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ABSTRACT

An adaptive notch filter (ANF) is proposed for range-resolved frequency estimates of Doppler lidar atmo-
spheric returns. The ANF is based on the spectral filtering of lidar return to remove the atmospheric contribution
from noise. An adaptive algorithm is used to retrieve the filter parameters at a time k knowing both the input
signal and filter output at times k — i, where i = [1, k]. It is shown that ANF performs well at low SNR (-5
dB) compared to the poly-pulse-pair {PPP) estimator currently used for Doppler lidar signal processing. The
standard deviation of frequency estimates is 0.01 F5—0.02 Fs (F5 is the sampling frequency) at SNR = -5 dB,
depending on the signal spectral width. It corresponds to a2 wind velocity uncertainty of 2—4 m s~ for Fs = 40
MHz and a laser wavelength A = 10 um. The ANF also proved to perform better than PPP in tracking a time-
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varying frequency, and in the presence of a colored noise.

1. Introduction

Pulsed coherent Doppler lidar is a powerful tech-
nique to document the three-dimensional wind field in
clear-air condition (Menzies and Hardesty 1989).
Ground-based systems have been operated by NOAA
WPL (Post and Neff 1986; Neiman et al. 1988) and
NASA MSFC (Rothermel et al. 1985) since the late
1970s, and airborne operation has been demonstrated
in the meantime (Bilbro et al. 1984, 1986). During the
past decade, a considerable effort was devoted to an
improvement of the 10-um technology currently used
in Doppler lidar, with a special emphasis put on fre-
quency stability of high-energy CO, lasers (Hardesty
etal. 1983; Dolfi-Bouteyre et al. 1988). Signal process-
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ing, which is another issue, benefited greatly from al-
gorithm development conducted in the weather radar
domain, like the pulse-pair frequency estimator (Do-
viak and Zmi¢ 1984), for example. These estimators
are compliant with a rather stringent requirement in
Doppler lidar in which the signals have to be processed
on a single-shot basis. Only an accumulation of lidar
spectra afterward is relevant to decrease the variance.
In addition, the experimenter faces a characteristic of
pulsed coherent Doppler lidar that is a low pulse rep-
etition frequency of a few tens to hundreds Hertz for
high-energy laser transmitters. Another limitation is
brought by signal decorrelation due to inhomogeneities
in the scattering volume (such as sharp gradient in
backscatter, velocity turbulence, wind shear) or instru-
mental factor like a frequency chirp of the transmitter
emission. All these phenomena result in decorrelation
times shorter than pulse duration (Ancellet et al. 1989)
and consequently signal spectra broader than pulse-
limited spectra. Accordingly, the spectral width can be
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of the order of, or even greater than, the corresponding
required accuracy. Considering these limitations, the
main improvement foreseen to expand the field of lidar
application is to achieve better frequency estimator per-
formance (i.e., smallest frequency error) at low signal-
to-noise ratio (SNR) and high spatial resolution. This
improvement will benefit the mature 10-um technol-
ogy, as well as the 1-um technology and emerging
2-um technology.

For many years now, coherent lidar signal process-
ing resorted to pulse-pair (PP) and poly-pulse-pair
(PPP) frequency estimators (Miller and Rochwarger
1972; Zrni¢ 1979; Lee and Lee 1980). They are easy
to implement, and their accuracy is fairly good at mod-
erate SNR. As a result, most coherent lidars in opera-
tion use PP and PPP estimators. However, the recent
availability of fast-floating point processors questions
this widely accepted statement, since these processors
enable the implementation of new algorithms (de-
manding more computer power) that could perform
better at low SNR. Regarding the applications, it turns
out they could be more appropriate to Doppler lidar
processing.

The purpose of the present paper is to discuss the
performance of the adaptive linear filtering technique
applied to Doppler lidar processing, and adaptive notch
filter (ANF hereafter) in particular. The capability of
ANF to improve Doppler lidar signal processing is ad-
dressed in section 4, where, according to the current
status in Doppler lidar signal processing, a comparison
of ANF performance with respect to PPP is conducted.
Beforehand, we present briefly the linear filtering tech-
nique in section 2, and then the ANF algorithm is dis-
cussed in section 3.

2. Linear filtering technique

The linear filtering technique consists in defining a
linear filter, a so-called whitening filter, that is able to
remove the atmospheric return bearing the wind field
information from detection noise. The Doppler fre-
quency is then related to the whitening filter parame-
ters. The linear filtering algorithms are all based on an
assumption made on the capability to model the lidar
signal at detection level, at least in good approximation,
by the output of a linear filter when a white noise is
used as an input signal. The linear filter is a so-called
predictor filter. The predictor is the inverse of a whit-
ening filter.

The modern linear filtering techniques appeared dur-
ing the late 1960s. The maximum entropy method for
instance (Burg 1967), which was first proposed for
geophysical data processing, is in fact a filtering tech-
nique where the predictor filter is all-pole or auto-re-
gressive.

Regarding the adaptive versions of the linear filtering
technique, the whitening filter parameters are assumed
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to vary slowly in time according to the quasi station-
arity of the lidar signal. Adaptive estimators then con-
sist in correcting the parameter filters from one time
sample to the next instead of recomputing them at each
step independently of the previous estimates. Two main
procedures for correction exists: the gradient method
(Widrow and Stearn 1985), or recursive least squares
method (Ljung and Soderstrom 1983 ) based on the ma-
trix inversion lemma. The adaptive notch filter, pro-
posed by Nehorai (1985) according to Ljung’s works,
belongs to the second category.

3. Adaptive notch filter (ANF)

In ANF technique, the whitening filter is assumed to
be a notch filter. The notch filter is an ARMA of order
2 % 2 (which corresponds to two zeros and two poles)
where the poles and zeros are constrained. The rela-
tionship between the notch filter and signal frequency
is then simple and leads to a fast adaptive estimator.

a. Notch filter

The notch filter is designed to remove one frequency
component of a sampled signal without changing the
others. To do so, a first attempt is to use a finite-impulse
response (FIR) filter H response H(z) is

H(z) = (1 — 227" )(1 — z27%), ()
where Z, and Z, are the filter zeros:

7, = exp(2inf,T,)
2 =z} = exp(=2inf;T,) , (2)

where f, designates the Doppler spectral component to
be removed, and T, denotes the sampling time. Figure
1 shows the transfer function |H(f)! for such a filter,
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FiG. 1. Filter transfer functions of (a) the moving-average filter,
(b) the notch filter with r = 0.8, and (c) the notch filter with r = 0.95.
All filters are centered about 0.25F,.
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which turns out to be so large that other spectral com-
ponents are likely to be altered. To improve the selec-
tivity of the notch filter (Glover 1977), one can intro-
duce two poles p, and p,, with the same phase as z,

and z, (Fig. 2) and close to them in the complex plane:
P =1z
p=rz’

3)

where 0 < r < 1. It leads to the notch filter transfer
function: ) ‘
(A -zz2 Y0 —zz™")
(1- Plz_l)(l - Pszl)
1 =2cos2nfyT)z™" +27°
1= 2rcos(2nfiT)z ™" + riz %"

H(z) =

€Y
The poles p, and p, remain within the unit circle of the
z plane to ensure the stability of the notch filter. Figure
1 displays the transfer functions for » = 0.80 and 0.95.
We notice that r tunes the filter bandwidth since B

=1 — r. Denoting x(k) the input signal at time k and
s(k) the output of the filter, the recurrence relationship
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between x(k) and s(k) corresponding to (4) is (Rabi-
ner and Gold 1975)

x(k) = —ayx(k — 1) — x(k — 2) + s(k)
+arstk—1)+ris(k—2), (5)

where the filter parameter 4 is related to the filter cen-
tral frequency:

a, = =2 cos(2nf,T,). (6)

An estimate of the signal frequency using the notch
filter is made as follows. Let us consider for instance
that the signal is made of a sine wave x(k) = A
cos (2nf,kT, + ¢) where the phase ¢ is unknown, plus
a zero-mean white noise n(k) of power o2. When fil-
tered by the notch filter centered about f;, the sine wave
is removed so the output s(k) can be considered as an
estimate of the noise contribution n(k) (Fig. 3) and
will therefore be denoted 7A(k):

Ailk) = x(k) + &, (k)x(k — 1) + x(k — 2)
' — & (kyrik — 1) — r¥ik - 2), (7)

where @, (k) is the estimate of parameter @, at time k.
Let us denote

p(k) = —a(k)x(k = 1) — x(k — 2)
+ d(kyratk — 1) + riak— 2). (8)
We then have
(k) = x(k) — p(k) 9)

and it can be shown (see appendix A) that p(k) is the
optimal predictor of x(k) in a least squares sense since
it minimizes the mean quadratic error J, = E[A*(k)],
where E denotes the mathematical expectation.

As a consequence, the ANF works as follows. At

time k, the quadratic error J, is first minimized with
respect to the parameter a, leading to the estimate
a,(k), in order to minimize the prediction error. The
optimal predictor p(k) is then calculated with (8), and

xk) — k@)

— k)

X® HO

N®

f’ £
D .

D

FiG. 3. The notch filter centered about f; removes the useful signal at frequency f;
from the input signal x(k) leaving only the noise contribution.
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then the prediction error 7i(k) with (9). The ANF es-
timation can then go on to the next step & + 1.

b. Parametric adaptive algorithm

As shown in section 3a, the ANF estimator needs to
minimize the quadratic error J, with respect to the filter
parameter a,. This minimization is the critical point of
the method for it is generally computer time consum-
ing. Two adaptive methods converging toward a min-
imum of a so-called cost function can however be used
to simplify the procedure: the gradient method and the
recursive least squares method due to Ljung and Sod-
erstrom (1983). In the present work, we used a recur-
sive maximum likelihood (RML) algorithm, which, ac-
cording to Nehorai (1985), is better suited to a notch
filter.

Let us define ¢p(k) the transposed vector related to
the input/output of the filter, and @(k) the transposed
vector of the filter parameter:

d(k) = [~x(k = 1) + ri(k — 1),
—x(k = 2) + r¥Ack — 2)]"
0(k) = [a,(k), 1], (10)

where T denotes the transpose vector. The optimal pre-
dictor is then [cf. (8)]

p(k) = 07 (k)(k). (1)

The quadratic error J; at time k is then equal to

= E{[x(k) — 0T (k)p(k)]*}. (12)

It cannot be calculated unless the statistical properties
of the signal are known a priori, which is generally not
the case. Therefore an estimate is made through the
recursive procedure:

-1

K Z M(D[x(D) — 0T (k) d(i)]>,  (13)

where
(i) = N6 (14)

The parameter A\, defines a weighting function for the
contribution of the previous time steps to the quadratic
error J;. It is generally chosen within the interval [0.8,
1]. As a matter of fact, the parameter \, tunes the time
resolution of ANF estimates. When A\, = 1, for in-
stance, the estimate is performed on the whole signal
from the beginning to step k. On the contrary, when X,
= 0.8, the weight given to component k — 31 is less
than 107 (AJ' < 107?), and thus negligible. Through
Mo, the time window corresponding to an ANF estimate
is fixed. For the weighting function is a negative ex-
ponential, there exists no straightforward definition for
the time resolution. In this paper, we set the time res-
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olution of an estimate as the time delay mT, when the
weight \¢ becomes lower than e ™': m = [log(X\o)]".
For instance, when A\, = 0.8, the time resolution is
equal to 5; when Xy = 0.9 and 0.95, it is equal to 10
and 20, respectively.

The estimation J, defined by (13) of the quadra-
tic error J, has a great advantage. As it is shown in
appendix B, its recurrent form leads to a recursive re-
lationship on 8(k):

0(k) =0k — 1)+ F(k— 1)®(k)e(k), (15)
where W(k) is recursively calculated:
W(k) = ¢p(k) — &,(k — )r¥(k — 1) — r’U(k — 2),

(16)
and where F(k — 1) and e(k) are defined by
k~1
Flk—1)=[2 N """ ()]
i=1
— T —
k) = x(ky — d"(k)O(k — 1) (17)

No + @T(K)F(k — 1)U(k)

The whole ANF procedure is as follows. After some
initialization of ¥(0), ¥(1), A(0), 7A(1l), 6(0), and
0(1), and beyond the time step 2, ¢(k), ¥(k), F(k
— 1), and e(k) are calculated from (10), (16), and
(17), respectively. The filter parameter vector (k) is
then recursively calculated from (15). Once the new
filter parameter is estimated, the prediction error 7i(k)
is retrieved using (11) and (9). The procedure can then
go on to the next time step.

As it is adaptive, the convergence of ANF from ini-
tial values toward the true estimates, or when some
nonstationarity occurs during the signal, is of prime
importance. The time needed for convergence depends
on the quality of the initialization (are the signal char-
acteristics close or far from the initial values), or the
degree of the nonstationarity (are the previous signal
characteristics close or far from the new values), but
also on parameters \, and r. We remind the readers
that A, sets the time resolution of the estimate, and r
the notch filter bandwidth. A faster convergence is ob-
tained when A\, and r are small. The time resolution is
then better, enabling the ANF to catch the changing
signal characteristics faster, and the notch filter selec-
tivity is relaxed, enabling the ANF to catch the signal
frequency more easily. But at the same time, it leads to
a greater variance of estimates once the convergence is
ensured, since now the estimator is more sensitive to
random fluctuation (speckle and noise). It is the reason
why both A\, and r are tuned as the estimation procedure
goes on. As an example, in the simulations we con-
ducted in the frame of this study, we tuned A, from 0.8
initially to 0.95, and r from 0.8 to 0.95.

The constraint imposed to the zeros and poles of the
notch filter makes the convergence of the estimator
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FiG. 4. Examples of simulated power spectra with various SNR and spectral widths o,: (a) SNR = 0 dB
and o, = 0.01F,, (b) 0 dB, 0.03F,, (c) —5 dB, 0.01F,, and (d) —5 dB, 0.03F..

faster than with a general ARMA model. The ARMA
filter has, however, more degrees of freedom and can
thus be better adapted to the signal features. For in-
stance, it is better adapted to an analysis of the spectral
width (Palmer et al. 1991). The adequacy between
the filter model inferring the estimator and the signal
leads to a better accuracy. In particular, the Cramer—
Rao lower bound for frequency estimation is asymp-
totically reached when the signal fits the filter model
(Ljung and Soderstrom 1983). As far as the Doppler
lidar is concerned, the notch filter model is only an
approximate. ‘

4. Numerical simulations and performance

The performance of ANF can be evaluated usihg the
following two different approaches:

1) a calculation of the bias and standard deviation
of the estimates on stationary signals and once the con-
vergence is reached; and

2) a full speétral analysis of nonstationary signals
with a time-varying frequency for instance.

We considered a 20-MHz bandwidth and used a
sampling frequency F, = 40 MHz. These figures cor-
respond to a velocity range of 50 m s™' for a CO,
lidar working at 10 um. The ANF estimates are syste-
matically compared to the PPP estimates using four
lags [since it is recognized as one of the most efficient
complex covariance estimator for SNR and spectral
width (Mahapatra and Zrni¢ 1983) encountered in li-

dar signals]. The PPP version we considered is due to’

Zmié and Mahapatra (1983) and referenced as PPP-
PO in their paper. Another complex covariance PPP
estimator was indeed proposed by Lee and Lee in
1978. Because of the lack of scientific literature on
Lee’s estimator, together with a first study we con-
ducted that showed the improvement is rather weak
{at SNR = —5 dB and for a spectral width of 0.01 F,
the standard deviation is 4% of F, with Lee’s PPP and
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FiG. 5. Bias and standard deviation of ANF (solid line) and PPP (dotted line) frequency estimates vs SNR for two spectral
widths o, (0.01F, and 0.03F,): (a) bias for o, = 0.01F,, (b) standard deviation for o, = 0.01F,, (c) bias for o, = 0.03F,, and
(d) standard deviation for o, = 0.03F,. The input signal frequency is 0.2F,.

5% with PPP-PO), convinced us to use PPP-PO as a
reference.

a. Stationary signals

Stationary Doppler lidar signals were simulated ac-
cording to Zrni¢’s model (1975). We remind the read-
ers that this model operates in the frequency domain
and consists in randomly modulating a Gaussian-
shaped power spectrum characterized by a central fre-
quency and a standard deviation o, (spectral width)
plus a uniform level of white noise, and then of an
inverse fast Fourier transform. From a practical point
of view, the operations are performed on sampled
power spectra made of N frequency channels. Exam-
ples of simulated signal spectra are presented in Fig. 4
for various values of o, and SNR with N = 4096.

Biases and standard deviations were estimated from
the frequency analysis both by PPP and ANF of 200
signals made of 4096 data samples each. For every sig-
nal, frequency profiles were obtained from PPP using

a sliding window of 64 data samples (time duration of
1287, as the complex-valued signals are decimated by
2). The PPP estimate at time k results in fact from the
frequency analysis between points kK — 32 and k + 31.
As far as the ANF is concerned, the time resolution
was tuned from 5 (Ay = 0.8) to 20 (A, = 0.95) from
the initial time onward, the final time resolution being
reached at about time step 200. These figures were ex-
perimentally chosen as they appeared optimal to us. We
point out that the time resolutions expressed here are
anyway much lower than for PPP, and that the im-
provement of accuracy for the ANF that we will show
hereafter cannot be, hence, attributed to a longer time
resolution.

The PPP estimator worked on complex-valued sig-
nals exclusively, whereas the ANF has to be performed
on real-valued signals. The comparison between both
estimators was conducted as follows. A complex-val-
ued signal with a frequency around 0.2 F, was first sim-
ulated; when the PPP is concerned, this signal is deci-
mated by two corresponding to a bandwidth [ — F,/4,
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FiG. 6. ANF and PPP frequency estimates vs time in stationary conditions: (a) SNR = 0 dB
and o, = 0.01F,, (b) 0 dB, 0.03F,, (c) —5 dB, 0.01F,, and (d) —5 dB, 0.03F,. The input signal

frequency is 0.2F,.

+F,/4], the sampling frequency F,/2; when on the
contrary the ANF was considered, the complex-valued
signal was frequency shifted up from F,/4, and the real
part was then extracted leading to the bandwidth [0,
F,/2] and the sampling frequency F,. Doing so enabled
us to keep the same amount of information and the
same SNR in both cases. In the figures, the frequency

shift + F,/4 is removed from the ANF estimates for the
sake of clarity. '

Biases and standard deviations of both estimators are
plotted versus SNR in Fig. 5 for two values o, = 0.01 F,
and o, = 0.03F;. At low SNR (below 0 dB), the stan-
dard deviation remains of the order of 0.015 (equiva-
lent to a velocity of 3 m s~ with F, = 40 MHz and a
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frequency randomly fluctuating as well. These fre-
quency fluctuations are indeed identified as measure-

be as large as 0.045 (9 m s™!) for the PPP. The reason
for such a discrepancy will be discussed later. At high

laser wavelength of 10 um) for the ANF while it can
SNR however, the accuracy of both estimators are sat-

ment errors since the wind velocity is related to the
mean signal frequency and not the instantaneous fre-

lution, and the notch filter bandwidth, which, resulting
from a trade-off between convergence and error, is not

quency. As far as the ANF is concerned, the errors at
high SNR are larger because of the shorter time reso-

urating to a nonzero standard deviation, with the PPP
slightly better than ANF. The fact that the estimates of
both the PPP and ANF estimators are randomly fluc-

tuating even though the SNR is very high, is due to the

optimized to achieve a low variance only. Comparing

speckled random fluctuations of signal that make its
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FiG. 7. Power spectra of signals with time-varying frequency: (a)
white noise; (b) colored noise. The SNR is —5 dB in both cases.

the PPP and ANF for both spectral widths, the improve-
ment due to ANF is higher at 0, = 0.01 F, than at o,
= 0.03F,. This result is not surprising since the ANF
estimator is rather designed for narrowband signals.

The biases for both estimators are on the contrary
rather similar and stay below 0.001 F; even at low SNR.

Frequency profiles obtained with the two estimators
are displayed in Fig. 6 where the SNR is equal to 0 dB
or —5 dB. The PPP estimator sometimes displays out-
liers with an increasing probability when the SNR is
decreasing and when the spectral width is increased.
The ANF estimator does not display such outliers, be-
cause it is adaptive. The outliers are responsible for a
great part of the standard deviation. The fact that they
do appear with the PPP and not with the ANF (at least
down to —5 dB) explains why the standard deviation
displayed by PPP are larger at low SNR compared
to ANF.

b. Nonstationary signals with time-varying frequency

Most of the studies on Doppler lidar signal process-
ing were conducted on stationary signals using Zrni¢’s
model. As we have pointed out in the previous para-
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graph, this is not however sufficient when analyzing
the performance of an adaptive frequency estimator, for
its accuracy results from two opposite criteria: the con-
vergence time and the variance of the estimates. The
convergence of the estimator, both at initialization and
along the frequency analysis of a single lidar return,
requires a study of the estimator’s performance on non-
stationary signals. We consider here signals with a
time-varying frequency.

This study also considers the problem of a colored
noise contaminating the signal. As far as the Doppler

lidar is concerned, the need to work on a single return -

very likely brings such a colored noise when the signal
is filtered for antialiasing purposes or noise power re-
duction (Fig. 7b). A colored noise may be detrimental
to the accuracy of estimators. This is true for instance
for the PP and PPP estimators that remove the noise on
the assumption it is white. If this is not true, part of the
noise remains within the signal, and the estimators are
biased. The robustness of the adaptive notch filter with
regards the color of noise if thus an important issue that
needs to be studied further. i
Nonstationary signals with white or colored noises
are simulated in the time domain using a sine wave with
a time-varying frequency. The frequency profile con-
sidered is shown in Fig. 8. The noise is added to the
signal in the time domain. When a colored noise is
considered, a spectral filter removing the spectral
power outside’ the bandwidth [0.1, 0.4]F; is used. In
both cases, the resulting signal-to-noise ratio is ~5 dB.
An example of the resulting power spectra is shown in
Fig. 7. A complex version of the signal to be processed
with the PPP estimator is obtained by multiplying the
original real-valued signal by exp(—2im X 0.25Ft),

and then by a filtering using a bandpass filter [ —0.25,

0.25]F,. The PPP estimates displayed in Figs. 8-11
are shifted back around 0.25F, for comparison with
the ANF.

In the case of a white noise (see Figs. 8 and 9), we
notice that both PPP and ANF manage to track the sig-
nal frequency rather well, although some time delay
does appear for both estimators when the signal fre-
quency rapidly varies (between 65 and 75 us for in-
stance). It takes even a little bit longer for the ANF to
recover the signal frequency.

When the noise is colored however (see Figs. 10 and
11), the accuracy is worse. As expected, this is partic-
ularly true for the PPP estimator, which confirms the
sensitivity of PPP to colored noise. As shown in Fig.
11 which displays the average of 200 estimates, PPP is
biased toward 0.25 F, is the mean frequency of the col-
ored noise. The ANF however better manages to track
the signal frequency, with larger errors though when
the signal frequency is close to the Nyquist’s fre-
quency. The ability of the ANF to tightly track the sig-
nal frequency could be improved by using a smaller A,
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F1G. 8. Single-shot estimates of ANF (dotted line) and PPP (dashed line) vs time with white
noise. SNR = -5 dB. The reference frequency is displayed as solid line.

coefficient, but it would be detrimental to the variance lidar signals. The ANF is proposed as an alternative to
of the estimates. the well-known PPP processor. The ANF is based on
the filtering of the lidar signal to separate the signal
frequency from the noise contribution. An adaptive al-

In this paper, we compared two different frequency  gorithm is used to retrieve the filter parameters at time
estimators ANF and PPP for processing pulsed Doppler -k knowing the input signal and filter output at time &

5. Conclusions
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FiG. 9. Same as Fig. 8 except averaging over 200 estimates.
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Fic. 10. Same as Fig. 8 but with colored noise.

—i,i=1[1, k]. It is shown that the main advantage of

this algorithm is the good performances at low signal-.

to-noise ratio (—5 dB) due to its ability to avoid out-
liers. The standard deviation of the estimates once the
convergence regime is reached is of the order of 0.01-
0.02 (in normalized frequency unit) depending on the

spectral width. This corresponds to a wind velocity un-
certainty of the order of 2—4 m s ™' with F, = 40 MHz
for a signal to noise ratio of —5 dB. The ANF also
proved to perform better than PPP in tracking a time-
varying frequency both in the case of a white or colored
noises. The ANF should be however optimized to track
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Fic. 11. Same as Fig. 9 but with colored noise.
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rapid wind variations at low SNR, although this would
bring a larger variance of the frequency estimates.
Since the numerical implementation of the ANF re-
quires more computing resources than the simple PPP
processor, fast-floating point processor are now avail-
able to design sophisticated processing schemes.

APPENDIX A
Optimal Predictor

The purpose of the appendix is to show that the op-
timal prediction for the notch filter input signal x(k) is

= E{[-d,(K)x(k — 1) — x(k — 2) + & (k)ri(k — 1) + r*A(k — 2)
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reached when the prediction error is equal to the noise
term (i.e., to the output of the notch filter). Let us de-
fine p(k) as the optimal predictor of x(k); it depends
ofx(k) and 7i(k) at time k — i, i = [1, k]. The predic-
tion is optimal when the mean quadratic error Ji
= E{[x(k) — p(k)]*} is minimum. Using (8):

pk) = —=d(k)x(k— 1) —x(k — 2)
+ a1 (kyriatk — 1) + rFk — 2)

one obtains

°

— pk) + A(k)1*}

= E{[-d,(k)x(k ~ 1) = x(k — 2) + &, (k)rii(k — 1) + r¥i(k — 2) — p(k)]*} + E[A*(k)]

+ 2E{[—-4,(kK)x(k — 1) — x(k — 2) + 4 (k)rAi(k — 1) + ra(k — 2)

Since 7 (k) is a zero-mean white noise, J; can be written
as

=E{[-4/(k)x(k— 1)
—x(k—=2)+ 4 (k)yri(k—1)
+ Ak — 2) — p(k)1*} + E[A%(k)].

The minimization of (A2) requlres the minimization of
the first ths term since E[A%(k)] is not predictible. We
thus have

p(k) = —ai(k)x(k — 1) — x(k - 2)
+ a,(kyrii(k — 1) + ri(k — 2).

(A2)

(A3)

APPENDIX B
Minimization of the Mean Quadratic Error J,

At time k, the optimal prediction is obtained by min-
imizing the mean quadratic error Ji defined in (13):

g = ; 2 M (D) [x (D) — 6T (k) P(i)]>.
i=1

This is achieved by equating to zero J, derivatives with
respect to 0(k)'

dJ,
0 Z A (D) [x(d)
- 0T(k)P()¥T(i) =0, (B1)
where ¥ T (i) is defined by
w(i) = - dix(i) — 07 (k)d(i)] (B2)

do(k)
It is shown by Nehorat (1985 ) and M’Sirdi (1987) that

- p(K)]a(k)}. (A1)

¥ T(7)-may be calculated recursively from the vectors

d(i):

TT(i) + a4 (kyr®T( — 1) + r2®7(i — 2) = ¢(i).
(B3)

The solution of (B1) is then equal to

0(k) = [Z MN(D PP ()]7 Z Me(D)x () (i)

i=1

=F(k) 3 N(D)x()P(i)

i=1

= F(B) T M(Dx() TG

i=1

+ F(k)x(k)¥(k), (B4)
where
k
F(k) = [Z MDY@ ST ()]
F ' (k) =AF "(k—1)+ ¥ (k)" (k). (B5)

Considering the matrix inversion lemma (Ljung and
Soderstrém 1983), F(k) can be calculated recursively
from ¥(k) and x(k):

F(k) —-l[F(k— 1)

_Fk =Dk P (K)F(k— 1) (B6)
No+ @T(O)F(k— DU(k) |

Using (B4) and (B6), the filter parameters @(k) can
also be recursively calculated:
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0(k) =0(k— 1)+ F(k— 1D)¥(k)e(k), (BT)
where

x(k) — T (K)O(k — 1)
No + @T(K)F(k — 1)T(k)

(k) = (B8)
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