609

rameterizations (such as surface temperature), one-year simulations suffice610

to discern the systematic effect of a given parameterization with respect to611

another. Not only the magnitude, but also the spatial pattern of LTI differs612

between that of internal variability and the effect of parameterizations. The613

latter shows three main maxima over Africa, central Europe and Russia. As614

expected, impact is negligible over the sea, where surface temperatures are615

prescribed.616

4 Conclusions617

In this study we quantified the uncertainty arising from WRF model MPEs,618

on two different time scales, developed within the FPS-Convection interna-619

tional initiative. Additionally, for each MPE, new MICEs were performed620

to assess the role of internal variability in explaining the different ability621

of MPE members to reproduce specific convective events. The study was622

carried out for a one-month period focusing on a particular case study of623

heavy precipitation over Austria, and extended to one-year timescale.624

The analyses over the one-month period already shed light on the 2 main625

objectives of this work: (1) The failure of some WRF model configurations to626

reproduce the case study, as reported by Coppola et al (2020), is not related627

to physical parameterizations, but to the absence of a synoptic circulation628
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pattern that favoured the event. Some members of the MICE were able629

to reasonably reproduce the observed synoptic pattern without modifying630

the model parameterization setup. (2) From a quantitative perspective, the631

spread due to the parameterization differences has a magnitude comparable632

to that from internal variability. Therefore, in these one-month simulations,633

the effect of the different physical parameterizations on the circulation can-634

not be distinguished from internal variability.635

The extended study over a one-year period showed similar results for cir-636

culation variables (geopotential height). Multi-physics spread is comparable637

to internal variability both in its time evolution along the year and its spatial638

pattern. In this regard, we found multi-physics circulation uncertainty to639

behave according to previous RCM internal variability studies (Lucas-Picher640

et al, 2008b), with an annual cycle exhibiting increased uncertainty during641

summer and a spatial pattern of increased uncertainty towards the outflow642

boundaries of the regional domain.643

The results, however, depend on the variable, with surface variables644

(known to be sensitive to parameterized processes) showing higher MPE645

spread. For example, for near-surface temperature the spread associated to646

parameterizations was above that due to the internal variability. This sug-647

gests that it is easier to discern both sources of uncertainties when analyzing648

variables more constrained by the model physics, which is typically the case649

in RCM parameterization sensitivity studies (Fernández et al, 2007; Evans650

et al, 2012; Solman and Pessacg, 2012; Jerez et al, 2013; Garćıa-Dı́ez et al,651

2015; Katragkou et al, 2015; Stegehuis et al, 2015; Devanand et al, 2018).652

As a reference for uncertainty, we computed transient-eddy variability,653

and quantified its spread due to the multi-physics and to internal variabil-654

ity. This type of uncertainty also depends on the variable. For the circu-655
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lation, transient-eddy variability of the different physical model configura-656

tions is similar to the internal variability range. However, for near-surface657

temperature, the different physics configurations exhibit a different level of658

transient-eddy variability. This requires further analysis on longer simula-659

tions to properly estimate the inter-annual contribution, but this is beyond660

the scope of the present work.661

The long-term impact of the internal variability has been found to be of662

comparable magnitude to that of multi-physics for atmospheric circulation663

variables on year-long simulations. For surface temperature, however, the664

long-term impact of the multi-physics is larger, standing out of internal665

variability. For both variables, the spatial patterns of MPE and MICE666

differ, and this calls for a detailed study of each physical parameterization667

considered.668

The techniques for quantification of internal variability (Lucas-Picher669

et al, 2008b) were applied here to explore also multi-physics spread, which670

proved to be a useful method for comparing both sources of uncertainty.671

They revealed that uncertainty arising from perturbations of the model672

physics (full replacement of a physics scheme) are seen from the circula-673

tion point of view as perturbations of initial conditions, i.e. as internal674

variability “noise”. Both types of perturbations seem amplified in a similar675

way by the dynamical system and synchronously constrained by the lateral676

boundary conditions. This view of a structured near-surface perturbation677

as a random upper air circulation noise was also found, in a completely678

different context, by Fernández et al (2009).679

The inability of an RCM to reproduce the observed day-to-day circu-680

lation due to internal variability is not a matter of concern for mean cli-681

mate studies, given that long-term climate is preserved (Caya and Biner,682
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2004). However, with the arrival of convection-permitting simulations and683

the increasing interest in the climate of extremes, RCM internal variability684

re-emerges as a matter of concern for model evaluation. As an example, the685

FPS-Convection focuses on high-impact (low probability) convective phe-686

nomena that occur mainly during the summer season, when lateral bound-687

ary forcing is the weakest. The evaluation of models under these conditions688

poses a real challenge that can only be addressed by computationally expen-689

sive experiments including the simulation of long periods and/or the simula-690

tion of a corresponding MICE to disentangle the role of internal variability691

in the results. Other alternatives would be to constrain internal variability692

by using techniques such as spectral nudging, which has its own drawbacks693

(Alexandru et al, 2009), or frequently reinitializing the RCM (Lo et al, 2008;694

Lucas-Picher et al, 2013).695

Finally, the magnitude of internal variability in an RCM has been shown696

to depend on the domain size and location (Giorgi and Bi, 2000; Rinke and697

Dethloff, 2000; Alexandru et al, 2007). Given that, for circulation variables,698

MPE variability behaves as internal variability, we could argue that a similar699

dependence on domain size and location might affect MPE variability. The700

generalization of these results for other domain sizes and for regions with a701

weaker lateral boundary forcing is left for a forthcoming study.702
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List of Tables909

1 WRF multi-physics configurations considered in this study910

(see Section 2.1) for experiment A (one-month simulation,911

EUR-11 domain) and experiment B (one-year simulation, EUR-912

15). For each ensemble member, the table shows an Id. code,913

the institution performing the simulation and the physical914

parameterizations used. The ensembles explore the use of915

different schemes for micro-physics (MP), planetary bound-916

ary layer and surface layer (PBL), land surface (LSM), and917

shallow convection (ShC) processes. The PBL schemes de-918

noted with asterisk (*) used a different surface layer scheme919

despite sharing the MYNN2 PBL. See Table 2 for details of920

each parameterization scheme. . . . . . . . . . . . . . . . . . 39921

2 Physical schemes used in the multi-physics experiments shown922

in Table 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40923
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Exp. Id. Institution MP PBL LSM ShC

A

AB Forschungszentrum Jülich (FZJ-IBG3), Germany Thomp. YSU NOAH GRIMS
AC National Observatory of Athens (NOA), Greece Thomp. MYNN2 NOAH GRIMS
AD University of Hohenheim (UHOH), Germany Thomp. MYNN2* NOAH-MP GRIMS
AE Intitute Pierre Simon Laplace (IPSL), France Thomp. MYNN2 NOAH-MP UW
AF Bjerknes Centre for Climate Res. (BCCR), Norway Thomp. YSU NOAH-MP GRIMS
AG Aristotle University of Thessaloniki (AUTH), Greece WDM6 YSU NOAH GRIMS
AH Instituto Dom Luiz (IDL), Portugal WDM6 MYNN2 NOAH GRIMS
AI Universidad de Cantabria (UCAN), Spain WDM6 MYNN2* NOAH-MP GRIMS

B

BB Forschungszentrum Jülich (FZJ-IBG3), Germany Th-AA YSU NOAH GRIMS
BC National Observatory of Athens (NOA), Greece Thomp. MYNN2 NOAH GRIMS
BD University of Hohenheim (UHOH), Germany Th-AA MYNN2 NOAH-MP GRIMS
BE Intitute Pierre Simon Laplace (IPSL), France Th-AA MYNN2 NOAH-MP UW
BF Bjerknes Centre for Climate Res. (BCCR), Norway Thomp. YSU NOAH-MP GRIMS
BG Aristotle University of Thessaloniki (AUTH), Greece WDM6 YSU NOAH-MP GRIMS
BH Instituto Dom Luiz (IDL), Portugal WDM6 MYNN2 NOAH GRIMS
BI Universidad de Cantabria (UCAN), Spain WDM6 MYNN2 NOAH-MP GRIMS

Table 1: WRF multi-physics configurations considered in this study (see
Section 2.1) for experiment A (one-month simulation, EUR-11 domain) and
experiment B (one-year simulation, EUR-15). For each ensemble member,
the table shows an Id. code, the institution performing the simulation and
the physical parameterizations used. The ensembles explore the use of differ-
ent schemes for micro-physics (MP), planetary boundary layer and surface
layer (PBL), land surface (LSM), and shallow convection (ShC) processes.
The PBL schemes denoted with asterisk (*) used a different surface layer
scheme despite sharing the MYNN2 PBL. See Table 2 for details of each
parameterization scheme.
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Acronym Physical scheme

Thomp. Thompson et al (2008) scheme with ice, snow and graupel processes suitable for high-resolution simulations
Th-AA New Thompson aerosol-aware scheme considering water- and ice-friendly aerosols
WDM6 WRF Double-Moment 6-class microphysics scheme with cloud condensation nuclei for warm processes
YSU Yonsei University non-local closure PBL scheme with revised MM5 Monin-Obukhov surface layer
MYNN2 Mellor-Yamada Nakanishi and Niino Level 2.5 (*combined with revised MM5 Monin-Obukhov surface layer)
NOAH Noah LSM with multilayer soil temperature and moisture, snow cover and frozen soil physics
NOAH-MP Noah LSM-Multi Physics. NOAH with multiple options for land-atmosphere processes
GRIMS Shallow cumulus scheme from the Global/Regional Integrated Modeling System
UW University of Washington shallow cumulus scheme from the Community Earth System Model

Table 2: Physical schemes used in the multi-physics experiments shown in
Table 1.
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Figure 1: Left: Accumulated precipitation (mm) on June, 23rd 2009 accord-
ing to E-OBS (Haylock et al (2008); top) and as simulated in the ALP-3
domain by experiment A for WRF MPE members AF, AD, AB and AE.
Right: 850hPa geopotential height (m) according to ERA-Interim (top) and
the corresponding MPE ensemble members in the EUR-11 domain in pink.
An ERA-Interim 1500m-isoline (the same in all panels) is represented for
reference in black.
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Figure 2: As Figure 1 (right), but for 4 MICE members: AI-r0 to AI-r3.
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Figure 3: Inter-member variance in time (Equation 3) for 850hPa geopo-
tential height (m) in EUR-11 domain of experiment A (June 2009). The
spread is computed separately for MPE (blue) and MICE (red). The latter
was computed both at 0.11◦ and 0.44◦ horizontal resolution with similar
number of ensemble members.
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Figure 4: Inter-member variance in time (UT) for 850hPa geopotential
height (m) in EUR-15 domain of experiment B (year 1999). The uncer-
tainty is computed separately for MPE (blue) and MICE (red). Transient-
eddy variability (Equation 5, black line) was computed from BI configuration
and error bars show its standard deviation for MPE and MICE.
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Figure 5: Spatial distribution of the inter-member variance (US) for the
850 hPa geopotential height (m) in EUR-15 domain of experiment B (year
1999). a) multi-physics ensemble. b) multi-initial-conditions ensemble.
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Figure 6: Long-term impact of multi-physics (a) and multi-initial-conditions
(b) on 850hPa geopotential height (m).
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Figure 7: As Fig. 4 but for surface temperature over land.
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Figure 8: Spatial distribution of the inter-member variance for surface tem-
perature (K) in EUR-15 domain of experiment B (year 1999). a) multi-
physics ensemble. b) multi-initial-conditions ensemble.
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Figure 9: Long-term impact of multi-physics (a) and multi-initial-conditions
(b) on surface temperature (K).
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