Correlated observations of the boundary between polar cap and nightside auroral zone by HF radars and the DMSP satellite

Catherine Senior, Dominique C. Delcourt, Jean-Claude Ceriser, C. Hanuise, Jean- Pierre Villain, R. Greenwald, P. T. Newell, F. J. Rich

To cite this version:

Catherine Senior, Dominique C. Delcourt, Jean-Claude Ceriser, C. Hanuise, Jean- Pierre Villain, et al.. Correlated observations of the boundary between polar cap and nightside auroral zone by HF radars and the DMSP satellite. Geophysical Research Letters, 1994, 21 (3), pp.221-224. 10.1029/93GL02425 . insu-02886288
Correlated observations of the boundary between polar cap and
nightside auroral zone by HF radars and the DMSP satellite

C. Senior, D. Delcourt, J.-C. Cerisier, C. Hanuise, J.-P. Villain, R. G.
Greenwald, P. T. Newell, and F. J. Rich

Abstract. Simultaneous observations from HF radars and
the DMSP satellite have been used to relate the ionospheric
convection pattern and the nightside precipitation at the polar
cap-auroral zone boundary. The convection is eastward in the
poleward part of the radars field of view and predominantly
westward at lower latitudes. The DMSP-F9 particle
spectrograms exhibit energetic precipitating protons at the
poleward edge of an "inverted V". The downward H+ flow
displays spatial filtering effects with a clear energy-latitude
dispersion. Single-particle trajectory simulations in appropriate
field models demonstrate that these ions were ejected from the
neutral sheet near 120 R_E geocentric distance. Most notably,
the simulations reveal significant azimuthal dispersion during
transport, and the source region in the magnetotail is found to
extend over several Earth radii in the dawn-dusk direction,
less energetic particles originating duskward of the high-
energy ones. The longitudinal spread of the tail source
suggests particle precipitation in the ionosphere over at least
one hour magnetic local time. Also, as the downflowing
protons travel near the lobeward edge of the plasma sheet, the
observations suggest that the convection reversal lies inside
the boundary layer plasma sheet (PSBL).

Introduction

Mapping the various regions of the Earth's magnetosphere
into the ionosphere forms an important issue when monitoring
overall magnetospheric dynamics or investigating coupling
processes along the field lines. Such a mapping can be
performed either by implementing realistic models of the
gemagnetic field or by analyzing the plasma characteristics at
low altitudes provided that the magnetospheric source has
unambiguous properties [Newell and Meng, 1992]. Analyzing
nightside measurements from the Aureol-3 satellite, Zelenyi et
al. [1990] reported velocity dispersed ion structures (VDIS).
More recently, Saito et al. [1992] displayed concurrent
observations from the Akebono satellite. These features are
generally interpreted as downstream consequences of non-
adiabatic particle dynamics in the distant tail. The purpose of
this report is to examine the morphology of particle
precipitation, including a VDIS, observed during a specific
nightside orbit of the DMSP-F9 satellite. This orbit, which
took place on December 6, 1989, occurred over the common
field of view of the Schefferville and Goose Bay HF radars.
It thus allows a detailed comparison with the ambient convection
pattern. In addition, the 3-D particle code of Delcourt et al.
[1992] is used, together with the radar-measured plasma
velocities, to trace the observed VDIS precipitation back to the
magnetospheric equatorial plane. This gives some insight into
the source region of this structure.

Experimental Results

The HF radars [Greenwald et al., 1985] are located in
Goose Bay, Labrador (JHU/APL radar) and Schefferville,
Québec (French radar). These radars feature a common field
of view between 65° and 80° geomagnetic latitude. The radar
beams are scanned in azimuth with a cycle time of 96 sec, and
a radial space resolution of 45 km. From the two radar
velocity data, it is possible to reconstruct vector velocities in
the common field of view [Hanuise et al., 1993]. These vector
velocity maps are further corrected by assuming that the flow
is everywhere divergence free [Ruohoniemi et al., 1989].
Corrected velocities obtained between 0258 and 0301 UT on
December 6 1989 in the nightside sector are presented in
Figure 1. A convection boundary is observed, separating a
region at high latitudes with eastward flow from a low-latitude
one with plasma convection predominantly toward the west.

Similar vector velocity maps were obtained somewhat before
and after 0258-0301 UT, which suggests a stability of this
convection flow morphology for about 20 minutes. During
this time period, the IMF remained stable for about 30
minutes, with a positive B_Z component of the order of 4 nT
and small fluctuation B_X and B_Y components.

On this same day, the DMSP-F9 satellite crossed the radar
field of view at an altitude of 835 km between 0258 and 0300
UT (see the ionospheric footprint of the orbit in Figure 1). The
observations made during this path are summarized in Plate 1.
Particle data reveal distinct precipitation regions. From
0258:40 to 0259:00 UT, low-energy (typically below 800 eV)
electrons are observed simultaneously with energy dispersed
ions (labeled region 1 both in Figure 1 and Plate 1). From
0259:00 and 0259:32 UT, an "inverted V" structure (labeled
region 2) can be seen with a peak energy of ~5 keV for the
precipitating electrons. The DMSP-F9 drift-meter (upper panel
in Plate 1) gives the component of the plasma drift
perpendicular to the orbit plane. It confirms the radar
observations indicating an eastward velocity in region 1, a
nearly zero velocity in the inverted V structure (region 2), and
a westward velocity equatorward of it. Differences in the

Copyright 1994 by the American Geophysical Union.

Paper number 93GL02425
0094-8534/94/93GL-02425S03.00
GOOSE BAY - SCHEFFERVILLE RADARS / DEC 6 1989

Fig. 1. Convection map deduced from twin HF radar measurements at Schefferville and Goose Bay. The solid line depicts the ionospheric footprint of the DMSP-F9 orbit. Regions marked 1 and 2 are described in the text and correspond to those in Plate 1.

Plate 1. DMSP-F9 observations: (top panel) Plasma convection component perpendicular to the satellite orbit; (middle panel) Electron precipitation spectrogram; (bottom panel) Ion precipitation spectrogram (note the downward increase of the energy). Regions 1 (VDIS) and 2 (inverted V) are identical to those of Figure 1.

Discussion

Accumulating evidence suggests that VDIS, similar to that portrayed in the above region 1, result from \(E \times B \) dispersion of particles ejected from the distant neutral sheet. Indeed, particles traveling into the magnetotail do not conserve their first adiabatic invariant as a result of the field reversal near the midplane [see the review by Chen, 1992]. Among the classes of possible particle orbits, it has been suggested that particles ejected with small pitch angles near the distant neutral line are responsible for the fast earthward beams observed in the PSBL [Takahashi and Hones, 1988]. Zelenyi et al. [1990] put forward that the VDIS observed near the poleward edge of the auroral zone form the ionospheric image of these fast ion flows after \(E \times B \) dispersion in latitude.

The simple model proposed in this latter study (see their equation 3b) allows a first estimate of the downflowing proton ejection site. Noting \(W \) the ion energy (in keV) and \(\Delta \theta \) the VDIS latitudinal extension, the energy-latitude dispersion is \(W^{1/2} = a (\Delta \theta) \). In this expression, the \(a \) parameter is given by

\[
\alpha = \frac{0.769 \times 10^4}{V_i X_0},
\]

where \(V_i \) is the north-south component of the ion velocity (in m/s) and \(X_0 \) the injection distance in the magnetotail (in RE). Though some cases (particularly, the reversed energy-latitude signature) could not be interpreted in terms of \(E \times B \) dispersion, Zelenyi et al. [1990] pointed out that such a description can account for most of the VDIS they observed. For the event presented above, one has \(a = 0.54 (\text{keV})^{-1/2} \text{deg}^{-1} \) from the satellite data and \(V_i = 150 \text{ m/s} \) from the radar velocity map, which yields an injection distance \(X_0 = 95 \text{ RE} \) (assuming that the VDIS consists exclusively of protons). This value is in the typical 50-100 RE range put forward by Zelenyi et al. [1990].

On the other hand, in the latitude interval of interest, Figure 1 displays a prominent eastward component of the convection velocity which is not accounted for in the above \(W^{1/2}/\Delta \theta \) mapping. Upon transport toward the ionosphere, this component suggests a dispersion of the particles not only in latitude but also in azimuth. To examine this outcome, trajectory calculations were carried out using the three-dimensional particle code of Delcourt et al. [1992]. Rather than a simple two-cell model of potential distribution in the ionosphere, the vector velocity map of Figure 1 was implemented in the calculations, assuming that the field lines are equipotential and adopting a spline interpolation of the measured electric field. As suggested by the stability of the radar observations, this convection pattern was assumed to be steady throughout particle transport from the distant tail. Test protons were thus launched from the spacecraft location with energies from 2 keV up to 20 keV, and a pitch angle of 5° to conform with the DMSP-F9 detector view angle. These particles were traced backward in time up to the magnetosphere equatorial plane, using the "long-tail" version of the Tsyganenko [1987] ground state model which is consistent with the northward IMF \(B_z \) prevailing during the period studied. (Note that this model was assumed to be valid up to the outermost trajectory apex, viz., \(\approx 120 \text{ RE} \)). The calculations were performed within the guiding center approximation which is appropriate for the trajectory sequence of interest here.

Figure 2 summarizes the results of the simulation. The left panels in this figure indicate that the precipitating \(H^+ \) exited the neutral sheet between 113 and 120 RE geocentric distance, i.e., somewhat tailward of the above first order estimate. Most notably, it is apparent from the equatorial trajectory projections (lower left panel) that less energetic protons originate duskward of the high-energy ones, the source region extending over more than 10 RE in the dawn-dusk direction.
The ionospheric projection of the H⁺ paths can be appreciated in the right panel of Figure 2 where heavy dots depict the particle time of flight (by steps of 3 minutes). It can be seen by comparison with Figure 1 that the projected paths in the right panel of Figure 2 follow the observed ionospheric drift flow field to the near vicinity of the equatorial plane. In this latter region, enhanced curvature drifts (and, ultimately, adiabaticity breaking near the tail midplane) yield large deviations from the prescribed convection pattern.

Provided that there exists a range of energies at each exit point from the neutral sheet, the computed paths in the right panel of Figure 2 allow us to estimate the width of the precipitating ion structure. Indeed, it can be seen in this panel that a 2 keV proton leaves the equatorial plane near 22.6 MLT and reaches the auroral zone after ~21 minute time of flight. A 20 keV H⁺ ejected from the same location will follow a similar ionospheric projected path but during a time interval in inverse proportion to the particle speed (i.e., ~6.5 min). It will thus precipitate near 23.2 MLT, which suggests a longitudinal width of the VDIS of at least one hour MLT.

The precipitating particle history can be further appreciated from Figure 3 which shows, in the X-Y plane, the computed H⁺ paths projected to the equatorial footprint of the magnetic field lines successively encountered during transport (here, solid circles denote the particle ejection sites with energies as indicated, while open circles are the DMSP-F9 observed precipitation positions projected on to the equatorial plane). Also shown in this figure is the equatorial ExB flow field derived from the radar data. It is of interest to note that this flow is antisunward at large negative Y values and in the far-tail (typically, X > 120 Rₑ) close to the noon-midnight meridian, while it reverses in the central nightside sector. Due to negligible magnetic field curvature off-equator, it is again apparent from Figure 3 that most of the particle transport occurs along the convection streamlines. As the particles approach the equatorial plane (and prior to nonadiabatic motion), field line curvature gives rise to a large transverse drift which varies in proportion to the particle parallel energy.

Figure 3 also clearly emphasizes the distinct origins of the downflowing ions. While the high-energy ones originate from the central tail, it can be seen that the 2 keV H⁺ map in a region where the ExB drift has a substantial tailward component, i.e., likely in the low-latitude boundary layer. As a matter of fact, as displayed by the dotted line which relates to a test proton with a presumed 1.5 keV energy, trajectory calculations at low energies (which are absent from the precipitation spectrograms) reveal an equatorial origin near the dusk flank of the magnetosphere. In other words, the computed azimuthal dispersion of the particle trajectories which is not accounted for in the two-dimensional ExB dispersion model of Zelenyi et al. [1990], links the precipitating populations to distinct magnetospheric regions.

Furthermore, it can be suspected from Figure 3 that low-energy particles, if any, originating from the central tail (e.g., near the 20 keV ejection site) will experience weaker curvature drifts and possibly be swept tailward by the convection electric field. Accordingly, upon precipitation into the ionosphere, these particles will be located at higher latitudes than the high-energy ones, hence leading to the reverse energy-latitude dispersion signatures which are occasionally observed [Zelenyi et al., 1990]. As evidenced from Figure 3, such features are plausible only in narrow longitudinal intervals.

Though it is difficult to derive general conclusions from this one-case study, the present three-dimensional simulations thus emphasize the determining role of the actual convection pattern, and particularly of the particle longitudinal drift, in the auroral precipitation morphology as well as in the VDIS characteristic energy range.

![Figure 2](image1.png)

Fig. 2. Model trajectories of the downflowing protons: (Left) Trajectory projections in the X-Z plane (top) and in the X-Y plane (bottom). The X axis points toward the tail, and the Y axis from dusk to dawn. (Right) Trajectory projections into the ionosphere. Open circles depict the precipitation location, and heavy dots depict the particle time of flight by steps of 3 minutes.

![Figure 3](image2.png)

Fig. 3. Model trajectories of Figure 2 projected to the equatorial foot of the magnetic field lines. Labels denote the distinct precipitation energies (in keV) and, between parenthesis, the corresponding neutral sheet ejection time (in minutes) as measured with reference to that of the 2 keV H⁺. The dotted line displays the path of a presumed 1.5 keV proton, while vectors indicate the equatorial pattern of the ExB flow field measured by the radars.
In addition to reconstructing the ejection site of the particles from the neutral sheet, one would indeed be interested in tracking their origin prior to encounter with the tail midplane. For such calculations, not only the gross $\mathbf{E} \times \mathbf{B}$ flow morphology is needed, but also the exact spacing of the equipotentials will critically control the net energy gain of the particles during neutral sheet crossing. However, limitations inherent to the velocity amplitude determination (i.e., radar beams geometry) cast serious doubts upon the computed energy of the particles and clearly inhibit further investigation of the initial magnetospheric sector of the downflowing ions.

Also, the numbers between parenthesis in Figure 3 gives the delay, in minutes, between the ejection of the 2-keV protons and those of higher energies. They indicate that the dispersion of travel times from the equatorial plane to the ionosphere is of the order of 15 min, i.e., much larger than the 18-sec duration of the VDIS observation. This clearly rules out an interpretation in terms of impulsive plasma injections from the distant tail.

At last, by comparison of the above Figure 1 and Plate 1, it is possible to get some insights into the magnetospheric projection of the convection reversal boundary. Indeed, it has been assumed for many years that the PSBL is mapping to the discrete auroral zone. This viewpoint was recently challenged by Feldstein and Galperin [1985] who locate discrete auroral forms inside the plasma sheet. Ground-based and satellite observations clearly plead for this latter interpretation in which soft electron precipitation and ion beams detected poleward of the auroral arc account for the ionospheric precipitation of the PSBL. These structures are precisely those seen in regions 1 and 2 of Figure 1 and Plate 1. Thus, if the high-latitude ion beams are downstream consequences of nonadiabatic particle transport in the distant neutral sheet and occur on closed field lines, then the data suggest that the convection reversal boundary observed equatorward of these beams is a fortiori located on closed field lines. These figures furthermore indicate that this boundary occurs in a narrow latitudinal interval between region 1 (VDIS) and region 2 (inverted V), as schematically shown on the left handside of Figure 1. We are thus led to conclude that the convection reversal boundary lies in the very vicinity of the PSBL, delineating the transition between the PSBL and the plasma sheet proper.

Summary

Simultaneous observations from HF radars and the DMSP-F9 satellite have been used to relate the convection reversal boundary and the nightside auroral precipitation pattern. This boundary lies near the poleward edge of auroral arcs, but equatorward of characteristic velocity dispersed ion structures at the border between the auroral zone and the polar cap. Three-dimensional trajectory calculations based on the ionospheric electric field measured by the radars reveal that the high-latitude precipitating ions originate from a large (several R_E) Y interval in the distant tail (up to $X = 120$ R_E). In the ionosphere, the simulations suggest that this precipitation pattern extends over at least one hour magnetic local time. As these structures mark the ionospheric foot of the PSBL, it appears from the observations that the convection reversal boundary is at the transition between the PSBL and the central plasma sheet.

Acknowledgments. We thank the GSFC IMP-8 magnetometer team of for the use of their data. This work has been supported by INSU, NFS, and by the Air Force Office of Scientific Research, under grants GdR Pasmae, ATM-9003860 and ATM-9108193, and 2311G5.

References

C. Senior, D. Delcourt, and J.-C. Cerisier, CRPE/CNRS, 4 Av de Neptune, 94107 Saint-Maur, France.

C. Hanuise, LSEE T, Université de Toulon et du Var, BP 132, 83937 La Garde Cedex, France.

J.-P. Villain, LPCE, 3A Av. de la Recherche Scientifique, 45045 Orléans La Source, France.

(Received June 3, 1993; accepted August 10, 1993.)