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ABSTRACT During the early stages of a protoplanetary disk, it is expected that the temperatures 

reached in the disk will lead to total or partial vaporization of dust, followed by condensation upon 

cooling. Similarly, chondrule forming events or giant impacts followed by magma oceans can also 

produce partial evaporation. Thus, moderately volatile elements can be mobilized during these 

thermal events, thereby leading to characteristic isotope signatures that can be used to decipher the 

conditions of elemental fractionation. Indeed, the magnitude of isotope fractionation of moderately 

volatile elements is directly modulated by the partial pressure of the element of interest. Thus, the 

isotope fractionation pattern for a given level of elemental depletion can be used to infer the 
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pressure conditions during condensation or evaporation, thus providing strong constraints on 

astrophysical settings.  

The observations made on moderately volatile elements or on some major elements such as Mg, 

Si, or Fe isotopes demonstrate that the isotope signature is most generally more subdued than that 

of vacuum evaporation producing the maximum isotope fractionation. Thus, experimental studies 

showing the existence of kinetic isotope fractionation associated with evaporation experiments are 

not sufficient to interpret cosmochemical data. In this study, we show that the evaporation or 

condensation coefficients may play a key role in controlling isotope fractionation. The possible 

role of composition and temperature on the values of evaporation/condensation coefficients are 

emphasized. Similarly, the role of diffusion in the gas phase leading to a back reaction of 

condensation during evaporation (or vice-versa) is addressed. In addition, we demonstrate that a 

new expression linking elemental depletion and isotope fractionation needs to be used in the case 

of evaporation or condensation in a closed system. Specifically, for condensation in a closed 

system, one needs to take into account the effect of decreasing oversaturation to model isotope 

fractionation. We also explored the effect of having a population of grains rather than a single 

grain on isotope fractionation associated with evaporation on the isotope trajectories. Last, the case 

of evaporation with multiple species produces a situation where the isotope fractionation pattern 

is modified. Overall, this study demonstrates a wealth of behaviors in isotope tracers associated 

with volatile loss that needs to be carefully investigated to fully exploit the information carried by 

them.  

 

1. Introduction 
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Planetary bodies in the Solar System exhibit a large range in K/U or K/Th ratios that are 

systematically lower than that of the Sun’s composition, indicating that these bodies are depleted 

in volatile elements such as K, relative to more refractory elements such as U or Th 1–4. This 

signature extends to a large range of moderately to highly volatile elements in meteorites and 

planets, such as Earth, Venus, Mercury and Mars. Thus, understanding the origin of volatile 

element depletion in planetary materials has become one of the key questions in cosmochemistry 

and planetary sciences. One reason for focusing on this question is perhaps that the processes 

leading to volatile depletion may relate to the distribution of water in the Solar System. In essence, 

the depletion in volatile elements reflects the complex history of planetary solids starting from 

initial dust to planets, where the role of thermal events must have been critical. Some of the 

proposed mechanisms that could explain this elemental depletion include (a) an inheritance from 

interstellar dust that would be volatile poor5,6; (b) early thermal processing when the protoplanetary 

disk was still hot 7,8, (c) transient events responsible for the formation of chondrules 9,10 or their 

precursors, although this is highly debated (e.g., ref 11),  (d) parent-body processes such as impact 

events or thermal metamorphism (e.g. ref 12) (e) outgassing during magma ocean stage 13–16. A 

common point in all these processes is that there is a reaction between a vapor and a condensed 

phase (liquid or solid), and this reaction may be either kinetically driven due to strong chemical 

disequilibrium or it could reach equilibrium when conditions are favorable. Distinguishing 

between these possibilities and deciphering whether the process is kinetic or equilibrium-driven 

is, however, a non trivial task.  

It turns out that the stable isotope signatures of volatile elements are directly affected by these 

processes and the corresponding isotope systems are, therefore, useful tools for deciphering the 

conditions leading to volatile element depletions. The most commonly used model to relate volatile 
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element depletion with isotope fractionation is the Rayleigh distillation model that predicts that 

evaporation under kinetic conditions with low pressure leads to enrichment in heavy isotopes in 

the residual solid while condensation should lead to an enrichment in light isotopes in the solid. 

Numerous studies have indeed confirmed experimentally that evaporation under vacuum leads to 

large kinetic isotope fractionation for many elements 17–23. However, the first sets of observations 

of K isotopes in meteorites, CAI, chondrules and in the Moon revealed a rather different pattern 

with little or no fractionation with increasing K depletion 24. More recent work has shown that, 

except for CAI  25, the magnitude of isotope fractionations reported in planetary materials are 

smaller than expected for a purely kinetic Rayleigh-type loss process  (Rb, Zn, K, Mg, Si, Fe, Cu 

and Se) 15,26–35. Thus, at all scales of planetary accretion, some processes acted to limit the large 

kinetic isotope fractionation expected for evaporation or condensation. The apparent discrepancy 

between observed isotope fractionations and elemental depletions could be resolved by the effect 

of the local pressure could play a role in modulating the isotope fractionations. When the local 

pressure becomes high enough, kinetic isotope fractionation is limited by the effect of back-

reaction. The situation becomes even more complex when the effect of diffusion in the condensed 

phase needs to be taken into account. If diffusion is sluggish, as is the case in a solid, then the 

relative rates of evaporation and diffusion, as expressed by the Peclet number will control whether 

significant isotope fractionation may arise 36,37. If the evaporation rate is fast relative to the 

diffusion rate, then the isotope fractionation due to evaporation in the solid will be limited and the 

evaporating species will have more or less the composition of the bulk solid. If in reverse, diffusion 

rate is rapid, then kinetic fractionation will be fully expressed in the evaporating gas. Depending 

on the value of the Peclet number, different regimes may appear and this has been extensively 

studied by Ozawa et al. 33 or Nagahara et al. 38. Most often, for evaporation under vacuum 
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conditions, the effect of equilibrium isotope fractionation during experiments can be safely 

neglected 39. In contrast, other studies focusing on natural samples have included both the effect 

of kinetic and equilibrium fractionation in their formulation 40–42 as the effect of pressure could not 

be neglected. 

Despite this complexity, the study of stable isotope fractionation in planetary materials have 

brought a wealth of information that elemental abundances cannot provide alone. It is first useful 

to constrain how close is the system to saturation during evaporation or condensation (e.g. refs 

43,44). It has provided insightful views into the process of chondrule formation 45–47. Notably it has 

become clear that volatile depletion took place under conditions rather distinct from vacuum 

evaporation. Similarly, volatile element isotope signatures have provided new insights into the 

conditions of lunar formation (e.g., ref 48,49) or into the volatile loss during the existence of magma 

oceans 14–16. These studies have highlighted that the gas speciation can be inferred from the pattern 

of isotope fractionation and the degree of fractionation can be intrinsically linked to the rate of 

transport away from an evaporating surface. Our goal in this study was to build on existing work 

and to revisit the parameters that control the observed isotope fractionations associated with 

evaporation or condensation under natural conditions, rather than idealized experiments (vacuum 

experiments) and derive appropriate analytical expressions for predicting isotope fractionation 

under more realistic conditions for natural systems.  

 

2. Isotope effects related to evaporation and condensation 

The theoretical framework generally used to describe the rates of evaporation or condensation 

is based on the Hertz-Knudsen equation (note that this equation is not used here for describing 
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shock induced vaporization). The flux of species i evaporating per unit of time per unit of surface 

(in mol/cm2/s) is given as 

 

𝑑𝑛𝑖
𝑠

𝑑𝑡
=

𝛾𝑒𝑃𝑖,𝑠𝑎𝑡 − 𝛾𝑐𝑃𝑖

√2𝜋𝑚𝑖𝑘𝑇
              (1)       

 

where Pi and Pi,sat represent the partial pressure and the equilibrium vapor pressure of species i, 

T the temperature, mi the mass of species i, k the Boltzmann constant, e and c are referred to as 

the evaporation and condensation coefficients that represent the hindrance to evaporation or 

condensation. In principle, if one assumes that the system can reach chemical equilibrium, then 

one can infer that e and c should be equal in equilibrium conditions because in this case dni/dt 

should be equal to 0 and Pi=Pi,sat. This inference is based on the principle of microscopic 

reversibility 50, which states that, at a small scale, condensation is the reverse of evaporation at 

chemical equilibrium. For conditions far from equilibrium, however, this equality may not hold 

true because the evaporation coefficients are not constant parameters and depend, for example, on 

the temperature. The HK relationship can be derived by calculating the number of collisions of a 

vapor species to a surface, assuming a Boltzmann distribution for the mean velocity of gas species 

and integrating over all directions from which molecules could come from. The energetic barriers 

for evaporation and condensation are described by the parameters e and c that are dependent on 

the evaporating species and the composition of the condensed material that is evaporating, as well 

as the temperature as shown in various theoretical studies51–54. In the HK relationship, it can be 

seen that at constant temperature, the main parameters controlling the flux of an isotope are the 

partial pressure of isotope species i, the equilibrium vapor pressure of species, i and the 

evaporation/condensation coefficients. Since mi represents the mass of the evaporating species, 
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the role of speciation that will depend on the P and T conditions is also critical.  It was realized at 

an early stage that evaporation could lead to isotope fractionation as shown in the study of Mulliken 

and Harkins 55. If one assumes that evaporation takes place in a vacuum then, Pi=0 and, if one 

further assumes that there is negligible equilibrium isotope fractionation during evaporation, then: 

𝑃𝑖,𝑠𝑎𝑡

𝑃𝑗,𝑠𝑎𝑡
=

𝑛𝑖
𝑠

𝑛𝑗
𝑠                                        (2) 

The HK relationship written for two isotope species can be used to derive the following equation:  

𝑑𝑛𝑖
𝑠

𝑑𝑛𝑗
𝑠 =

𝑛𝑖
𝑠

𝑛𝑗
𝑠

𝛾𝑒
𝑖

𝛾𝑒
𝑗 √

𝑚𝑗

𝑚𝑖
                              (3) 

This equation illustrates the existence of a kinetic isotope fractionation scaling as 𝛾𝑒
𝑖/𝛾𝑒

𝑗
√𝑚𝑗/𝑚𝑖 

during evaporation. This equation can be solved and yields a classical Rayleigh equation as shown 

in Davis and Richter39. On the other hand, if one assumes that there is chemical equilibrium 

between the vapor and condensed phase, that is Pi=Pi,sat, then there can be an equilibrium isotope 

fractionation relating the isotope compositions of the vapor and of the condensed phase during 

evaporation:  

𝛼𝑒𝑞 =
𝑃𝑖,𝑠𝑎𝑡 𝑃𝑗,𝑠𝑎𝑡⁄

𝑛𝑖
𝑠 𝑛𝑗

𝑠⁄
                          (4) 

This illustrates that depending on the evaporation conditions, both equilibrium isotope 

fractionation and kinetic isotope fractionation could play a role in controlling the observed isotope 

fractionation. In the next sections, we discuss the importance of the partial pressure and of the 

evaporation coefficients and how these parameters could affect the isotope fractionation related to 

evaporation.  

 

3. Key parameters controlling isotope fractionation during condensation and evaporation 
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3.1 Evaporation and condensation coefficients 

There has been numerous attempts to describe theoretically a value for the evaporation and 

condensation coefficients using statistical thermodynamics, transition state theory or surface 

processes (e.g. refs 34–38), and these approaches have derived analytical expressions for the 

evaporation or condensation coefficients that are valid under specific conditions. We review 

briefly the ingredients that have gone into such models and their salient features. First, by 

definition, the evaporation coefficient represents the deviation for the rate of evaporation relative 

to a maximum rate given by the HK relationship. Therefore, it is commonly defined for vacuum 

evaporation conditions: 

𝛾𝑒
𝑖 =

𝜑𝑖
𝑜𝑏𝑠

𝜑𝑖
𝑚𝑎𝑥                 (5) 

 

where 𝜑𝑖
𝑜𝑏𝑠 and 𝜑𝑖

𝑚𝑎𝑥 represent the observed and maximum evaporative flux, respectively. The 

maximum evaporative flux is thus defined by the equilibrium vapor pressure of species i. In 

general, crystals often show evaporation coefficient less than 1 57. The theoretical derivation of 

Hirth and Pound 56 for the evaporation coefficient of crystals predicts a minimum value of 1/3. 

More specifically, Hirth and Pound 56 have considered that the evaporating species have different 

energy configurations on the surface and have shown that the main route for evaporation takes 

place at ledges where the surface energy is lower rather than by direct desorption from a flat 

surface. In this case, the rate of evaporation is also controlled by the rate of diffusion to ledges, 

and these authors have shown that the evaporation coefficient can be expressed as: 

𝛾 =
1

3
+

2

3
(

𝑝

𝑝𝑠𝑎𝑡
)                      (6) 
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 This means that for p=0, the evaporation coefficient should theoretically be equal to 1/3, and that 

under saturation conditions, the evaporation coefficient should be equal to 1. However, this seems 

in disagreement with some observations indicating evaporation coefficients much lower than that 

threshold 57.  

In contrast, for liquid metals, it has been shown experimentally that e is equal to 1 (e.g., ref 58). 

In the case of liquid oxide mixtures, it has been shown that the evaporation coefficients for pure 

oxides were generally less than 1 for temperatures below the melting temperature (Tm), and that 

the evaporation coefficients converge to 1 for T=Tm 
59,60. Shornikov 60 observed that for molten 

pure substances such as SiO2, the evaporation coefficients are equal to 1.  In silicate melts 

consisting of oxide mixtures, the evaporation coefficients are however less than 1, but increase 

toward that 1 for increasing temperatures 21,60–62. Using a model based on equilibrium vapor 

pressures, Alexander 63,64 derived values for the evaporation coefficients of MgO, FeO and SiO2 

after having determined independently the activity of components in the silicate melts and showed 

their temperature dependence.  In parallel, the results of Richter et al. 21 have shown that the 

evaporation coefficients of SiO2 and MgO increase toward 1 with increasing temperature but this 

increase still happens above the melting temperature of the CaO-MgO-Al2O3-SiO2 mixture. Thus, 

the rule given by Sata and Lee 59 does not seem to apply for all oxide mixtures. Molecular dynamics 

simulation of evaporation coefficients of binary noble gas mixtures predict that these coefficients 

should show rather linear trends as a function of molar fraction, indicating rather simple 

systematics 65. However, it has not been verified that this also applies to complex silicate melts. 

Alexander64 has obtained variations in the values of the evaporation coefficients of Na and K for 

variable melt compositions, attributed to poor knowledge of their activity coefficients in the melts. 

In the absence of general rules for mixtures, experimental determinations have therefore been the 
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main method for obtaining values of the evaporation coefficients. For example, the compilation of 

Fedkin et al. 61 has shown that the evaporation coefficients of Mg and SiO are lower in the FeO-

free system than for higher FeO contents at a fixed temperature. These differences could however 

be due to inaccuracies in activities that modify the value of equilibrium vapor pressure and hence 

the experimental evaporation coefficients64. 

To obtain a more in-depth understanding about evaporation coefficients smaller than 1, one can 

use statistical thermodynamics combined with transition state theory to derive a general expression 

of e that is applicable to isotope effects.  Based on transition state theory 66–68, the rate of 

evaporation for isotope i from a surface is given by the following expression: 

𝑗𝑒
𝑖 = 𝜅 × 𝑛𝑖,𝑙

𝑘𝑇

ℎ

𝑄𝑖
∗

𝑄𝑖
𝑙 𝑒−

Δ𝐸
𝑅𝑇                   (7) 

where 𝜅 is a transmission coefficient taken to be equal to unity and 𝑄𝑖
∗ and 𝑄𝑖

𝑙 represent the 

partition function for the activated complex and the partition function for the liquid phase for 

isotope i, respectively. ΔE is an activation energy for evaporation. It is then possible to express the 

partition function for the activated complex representing a species about to leave the surface as the 

product of the translation, rotation and vibration partition functions69: 

𝑄𝑖
∗ =

2𝜋𝑚𝑖𝑘𝑇

ℎ2
𝑄𝑖,𝑟

∗ 𝑄𝑖,𝑣
∗                      (8) 

where the first term in the equation corresponds to the translational partition function confined 

to a surface (there are in this case two degrees of freedom for such a translation partition function), 

while 𝑄𝑖,𝑟
∗  and 𝑄𝑖,𝑣

∗  represent the rotational and vibrational partition functions, respectively. To 

express the chemical equilibrium between the vapor and the liquid, one can write: 

𝑛𝑖,𝑔 = 𝑛𝑖,𝑙

𝑄𝑖
𝑙

𝑄𝑖
𝑔 𝑒−𝜆𝑖/𝑘𝑇                      (9) 
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where 𝜆𝑖 is the energy of evaporation for isotope i. The partition function for the vapor species 

is defined as: 

  

𝑄𝑖
𝑔

=
(2𝜋𝑚𝑖𝑘𝑇)3/2

ℎ3
𝑄𝑖,𝑟

𝑔
𝑄𝑖,𝑣

𝑔
                (10) 

For an atomic species, it can be written more simply: 

𝑄𝑖
𝑔

=
(2𝜋𝑚𝑖𝑘𝑇)3/2

ℎ3
                           (11) 

 

Finally, the expression for the evaporation flux of isotope species i becomes 

𝑗𝑒
𝑖 =

𝑘𝑇

ℎ

𝑄𝑖
∗

𝑄𝑖
𝑣 𝑒−

𝐸𝑖
𝑘𝑇𝑒

𝜆𝑖
𝑘𝑇 = 𝑛𝑖,𝑣

𝑘𝑇

ℎ

2𝜋𝑚𝑖𝑘𝑇

ℎ2

ℎ3

(2𝜋𝑚𝑖𝑘𝑇)3/2

𝑄𝑖,𝑟
∗ 𝑄𝑖,𝑣

∗

𝑄𝑖,𝑟
𝑣 𝑄𝑖,𝑣

𝑣 𝑒−
𝐸𝑖

∗

𝑘𝑇                    (12) 

This expression can be rewritten as: 

𝑗𝑒
𝑖 = 𝑛𝑖,𝑣

1

4
(
8𝑘𝑇

𝜋𝑚𝑖
)
1/2 𝑄𝑖,𝑟

∗ 𝑄𝑖,𝑣
∗

𝑄𝑖,𝑟
𝑔

𝑄𝑖,𝑣
𝑔 𝑒−

𝐸∗

𝑘𝑇                               (13) 

 

Thus, by identifying the value of e with its definition in equation (5), an expression for the 

evaporation coefficient of isotope i becomes:  

𝛾𝑒
𝑖 =

𝑄𝑖,𝑟
∗ 𝑄𝑖,𝑣

∗

𝑄𝑖,𝑟
𝑔

𝑄𝑖,𝑣
𝑔 𝑒−

𝐸𝑖
∗

𝑘𝑇                         (14) 

where 𝐸𝑖
∗ represents the activation energy for condensation for isotope i (with 𝐸𝑖

∗ = 𝐸𝑖 − 𝜆). 

This expression is similar to the expression derived by Fujikawa et al. 69 for their derivation of the 

condensation coefficient, except that they assumed that the vibration partition function was equal 

in the transition state and vapor phase. It is also similar to the derivation of Hirschwald and Stranski 

66 or Knacke 68 for the evaporation coefficients. Knacke and Stranski68 for example neglected the 
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role of activation energy and of vibrations to consider only the rotation partition function in their 

final expression. Thus, our expression is more general than those previously used in the literature. 

Note that one reason for these differences is that these authors did not investigate isotope effects 

related to evaporation or condensation. It is then possible to express the ratios of evaporation 

coefficients for isotopes i and j in the case of free evaporation with the following expression:  

𝛾𝑒
𝑖

𝛾𝑒
𝑗
=

𝑄𝑖,𝑟
∗ 𝑄𝑖,𝑣

∗

𝑄𝑖,𝑟
𝑔

𝑄𝑖,𝑣
𝑔

𝑄𝑗,𝑟
∗ 𝑄𝑗,𝑣

∗

𝑄𝑗,𝑟
𝑔

𝑄𝑗,𝑣
𝑔⁄ 𝑒−

Δ𝐸𝑖_𝑗
∗

𝑘𝑇                (15) 

where Δ𝐸𝑖_𝑗
∗  represents the difference in activation energies for condensation between isotope i 

and isotope j. Equation 15 could, in principle, be used to calculate theoretically the ratios of 

evaporation coefficients. The above expression shows that at high temperatures, the ratio of 

partition functions for isotopes i and j and the activation energy term should be equal to 1, which 

means that there should no isotope fractionation induced by evaporation coefficients at high 

temperature. Using the derivation of Bigeleisen and Mayer70 for temperature dependence of the 

ratio of vibration partition functions, the above expression should have the following temperature 

dependence:  

𝛾𝑒
𝑖

𝛾𝑒
𝑗
≈ (1 +

𝐴

𝑇2
) 𝑒−

Δ𝐸𝑖_𝑗
∗

𝑘𝑇 ≈ 1 −
𝐵

𝑇
+

𝐴

𝑇2
                          (16) 

Depending on the relative importance of the partition function terms and the activation energy 

term, the value of A and B will impose a 1/T or 1/T2 dependence. At high temperatures, for 

evaporation under vacuum conditions, the kinetic isotope fractionation factor kin should be simply 

equal to √𝑚𝑗/𝑚𝑖 based on equation 1.  

In general, it has been found that the kinetic isotope fractionation factors determined by 

experiments are not strictly equal to √𝑚𝑗/𝑚𝑖 which indicates that the ratio of evaporation 
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coefficients is not equal to 1 at the temperatures considered, typically above 1000°C, assuming 

that the evaporating species are only mi and mj. If there are more species, then a more complex 

formalism is required (section 7) For example in the case of Mg isotopes evaporating from a 

CMAS melt, the value of kin is equal to 0.991 at 1250-1400°C instead of the theoretical value 

0.97977= √23.98504/24.98584  21. Similarly, the value of kin obtained by Estrade et al.71 for 

the evaporation of pure liquid mercury is 0.9933 instead of 0.9892=√198/202. This is a 

significant offset of approximately 4.1 ‰ that can be attributed to differences in the evaporation 

coefficients. For silicon isotopes evaporating from a CMAS liquid, Knight et al. 72 also reported 

kinetic isotope fractionation factor that indicates that the ratio of evaporation coefficients deviates 

from 1 between 2.5 and 7.9‰. In addition, the value of kin depends on the composition of the 

silicate melt with a smaller kin value observed for forsteritic melts.  For silicon isotopes, the 

deviation from 1 for kin, which should be directly linked to the ratio of 𝛾𝑒
𝑖/𝛾𝑒

𝑗
, is linearly correlated 

with the bond length of Si-O in the silicate melts, a parameter that should directly relate to the 

force constant of Si-O in silicates (Figure 1). Interestingly, for Si the ratio of evaporation 

coefficients shows no temperature dependence, unlike what is observed for Mg isotopes. In 

contrast, experiments reported for Ca and Ti evaporating from molten CaTiO3 do not show any 

statistically significant deviation from unity for the ratio of isotope evaporation coefficients 23, an 

observation that seems consistent with the evaporation coefficient close to 1 reported by Shornikov 

60.  

 A temperature dependence of the kinetic isotope fractionation factor has been observed by 

Richter et al. 21 for Mg isotopes and it can be shown based on their experimental data that the ratio 

of isotope fractionation factors does converge to the expected theoretical value for an infinitely 

large temperature (Figure 2). This would seem to confirm our theoretical expression. At lower 
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temperatures, however, the ratio of evaporation coefficients is significantly different from 1 and 

lowers the net kinetic isotope fractionation.   

Overall, these observations indicate that there can be a significant isotope fractionation effect 

due to evaporation coefficients that are not identical for different isotopes. Assuming that the 

kinetic isotope fractionation is equal to is equal to √𝑚𝑗/𝑚𝑖 is not a good approximation and 

experimental determinations should be preferred. However, the evaporation coefficients are not 

constant parameters and also depend on temperature and composition. Thus, before using 

experimental values one should check that they correspond to the expected conditions.  

 

3.2 Influence of local partial pressure 

The effect of local pressure is the second important parameter that has an impact on isotope 

fractionation during evaporation or condensation. The role of local pressure was first studied 

extensively in the case of water evaporation (e.g., 19, 51). More recent studies on other isotope 

systems explore this question from an experimental viewpoint 73,74 and theoretical viewpoint (20–

22,45. Evaporation experiments have demonstrated that in the presence of an ambient gas, the 

evaporation rate of solid or liquid is lower than in the vacuum 75,76. Essentially, if the pressure 

above the evaporating surface is not equal to zero then the outward velocity of evaporating species 

can be reduced by collisions that will effectively reduce the transport away from the surface.  In 

the case of an evaporating sphere with radius r0, it has been shown by Naumann77, assuming 

steady-state conditions, that the net evaporative loss can be expressed as a function of the mean 

free path of evaporating species i by 

𝐽𝑖,𝑛𝑒𝑡 =
𝐽𝑖,𝑒𝑣𝑎𝑝

1 + 2𝑟0/𝜋𝜆
= 𝐽𝑖,𝑒𝑣𝑎𝑝 (1 −

𝑃𝑖

𝑃𝑖,𝑠𝑎𝑡
)                (17) 
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where  is the mean free path for species i. Note that this equation is valid for free evaporation 

or evaporation in a viscous regime as it is based on mass conservation. The mean free path can be 

expressed as a function of the diffusion coefficient, which is itself a function of the ambient 

pressure. The mean free path can be expressed as a function of the diffusion coefficient of species 

i in the gas phase: 

𝜆 =
3𝐷

𝑣̅
                 (18) 

where D is the diffusion coefficient and 𝑣̅ is the average velocity.  With this expression, one can 

write an expression for the partial pressure of species i as a function of the diffusion coefficient 

for species i: 

𝑃𝑖 = 𝑃𝑖,𝑠𝑎𝑡

2𝑟0/𝜋𝜆

(1 +
2𝑟0
𝜋𝜆

)
= 𝑃𝑖,𝑠𝑎𝑡

2𝑟0𝑣̅/3𝜋𝐷𝑖

(1 +
2𝑟0𝑣̅
3𝜋𝐷𝑖

)
                  (19) 

This equation means that the value of Pi in equation (1) is no longer an undefined parameter and 

that it can be calculated as a function of the mean free path and the diffusion coefficient of the gas 

species. For large total pressure, the mean free path () will be smaller and vice-versa. In this last 

equation, the diffusion coefficient Di is a direct function of the total pressure. In the case of a binary 

mixture, the interdiffusion coefficient can be written as 78 

 

𝐷𝑖𝑗 =
3𝑘𝑇

8𝑃𝑡𝑜𝑡𝜎2
√

𝑘𝑇

2𝜋
(

1

𝑚𝑖
+

1

𝑚𝑗
)                  (20) 

where Ptot is the total pressure and  is the collisional cross section, m1 and m2 represent the 

masses of species 1 and 2, respectively. The expression given in equation (20) combined with the 

equation for the diffusion coefficient shows an explicit dependence of the ratio Pi/Pi,sat on the total 

pressure. If a material made of a pure substance evaporates, one needs to consider the self diffusion 
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coefficient of the species i and in this case, the total pressure in equation (20) is equal to the partial 

pressure of species i and equation (20) can be rewritten as:  

𝐷𝑖 =
3𝑘𝑇

8𝑃𝑖𝜎2
√

𝑘𝑇

𝜋𝑚𝑖
                                             (21) 

In equation (21), 12 is a collision cross section, estimated based on the atomic radius:   

𝜎12 = 𝜋(𝑟1
2 + 𝑟2

2)                 (22) 

It represents a probability for a molecule or an atom to encounter another. For a molecule such 

as SnO or SiO, the molecular radius is estimated based on the sum of the atom radii and the 

interatomic distance (Lilov 79) :  

𝑟𝑆𝑛𝑂 = 𝑟𝑆𝑛 + 𝑟𝑂 + 𝑟𝑆𝑛−𝑂                    (23) 

This last equation enables a simple calculation of 12 that is not known for most species of 

interest. Note that the parameters 12 should be identical for isotopes i and j.   

An additional effect that plays a role in the case of evaporation in a vacuum is that the velocity 

of atoms at low pressure cannot exceed the sound speed. Thus, for a given evaporating species 

with a vapor pressure Pi,sat, the maximum velocity will dictate a minimum effective pressure 

defined by a Mach number of 1, corresponding to the velocity of gas molecules equal to the speed 

of sound. The corresponding pressures, as shown by Safarian and Engh 80 using theoretical models 

of evaporation, yield values ranging between 0.19 and 0.23 Pi,sat.  

 

In what follows, we shall derive an expression for the isotope fractionation coefficient that 

includes the effect of an ambient pressure from an inert gas or from the evaporating species itself. 

This expression builds upon existing work, but is more general as it includes the effect of 

equilibrium fractionation that may become important if one is close to saturation. Similarly to 
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Richter et al. 20, the equation for radial transport of gas evaporating from a grain with radius r0 will 

be given by the following equation for radial transport:  

  

𝜕𝐶𝑖

𝜕𝑡
= 𝐷𝑖 (

𝜕2𝐶𝑖

𝜕𝑟2
+

2

𝑟

𝜕𝐶

𝜕𝑟
)                         (24) 

 

In addition to this equation, a boundary condition can be written: 

𝜕𝐶𝑖

𝜕𝑟
= −ℎ(𝐶𝑖,𝑠𝑎𝑡 − 𝐶𝑖)                  (25) 

where the parameter A is defined as 

ℎ =
1

𝐷𝑖

𝛾𝑖𝑅𝑇

√2𝜋𝑚𝑖𝑅𝑇
                     (26) 

The following initial condition can also be written for t=0: 

𝐶𝑖(0, 𝑟) = 𝐶𝑖,0           𝑓𝑜𝑟 𝑟 > 𝑟0               (27) 

 

If the species of interest is in trace amount then the diffusion coefficient can be considered to be 

independent of the concentration. Under these conditions, the partial differential equation can be 

solved analytically to yield 81 the time-dependent solution of equation (24) can be written as 

 

𝐶𝑖 − 𝐶𝑖,0

𝐶𝑖,𝑠𝑎𝑡 − 𝐶𝑖,0
=

ℎ𝑟0
2

𝑟(1 + ℎ𝑟0)
(𝑒𝑟𝑓𝑐 (

𝑟 − 𝑟0

2√𝐷𝑖𝑡
)

− 𝑒(ℎ′(𝑟−𝑟0)+ℎ′2𝐷𝑖𝑡)𝑒𝑟𝑓𝑐 (
𝑟 − 𝑟0

2√𝐷𝑖𝑡
+ ℎ′√𝐷𝑖𝑡))     (28) 

where h’ is defined as 
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ℎ′ = ℎ +
1

𝑟0
            (29) 

Note that this equation differs slightly from the solution given in Richter et al. 20 in its transient 

term. At the surface of the evaporating sphere r=r0, this equation becomes: 

𝐶𝑖 − 𝐶𝑖,0

𝐶𝑖,𝑠𝑎𝑡 − 𝐶𝑖,0
=

ℎ𝑟0
1 + ℎ𝑟0

(1 − 𝑒ℎ′2𝐷𝑖𝑡𝑒𝑟𝑓𝑐(ℎ′√𝐷𝑖𝑡))        (30) 

 

Using the case of SiO diffusion in the gas phase at 2000 K, it can easily be shown that for a time 

greater than 2s, equation (30) becomes stationary and there is a steady-state transport with a rate 

controlled by the diffusion coefficient. Thus, an asymptotic solution can be used instead of the 

time dependent solution, the steady-state solution becomes:  

 

𝐶𝑖 − 𝐶𝑖,0

𝐶𝑖,𝑠𝑎𝑡 − 𝐶𝑖,0
=

ℎ𝑟0
1 + ℎ𝑟0

     (31) 

 

If one takes into account equation (1), this last equation can be rewritten when Ci,0=0 : 

𝐶𝑖 =
𝑟0

𝐷𝑖
(

𝐶𝑖,𝑠𝑎𝑡𝑅𝑇

√2𝜋𝑚𝑖𝑅𝑇
−

𝐶𝑖𝑅𝑇

√2𝜋𝑚𝑖𝑅𝑇
) =

𝑟0

𝐷𝑖
𝐽𝑖,𝑛𝑒𝑡                              (32) 

Using equation (1) written for two isotope species, it then is possible to calculate the net 

isotope fractionation factor using a derivation similar to Dauphas et al. 42. We first define an 

effective isotope fractionation factor: 

𝛼𝑒𝑣𝑎𝑝 =
𝑁𝑖

𝑠

𝑁𝑗
𝑠

𝐽𝑖
𝐽𝑗

          (33)⁄  

 

However, we did not make the following approximation as in Dauphas et al. 42: 
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J𝑖,𝑛𝑒𝑡/J𝑗,𝑛𝑒𝑡 = P𝑖/𝑃𝑗               (34) 

Equation 34 assumes that the gas phase is instantaneously homogenized, which is not the case 

if an ambient pressure controls gas diffusion. Instead, the P𝑖/𝑃𝑗 ratio was determined with the more 

rigorous equation 32, assuming that Pi,0=0, thus, one can estimate the ratio of Pi/Pj:  

P𝑖

𝑃𝑗
=

J𝑖,𝑛𝑒𝑡/𝐷𝑖

J𝑗,𝑛𝑒𝑡/𝐷𝑗
               (35) 

Using this equation, it is possible to derive a modified equation using a derivation similar to the 

appendix in Dauphas et al. 42 

𝛼𝑒𝑣𝑎𝑝 =
𝛼𝑒𝑞

𝛼𝑘𝑖𝑛
[1 +

𝑃𝑗

𝑃𝑗,𝑠𝑎𝑡
(𝛼𝑘𝑖𝑛

𝐷𝑗

𝐷𝑖
− 1)]            (36) 

In this equation the expression Pi/Pi,sat can be expressed as 

𝑃𝑗

𝑃𝑗,𝑠𝑎𝑡
= 1 −

1

1 +
𝛾𝑗𝑟0
𝐷𝑗

√
𝑘𝑇

2𝜋𝑚𝑗

                         (37) 

Thus, the evaporation coefficient can be written in the following form that depends implicitly 

on the ambient pressure Ptot via equation (21): 

𝛼𝑒𝑣𝑎𝑝 =
𝛼𝑒𝑞

𝛼𝑘𝑖𝑛

[
 
 
 
 
 

1 +

𝛾𝑗𝑟0
𝐷𝑗

√
𝑘𝑇

2𝜋𝑚𝑗

1 +
𝛾𝑗𝑟0
𝐷𝑗

√
𝑘𝑇

2𝜋𝑚𝑗

(𝛼𝑘𝑖𝑛

𝐷𝑗

𝐷𝑖
− 1)

]
 
 
 
 
 

                (38) 

 

The expression derived here for the net isotope fractionation factor during evaporation is shown 

to depend explicitly on the ambient pressure and fully includes the effect of diffusion in the gas 

phase, unlike Dauphas et al. 42 and the effect of equilibrium isotope fractionation which was not 

the case of Davis and Richter 39. The basis for understanding the role of pressure on moderating 
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isotope fractionation during evaporation depends on the transport properties of atomic or 

molecular species in a gas. If the gas pressure is low, corresponding to a low density, the mean 

free path of gases is long and and a molecule can travel long distances without collisions. In this 

case, Pj/Pj,sat will be close to zero and 𝛼𝑒𝑣𝑎𝑝 should reach a value of eq/kin. 

In contrast, for an infinitely slow diffusion in the gas phase (Di0 in equation 37), the ratio of 

Pj/Pj,sat can be shown to be asymptotically approaching 1, indicating that the local partial pressure 

in species i should  reach saturation. Similarly, a high total pressure will lead to a value of Pj/Pj,sat 

close to 1, and if the ratio of diffusivities of isotopes can be approximated by 1 (as in ref 20), this 

will overall decrease the isotope fractionation due to evaporation reaching ultimately 𝛼𝑒𝑞. In this 

case, the net isotope fractionation should be of limited amplitude at high temperature, but given 

the uncertainties obtained by mass spectrometry analytical methods, this may be detectable. Our 

formulation also shows implicitly the role of an ambient gas that will increase the value of the 

diffusion coefficient. If the diffusion takes place in the Solar Nebula where the dominant gas is 

H2, then 𝛼𝑒𝑣𝑎𝑝 should be equal to eqDj/Di. The value of the isotope fractionation coefficient will 

be closer to 1 and for the case of 30Si/28Si will be equal to  

𝛼𝑒𝑣𝑎𝑝 ≈ 𝛼𝑒𝑞 𝐷𝑗 𝐷𝑖 ≈ √
28(30 + 2)

30(28 + 2)
= 0.998⁄                      (39) 

This was already pointed out in Richter et al. 22. This value is significantly closer to 1 than the 

classical kinetic parameter √28/30=0.966. Yet it is sufficiently different from 1 that it should be 

taken into account.  

 

 

4. Modelling isotope fractionation during condensation  
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The study of condensation has been more limited than that of evaporation possibly due to the 

difficulty in producing condensates experimentally. Using an approach similar to that used for 

evaporation, Davis and Richter 39 have shown that the net isotope fractionation factor for 

condensation as a function of the partial pressure of species i can be approximated as 

  

    𝛼′ − 1 ≈ (𝛼 − 1) (1 −
𝑃𝑖,𝑠𝑎𝑡

𝑃𝑖
)              (40) 

 

where Pi and Pi,sat indicate the partial pressure and the saturation pressure of the element of 

interest. If the oversaturation is relatively small, which corresponds to conditions close to 

equilibrium, then it is no longer valid to assume that the magnitude of the equilibrium isotope 

fractionation is negligible. In this case, a new set of equations has to be derived to take into account 

the effect of equilibrium fractionation. It should be noted that the equation of Davis and Richter 39 

neglected this effect. This problem has in fact been dealt with by Jouzel and Merlivat 40 for the 

case of water isotope fractionation during the condensation of rainwater and Dauphas et al. 42 in 

their Si isotope study. However, the equations that were used in ref 40 do not correspond to the 

formal treatment of condensation described by the Hertz-Knudsen equations. For isotopes i and j 

the net condensation flux can be written: 

𝐽𝑛𝑒𝑡
𝑖 =

𝑑𝑛𝑖

𝑑𝑡
=

𝛾𝑐(𝑃𝑖 − 𝑃𝑖,𝑠𝑎𝑡)

√2𝜋𝑚𝑖𝑘𝑇
                    (41) 

 

where 𝛾𝑐 is the condensation coefficient. We then make the assumption that there is equilibrium 

isotope fractionation at the interface between the gas and the condensate, and this equilibrium can 

be written: 
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𝑃𝑖,𝑠𝑎𝑡

𝑃𝑗,𝑠𝑎𝑡

𝑑𝑚𝑖
𝑐𝑜𝑛𝑑

𝑑𝑚𝑗
𝑐𝑜𝑛𝑑 =

𝑃𝑖,𝑠𝑎𝑡

𝑃𝑗,𝑠𝑎𝑡

𝐽𝑖,𝑛𝑒𝑡

𝐽𝑗,𝑛𝑒𝑡
⁄ = 𝛼𝑒𝑞⁄                 (42) 

 

Similarly to the case of of evaporation, a net isotope fractionation factor for condensation can 

be defined as: 

𝛼𝑐𝑜𝑛𝑑 =
𝛼𝑘𝑖𝑛

1 +
𝑃𝑗,𝑠𝑎𝑡

𝑃𝑗
(
𝛼𝑘𝑖𝑛

𝛼𝑒𝑞
− 1)

                         (43) 

 

Pj,sat/Pj is an oversaturation and should be less than 1 for net condensation to take place. In this 

equation, the value of Pj,sat/Pj is not specified a priori but in the case of a closed system with finite 

size, it can be estimated as shown below. For this reason, we have developed a model valid for a 

closed system where the amount of volatile species i is limited. In this case, the partial pressure 

should decrease due to loss of the equilibrium vapor phase by condensation, until it reaches the 

vapor pressure. Thus, our set of equations describes isotope fractionation during condensation in 

a closed system under isothermal conditions, i.e., the saturation pressure is constant and the partial 

pressure decreases as a result of condensation. The system would be more complex if we had in 

addition assumed that there was cooling. In this case, there could be sustained oversaturation as 

the cooling would lower the value of Pi,sat
 (e.g.,  ref 82). Similarly if the vaporization reaction 

involves several species with variable partial pressures, a different formalism would be required 

(see Section 6 for an example). Here, we assume that the fraction of condensed vapor (F) can be 

written as: 
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𝐹 =
𝑛𝑖 − 𝑛𝑖,𝑠𝑎𝑡

𝑛𝑖,0 − 𝑛𝑖,𝑠𝑎𝑡
                        (44) 

 

This equation shows that F=1 at the beginning of condensation, that F=0 at the end and that the 

number of moles in the vapor is equal to the saturation conditions for a fixed volume. If we define 

0,, isati nn then it is possible to express the ratio Pi,sat/Pi as a function of F and β. We first divide 

the numerator and denominator by ni  

𝐹 =
1 −

𝑃𝑖,𝑠𝑎𝑡

𝑃𝑖

1
𝛽

𝑃𝑖,𝑠𝑎𝑡

𝑃𝑖
−

𝑃𝑖,𝑠𝑎𝑡

𝑃𝑖

                  (45) 

By solving for Pi,sat/Pi, one  obtains  

𝑃𝑖,𝑠𝑎𝑡

𝑃𝑖
=

𝛽

𝛽 + 𝐹(1 − 𝛽)
               (46) 

Thus, the equation 43 can be rewritten as a function of F and β, with F being a variable parameter 

during condensation:  

    

𝛼𝑐𝑜𝑛𝑑 =
𝛼𝑘𝑖𝑛

1 +
𝛽

𝐹(1 − 𝛽) + 𝛽
(
𝛼𝑘𝑖𝑛

𝛼𝑒𝑞
− 1)

                      (47) 

 

In this context, the isotope fractionation factor is variable during condensation because the value 

of F constantly evolves during condensation. The variation in the isotope composition of the vapor 

can be written as 
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𝑑𝑋𝑗

𝑋𝑗
= 𝛼𝑐𝑜𝑛𝑑

𝑑𝑋𝑖

𝑋𝑖
                            (48) 

Where Xi and Xj denotes the abundances of isotopes i and j, respectively. By expressing the value 

of eff as a function of Xi and Xi,0, it is possible to integrate equation 48 to yield the isotope 

composition of the vapor defined as Xj/Xi 

 

𝑑𝑋𝑗

𝑋𝑗
=

𝛼𝑘𝑖𝑛𝑋𝑖

𝑋1 + 𝛽 (
𝛼𝑘𝑖𝑛

𝛼𝑒𝑞
− 1)𝑋𝑖,0

𝑑𝑋𝑖

𝑋𝑖
                    (49) 

 

    

𝑅𝑗,𝑖
𝑣 =

𝑅𝑗,𝑖
0

(𝐹(1 − 𝛽) + 𝛽)
(

𝐹(1 − 𝛽) − 𝛽
𝛼𝑘𝑖𝑛

𝛼𝑒𝑞

1 + 𝛽 (
𝛼𝑘𝑖𝑛

𝛼𝑒𝑞
− 1)

)

𝛼𝑘𝑖𝑛

                  (50) 

Using a simple mass balance equation, it is then possible to derive the isotope composition of the 

condensate  

𝑅𝑗,𝑖
𝑐 =

𝑅𝑗,𝑖
0 − 𝐹𝑅𝑗,𝑖

𝑣

1 − 𝐹
                   (51) 

 

Compared with the formulation of Davis and Richter 39 that is commonly used in the literature, 

this new formulation shows that the isotope fractionation factor varies with the condensed fraction 

F. As the system nears saturation (Pi=Pi,sat), the isotope fractionation factor becomes equal to eq. 

Depending on the value of β, the effective isotope fractionation factor could actually be much 

smaller than the kinetic fractionation factor that is commonly used to describe condensation 

processes. For illustrative purpose, we have shown the shape of the condensation curve compared 
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with a classical Rayleigh fractionation curve assuming purely kinetic effects in the case of Zn 

isotopes (Figure 3). The predicted magnitude of isotope fractionation is notably smaller with the 

new model presented here and may account for the limited isotope fractionation observed in many 

isotope systems 24,28,29,83. The general shape of the fractionation curve is also modified 

substantially. One could note that in the case of a cooling system, the problem would be more 

complex with a variable value of ni,sat . In such a case, one would need to specify a given cooling 

rate to solve the equations and they would mostly likely have to be integrated numerically.  

An example where this model for condensation may apply is the Zn isotopes reported for 

carbonaceous chondrites by Luck et al. 26. If one plots the Zn isotope data as a function of a Zn 

concentration normalized to that of CI chondrites, the observed trend shows a slightly convex 

shape. This data set was interpreted by Albarède 84 as due to the effect of partial condensation, as 

the Zn depleted chondrites showed an enrichment in light Zn isotopes. However, if one assumes 

that this trend can be explained by partial condensation, then a model curve using the classical 

Rayleigh distillation model should show a concave shape as illustrated in Figure 4 using the 

equation (39), as given in Davis and Richter 39. In contrast, using the equation derived above, the 

model curve gives a better fit and lends support to the validity of this model. It should be mentioned 

that other interpretations have been proposed to explain the Zn isotopes observations. For example, 

Pringle et al. 28 have explained this trend by mixing of components with variable Zn isotope 

compositions. While such a mixing model also fits the observations, it provides no explanation for 

the existence of a component that is enriched in light isotopes. The idea of mixing was supported 

by the existence of a correlation between 64Zn and 54Cr for carbonaceous chondrites 28 and this 

trend could be due to mixing between components with different nucleosynthetic signatures. As 

the proposed interpretation for the variations in 54Cr is that a thermal processing in the 
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protoplanetary disk has variably affected the carriers of Cr nucleosynthetic anomalies 85, the 

existence of a correlation linking Cr and Zn isotopes may simply reflect the effect of differing 

thermal processing of nucleosynthetic carriers. Indeed, this thermal processing if it also involved 

partial condensation of a volatilized Zn could produce the trends shown in Figures 5 and 6 of ref 

28.  

In summary, our new set of equations provides a more realistic framework for describing isotope 

fractionation during condensation in a closed system. As an example, the concept of a closed 

system may be valid for a system that is large enough, or at least where the boundary of the system 

may be remote enough to feel any mass loss or mass exchange. This may apply to a cooling 

protoplanetary disk. As more data sets become available, this framework may become useful, 

although experimental devices to study condensation in fully controlled experiments are still 

lacking.  

 

5. Modelling isotope fractionation during isothermal evaporation in a closed-system  

Most existing models for isotope fractionation during evaporation assume that the evaporated 

species is free to escape to space (e.g., ref 20,63). Alternatively, there is no accumulation of the 

evaporation species in the space above the evaporating phase25,36. This is done either by setting a 

pressure equal to zero at infinite distance20 or by assuming evaporation in vacuum. In this section, 

we have considered an endmember case of a closed system which has not been dealt with in 

previous studies. As the diffusion of volatile species is not instantaneous, it is interesting to 

consider the end-member case of a closed system (similar to the case presented for condensation 

in section 4) for the case of evaporation. In the present model, we consider that the solid (or liquid) 

evaporates in a closed system at constant temperature until it reaches the equilibrium vapor 
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pressure. With this condition, the pressure as a function of the evaporated fraction can be estimated. 

Furthermore, we consider that evaporation can be influenced both by kinetic isotope fractionation 

and equilibrium isotope fractionation and in this case, the effective isotope fractionation factor can 

be expressed as (see derivation in section 3.2): 

𝛼𝑒𝑣𝑎𝑝 =
𝛼𝑒𝑞

𝛼𝑘𝑖𝑛
(1 + [

𝑃𝑗

𝑃𝑗,𝑠𝑎𝑡
] (

𝐷𝑗

𝐷𝑖
𝛼𝑘𝑖𝑛 − 1))                    (52) 

For isotope i, one can write the following mass balance equation, assuming no volatile species 

in the starting gas:    𝑁𝑖
𝑔

+ 𝑁𝑖
𝑠 = 𝑁𝑖

0                           (53) 

where Ni represents a number of moles per unit of volume. With this notation, the fraction of 

isotope j in the gas phase can be defined as  

𝑓 =
𝑁𝑗

𝑔

𝑁𝑗,𝑠𝑎𝑡
                                  (54) 

With this definition, f ranges from 0 to 1 upon evaporation (i.e., f=1 when evaporation is 

completed). The Hertz-Knudsen equation for evaporation can then be written for isotope i and 

isotope j and these equations can then be used to express the variation in isotope ratio during 

evaporation using the effective isotope fractionation factor: 

𝑑𝑁𝑖
𝑠

𝑑𝑁𝑗
𝑠 =

1

𝛼𝑒𝑣𝑎𝑝

𝑁𝑖
𝑠

𝑁𝑗
𝑠                         (55) 

This equation can be integrated if one expresses the dependence of eff as a function of 𝑁𝑗
𝑠. This 

is done by rewriting a new explicit equation for f using the mass balance equation (52): 

𝑓 =
𝑁𝑗

𝑔

𝑁𝑗,𝑠𝑎𝑡
=

𝑁𝑗
0 − 𝑁𝑗

𝑠

𝑁𝑗,𝑠𝑎𝑡
              (56) 

Or:  
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𝑓 = 𝛾 −
𝑁𝑗

𝑠

𝑁𝑗,𝑠𝑎𝑡
                      (57) 

where  is defined as 

𝛾 =
𝑁𝑗

0

𝑁𝑗,𝑠𝑎𝑡
                         (58) 

Thus,  represents a potential oversaturation parameter, if one assumes total evaporation of the 

solid in the considered volume. With this notation, equation 54 can be written directly as  

𝑑𝑁𝑖
𝑠

𝑑𝑁𝑗
𝑠 =

𝛼𝑘𝑖𝑛/𝛼𝑒𝑞

1 + [𝛾 −
𝑁𝑗

𝑠

𝑁𝑗,𝑠𝑎𝑡
] (

𝐷𝑗

𝐷𝑖
𝛼𝑘𝑖𝑛 − 1)

𝑁𝑖
𝑠

𝑁𝑗
𝑠                     (59) 

This equation can then be integrated using the separation of variables and expressed as a function 

of f: 

𝑅𝑖𝑗
𝑠 = 𝑅𝑖𝑗

0 × (1 − 𝑓/𝛾)

𝛼𝑘𝑖𝑛

𝛼𝑒𝑞(1+𝛾(𝛼𝐾−1))
−1

× (
1 + 𝛾(𝛼𝐾 − 1) − (𝛼𝐾 − 1)(𝛾 − 𝑓)

1 + 𝛾(𝛼𝐾 − 1) − (𝛼𝐾 − 1)𝛾
)

−
𝛼𝐾

𝛼𝑒𝑞(1+𝛾(𝛼𝐾−1))
          (60) 

 

Using a simple mass balance, it is then possible to derive the equation for the isotope 

composition of the vapor phase:  

𝑅𝑖𝑗
𝑔

=
𝑅𝑖𝑗

0 − 𝑓/𝛾𝑅𝑖𝑗
𝑠

1 − 𝑓/𝛾
                (61) 

For the sake of illustration, the curves corresponding to such evaporation models are shown in 

Figure 5 for various values of undersaturation defined as Pi,0/Pi,sat. The closed system model shows 

a rather different shape compared with Rayleigh distillation curves that have a concave shape, 

showing a decreasing isotope fractionation as evaporated species reach saturation. As mentioned 

above, this model may be used to describe experiments in a closed system or serve as an end-
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member case for geophysical or astrophysical settings. For example, it could be a useful point of 

comparison for the evaporation of a magma ocean with a thick atmosphere limiting the escape rate 

of evaporating species 15,36. Under these conditions, the oversaturation may be reach a state close 

to equilibrium that has strong similarities with the problem treated here. The advantage of our 

model is that it does not depend on a complex atmospheric model that may be prone to 

uncertainties (e.g. ref 86).  

    

6. Evaporation with a population of evaporating drops-transient regime-collective effect 

As described above, evaporation in a closed system may act to buffer isotope fractionation 

compared with a pure Rayleigh evaporation. This system could also be similar to a large chondrule 

forming region as in Cuzzi and Alexander87 where the diffusion outside of the region may be 

limited. A similar situation may arise when one considers the evaporation of a population of N 

grains that will have influence on the local pressure, thereby leading to backward condensation 

flux and lowering the net evaporative flux.  These effects have been examined in the fluid 

dynamics literature (e.g., ref 88) where the presence of other drops lowers the overall rate of 

evaporation. However, these effects were never considered in the case of isotope fractionation. In 

the cosmochemical context, this situation may arise during chondrule formation where there may 

be a local dust to gas enrichment, as argued in Ebel and Grossman89. To consider this case, we 

assumed that the grains have a density dN representing the number of grains of radius r per unit 

volume (=N/V where V is the volume), that is large enough such that the gas loss at the boundary 

of the considered domain does not influence the overall budget. We make the assumption that the 

local field of pressures is rapidly equilibrated at a local scale because the density of grains is such 

that pressure gradients do not persist. In this context, the net evaporation flux can be written as  
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𝑑𝑁𝑖
𝑔

𝑑𝑡
= 𝐽 × 𝑁 = 4𝜋𝑟2𝑁

(𝑃𝑖,𝑠𝑎𝑡 − 𝑃𝑖)

√2𝜋𝑚𝑖𝑅𝑇
                (62) 

Where N is the number of spheres with radius r and 𝑁𝑖
𝑔

is the number of moles in the gas phase. 

If the pressure is low, then the ideal gas law can be used to relate the partial pressure to ni, the 

number of moles of gas i:  

𝑃𝑖 =
𝑁𝑖

𝑉
𝑅𝑇                              (63) 

  

Hence the above differential equation can be rewritten: 

𝑑𝑁𝑖
𝑔

𝑑𝑡
= 4𝜋𝑟2𝑁

𝑃𝑖,𝑠𝑎𝑡

√2𝜋𝑚𝑖𝑅𝑇
− 4𝜋𝑟2𝑑𝑁

𝑁𝑖
𝑔
𝑅𝑇

√2𝜋𝑚𝑖𝑅𝑇
               (64) 

This equation can be solved analytically, and the solution can be expressed as a function of the 

partial pressure of component i is: 

   𝑃𝑖 = 𝑃𝑖,𝑠𝑎𝑡 (1 − 𝑒
−4𝜋𝑟2𝑑𝑁√

8𝜋𝑅𝑇

𝑚𝑖
𝑡
)                    (65) 

This expression for Pi can be used to determine the variation in the effective isotope fractionation 

in the vapor or the condensed phase. This particular equation may apply to the case of evaporation 

for a population of chondrules with a local pressure building up with time.  

In the case of a trace element (Zn will be taken as an example), the value of Pi,sat will not be a 

fixed value during the evaporation process and Pi,sat, the equilibrium vapor pressure, can be 

expressed as a function of activity: 

𝑎𝑍𝑛𝑂 =
𝑃𝑍𝑛𝑂,𝑠𝑎𝑡

𝑃𝑍𝑛𝑂
∗                     (66)          
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where PZnO* is the vapor pressure for a pure species  (ZnO in this case). The main vaporizing 

species is however Zn(g) rather than ZnO(g) and there is the following equilibrium in the gas 

phase: 

𝑍𝑛(𝑔) + 𝑂(𝑔) ⇆ 𝑍𝑛𝑂(𝑔) 

The reaction constant can then be written: 

𝐾𝑍𝑛𝑂 =
𝑃𝑍𝑛𝑂(𝑔)

𝑃𝑍𝑛(𝑔)𝑃𝑂(𝑔)
                          (67) 

One first needs to calculate PZn,sat using the equilibrium with ZnO(g): 

𝛾𝑍𝑛𝑂𝐶𝑍𝑛𝑂 = 𝐾𝑍𝑛𝑂

𝑃𝑍𝑛,𝑠𝑎𝑡𝑃𝑂2

1/2

𝑃𝑍𝑛𝑂
∗       (68) 

CZnO is the concentration of species i in the solid/condensed phase phase (𝑛𝑍𝑛𝑂
𝑆 /𝑣) and v is the 

volume of an individual grain assumed to be invariant during evaporation of a trace element. Thus 

PZn,sat can be expressed as: 

𝑃𝑍𝑛,𝑠𝑎𝑡 = 𝛾𝑍𝑛𝑂 (
𝑁𝑍𝑛

0 −𝑁𝑍𝑛
𝑔

𝑁𝑣
)

𝑃𝑍𝑛𝑂
∗

𝐾𝑍𝑛𝑂𝑃𝑂2

1/2         (69) 

 

where 𝑁𝑍𝑛
0  is the total number of moles of Zn in the system,  𝑃𝑍𝑛,𝑠𝑎𝑡 is the vapor pressure for 

species ZnO and ZnO is the activity coefficient of ZnO in the solid. Thus, equation (62) can be 

expressed as a function of 𝑁𝑍𝑛
𝑔

 and the equation can be rewritten as  

𝑑N𝑍𝑛
𝑔

𝑑𝑡
=

4𝜋𝑟2𝛾𝑖𝐶𝑍𝑛
0

√2𝜋𝑚𝑍𝑛𝑅𝑇
(

𝑃𝑍𝑛𝑂
∗

𝐾𝑍𝑛𝑂𝑃𝑂2

1/2
) −

N𝑍𝑛
𝑔

√2𝜋𝑚𝑍𝑛𝑅𝑇
 (4𝜋𝑟2𝑑𝑁𝑅𝑇 +

3

𝑟
𝛾𝑍𝑛𝑂 (

𝑃𝑍𝑛𝑂
∗

𝐾𝑍𝑛𝑂𝑃𝑂2

1/2
))    (70) 

This equation can be solved analytically with the following solution, assuming no initial Zn in 

the gas phase: 
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N𝑍𝑛
𝑔 (𝑡) =

𝑑𝑁

𝐾

4𝜋𝑟2𝛾𝑖𝐶𝑍𝑛
0

√2𝜋𝑚𝑍𝑛𝑅𝑇
(

𝑃𝑍𝑛𝑂
∗

𝐾𝑍𝑛𝑂𝑃𝑂2

1/2
) (1 − 𝑒−𝐾𝑡)         (71) 

where K is defined as:  

𝐾 =
1

√2𝜋𝑚𝑍𝑛𝑅𝑇
(4𝜋𝑟2𝑑𝑁𝑅𝑇 +

3

𝑟
𝛾𝑍𝑛𝑂 (

𝑃𝑍𝑛𝑂
∗

𝐾𝑍𝑛𝑂𝑃𝑂2

1/2
))     (72) 

It is worth pointing out that Alexander63 has also dealt with the dissociation of oxides upon 

vaporization, with a similar formalism in his PCR model (pure component reference model) and 

his EQR (equilibrium reference model), although it was not targeted at dealing with collective 

effects.  

Our model shows that in this particular case, the vapor pressure controlling the evaporation rate 

decreases as the amount of element i in the gas phase decreases until reaching a steady state value 

that depends on the initial amount of element i in the condensed phase and how it gets diluted over 

the considered volume. Thus, the dynamics of evaporation evolves continuously unlike the case 

of a major element (e.g., Mg, Si, or Fe), where the concentration of the elements can be controlled 

by the stoichiometry of the condensed phase (e.g., Mg2SiO4) as is the case for congruent 

evaporation. If one were to model the case of chondrule formation, one would need to take into 

account the absence of stoichiometric control with a complex chondritic melt. For the sake of 

illustration, we have constructed the model curves showing the 66Zn as a function of the 

evaporated fraction of Zn for various values of dN, the main control parameter in this model (Figure 

6).  To illustrate the collective effect, the evaporation of Zn from an olivine was modeled (a single 

mineral is used for the sake of simplicity). The O2 partial pressure in equilibrium with olivine was 

taken from Costa et al. 90 while the pressure of ZnO(g) for a pure ZnO vaporization and the value 

of KZnO were obtained from Lamoreaux et al. 91.  
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Then, the isotope fractionation of Zn in the condensed phase was calculated assuming variable 

values of dN, representing the density of olivine grains per unit volume. As expected, for a larger 

number of grains the vaporized fraction decreased and the total vapor pressure increased. The Zn 

isotope fractionation decreased with the vapor pressure and after reaching equilibrium the isotope 

fractionation was negligible. This effect shows the buffering due to collective evaporation (Figure 

6). This situation could arise during chondrule formation in a dust-rich environment 89 where the 

density of dust could range between 2 and 10,000 g/m3 92. Alexander61 has considered a closed 

system to model the elemental and isotopic evolution of chondrules and showed that Type A 

chondrules could have formed in equilibrium with a high solid/gas ratio (similar to what was 

modeled here). Initially vaporization could indeed lead to large Zn isotope fractionation but this 

would be rapidly dampened as Zn reach saturation. Thus, the isotope effects are consistent with 

the observed reduction in evaporation rate when considering a large population of evaporating 

drops 88. This effect also seems consistent with observations of Mg isotope in chondrules that often 

reveal limited Mg isotope fractionation (e.g., ref 45). 

 

7. Isotope fractionation during evaporation with two isotope species  

In the treatment of isotope fractionation due to evaporation, it is generally considered that there 

is only one species evaporating that is responsible for isotope fractionation. However, 

thermodynamic modeling shows that in many cases, several species in the gas phase can coexist. 

This has been shown in numerous Knudsen effusion mass spectrometry experiments. In this case, 

since each species will be characterized by its own isotope fractionation factor, the pattern of 

isotope fractionation shall be more complex and we provide an example where this has been 
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observed in the case of Cr evaporation. Several workers have attempted to model these effects, 

especially in the context of mass spectrometry measurements 93,94. Kanno94 considered only the 

case of systems with only two isotopes such as B or Li, which is a little restrictive. Habfast93 

considered a more general case including dissociation of molecular species with numerous poorly 

constrained parameters. In our treatment we have chosen to deal with the case of multiple isotopes 

without considering the effect of dissociation that is difficult to constrain quantitatively. The Hertz-

Knudsen equation can be written as follows for a single isotope species: 

𝑑𝑛𝑖

𝑑𝑡
=

𝛾𝑒𝑃𝑖,𝑠𝑎𝑡 − 𝛾𝑐𝑃𝑖

√2𝜋𝑚𝑖𝑘𝑇
         (73) 

When there is more than one species evaporating then the equation needs to include additional 

terms for the other species. Let us assume there are two main species 1 and 2, in which case the 

equation can be written: 

𝑑𝑛𝑖

𝑑𝑡
=

𝑑𝑛𝑖
1

𝑑𝑡
+

𝑑𝑛𝑖
2

𝑑𝑡
=

𝛾1(𝑃𝑖,𝑠𝑎𝑡
1 − 𝑃𝑖

1)

√2𝜋𝑚𝑖
1𝑘𝑇

+
𝛾1(𝑃𝑖,𝑠𝑎𝑡

12 − 𝑃𝑖
2)

√2𝜋𝑚𝑖
2𝑘𝑇

         (74) 

This equation can be transformed as follows:  

𝑑𝑛𝑖

𝑑𝑡
=

𝛾1𝑃𝑖,𝑠𝑎𝑡
1 (1 − 𝑃𝑖

1/𝑃𝑖,𝑠𝑎𝑡
1 )

√2𝜋𝑚𝑖
1𝑘𝑇

+
𝛾1𝑃𝑖,𝑠𝑎𝑡

2 (1 − 𝑃𝑖
2/𝑃𝑖,𝑠𝑎𝑡

2 )

√2𝜋𝑚𝑖
2𝑘𝑇

               (75) 

The quantity we are interested in is the variation in the ratio of isotope i to isotope j: 

𝑑𝑛𝑖

𝑑𝑛𝑗
=

𝛾𝑖
1𝑃𝑖,𝑠𝑎𝑡

1 (1 − 𝑃𝑖
1/𝑃𝑖,𝑠𝑎𝑡

1 )

√2𝜋𝑚𝑖
1𝑘𝑇

+
𝛾𝑖

2𝑃𝑖,𝑠𝑎𝑡
2 (1 − 𝑃𝑖

2/𝑃𝑖,𝑠𝑎𝑡
2 )

√2𝜋𝑚𝑖
2𝑘𝑇

𝛾𝑗
1𝑃𝑗,𝑠𝑎𝑡

1 (1 − 𝑃𝑗
1/𝑃𝑗,𝑠𝑎𝑡

1 )

√2𝜋𝑚𝑗
1𝑘𝑇

+
𝛾𝑗

2𝑃𝑗,𝑠𝑎𝑡
2 (1 − 𝑃𝑗

2/𝑃𝑗,𝑠𝑎𝑡
2 )

√2𝜋𝑚𝑗
2𝑘𝑇

                 (76) 

The isotope equilibrium fractionation factor for both species 1 and 2 can be written: 
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𝛼𝑒𝑞
1 =

𝑛𝑖/𝑛𝑗

𝑃𝑖,𝑠𝑎𝑡
1 /𝑃𝑗,𝑠𝑎𝑡

1  and  𝛼𝑒𝑞
2 =

𝑛𝑖/𝑛𝑗

𝑃𝑖,𝑠𝑎𝑡
2 /𝑃𝑗,𝑠𝑎𝑡

2  (77) 

Thus, the equation can be simplified to: 

 

𝑑𝑛𝑖

𝑑𝑛𝑗
=

𝛾𝑖
1𝑛𝑖/𝑛𝑗𝑃𝑗,𝑠𝑎𝑡

1 /𝛼𝑒𝑞
1 (1 − 𝑃𝑖

1/𝑃𝑖,𝑠𝑎𝑡
1 )

√2𝜋𝑚𝑖
1𝑘𝑇

+
𝛾𝑖

2𝑛𝑖/𝑛𝑗𝑃𝑗,𝑠𝑎𝑡
2 /𝛼𝑒𝑞

2 (1 − 𝑃𝑖
2/𝑃𝑖,𝑠𝑎𝑡

2 )

√2𝜋𝑚𝑖
2𝑘𝑇

𝛾𝑗
1𝑃𝑗,𝑠𝑎𝑡

1 (1 − 𝑃𝑗
1/𝑃𝑗,𝑠𝑎𝑡

1 )

√2𝜋𝑚𝑗
1𝑘𝑇

+
𝛾𝑗

2𝑃𝑗,𝑠𝑎𝑡
2 (1 − 𝑃𝑗

2/𝑃𝑗,𝑠𝑎𝑡
2 )

√2𝜋𝑚𝑗
2𝑘𝑇

             (78) 

We now make the hypothesis that the ratio of vapor pressures for the two species 1 and 2 is a 

function that depends only on temperature: 

𝑃𝑗,𝑠𝑎𝑡
2

𝑃𝑗,𝑠𝑎𝑡
1 = 𝑘(𝑇)               (79) 

In this case, the above equation can be simplified to: 

𝑑𝑛𝑖

𝑑𝑛𝑗
=

𝑛𝑖

𝑛𝑗

𝛾𝑖
1/𝛼𝑒𝑞

1 (1 − 𝑃𝑖
1/𝑃𝑖,𝑠𝑎𝑡

1 )

√2𝜋𝑚𝑖
1𝑘𝑇

+
𝛾𝑖

2𝑘(𝑇)/𝛼𝑒𝑞
2 (1 − 𝑃𝑖

2/𝑃𝑖,𝑠𝑎𝑡
2 )

√2𝜋𝑚𝑖
2𝑘𝑇

𝛾𝑗
1(1 − 𝑃𝑗

1/𝑃𝑗,𝑠𝑎𝑡
1 )

√2𝜋𝑚𝑗
1𝑘𝑇

+
𝛾𝑗

2𝑘(𝑇)(1 − 𝑃𝑗
2/𝑃𝑗,𝑠𝑎𝑡

2 )

√2𝜋𝑚𝑗
2𝑘𝑇

              (80) 

 

It is reasonable to make the approximation that: 

(1 − 𝑃𝑗
1/𝑃𝑗,𝑠𝑎𝑡

1 ) ≈ (1 −
𝑃𝑖

1

𝑃𝑖,𝑠𝑎𝑡
1 )                 (81) 

Thus, equation 80 can be rewritten: 

𝑑𝑛𝑖

𝑑𝑛𝑗
= 𝛽

𝑛𝑖

𝑛𝑗
                                                     (82) 
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where: 

𝛽 =

𝛾𝑖
1/𝛼𝑒𝑞

1 (1 − 𝑃𝑗
1/𝑃𝑗,𝑠𝑎𝑡

1 )

√2𝜋𝑚𝑖
1𝑘𝑇

+
𝛾𝑖

2𝑘(𝑇)/𝛼𝑒𝑞
2 (1 − 𝑃𝑗

2/𝑃𝑗,𝑠𝑎𝑡
2 )

√2𝜋𝑚𝑖
2𝑘𝑇

𝛾𝑗
1(1 − 𝑃𝑗

1/𝑃𝑗,𝑠𝑎𝑡
1 )

√2𝜋𝑚𝑗
1𝑘𝑇

+
𝛾𝑗

2𝑘(𝑇)(1 − 𝑃𝑗
2/𝑃𝑗,𝑠𝑎𝑡

2 )

√2𝜋𝑚𝑗
2𝑘𝑇

              (83) 

This equation can easily be solved for ni/nj: 

𝑛𝑖

𝑛𝑗
=

𝑛𝑖
0

𝑛𝑗
0 (

𝑛𝑗

𝑛𝑗
0)

𝛽−1

                           (84) 

The instantaneous composition of the vapor for species 1 can then be written directly: 

𝑑𝑛𝑖
1

𝑑𝑛𝑗
1 =

𝛾1𝑃𝑖,𝑠𝑎𝑡
1 (1 − 𝑃𝑖

1/𝑃𝑖,𝑠𝑎𝑡
1 )

√2𝜋𝑚𝑖
1𝑘𝑇

𝛾1𝑃𝑗,𝑠𝑎𝑡
1 (1 − 𝑃𝑗

1/𝑃𝑗,𝑠𝑎𝑡
1 )

√2𝜋𝑚𝑖
1𝑘𝑇

                     (85) 

The variation of isotope ratios for species 1 can be written: 

𝑟𝑖_𝑗
1 =

𝑑𝑛𝑖
1

𝑑𝑛𝑗
1 =

1

𝛼𝑒𝑣𝑎𝑝
1

𝑛𝑖

𝑛𝑗
                  (86) 

where the expression for 𝛼𝑒𝑣𝑎𝑝
1 is, using the approach outlined in section 3.2: 

𝛼𝑒𝑣𝑎𝑝
1 =

(1 − 𝑃𝑗
1/𝑃𝑗,𝑠𝑎𝑡

1 ) + 𝛾𝑖
1/𝛾𝑗

1𝛼𝑘𝑖𝑛(𝑃𝑗
1/𝑃𝑗,𝑠𝑎𝑡

1 )

𝛾𝑖
1/𝛾𝑗

1𝛼𝑘𝑖𝑛/𝛼𝑒𝑞
1

               (87) 

By integrating equation 86, it is possible to determine the isotope fractionation of species 1 when 

there are two species evaporating. Equation 80 can easily be generalized to n species, if there are 

more than two evaporating species. In what follows, the effect of having more than one species 

evaporating is explored in the case of Cr isotope measurements by thermal ionization mass 

spectrometry (TIMS), and the model developed above shows that there are unusual isotope 

fractionation patterns in this case. 
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The analysis of Cr isotopes by TIMS represents an evaporation experiment where Cr is 

evaporated from a silicate glass matrix. The activator used to enhance Cr+ emission is a mixture 

of silica gel, aluminum nitrate solution and boric acid 95. This activator is deposited onto a Re or 

W filament and outgassed briefly. Thus, the Cr is incorporated in an alumino-silicate matrix doped 

with boron. An experimental study of such a Cr load heated under vacuum (typical source pressure 

is 10-8 mbar) shows that there is emission of Cr+, CrO+ and minor CrO2+. Given differences in 

ionization potentials, (IP(Cr)=7 eV, IP(CrO)=7.7 eV, IP(CrO2)=10.4 eV) the observed Cr+, CrO+ 

and CrO2+ signals are not directly representative of the Cr, CrO, and CrO2 evaporation fluxes. As 

shown in Figure 7, at high temperatures, the CrO+/Cr+ signal increases up to a temperature of 

1500°C. The ratio of vapor pressures PCrO(g)/PCr(g)  calculated with the FACTSAGE software for 

the Cr-Al-Si-B-O composition used in loading also increases between 1200 and 1500°C, indicating 

a significant Cr oxide component in the vapor phase. Using the calculated partial pressures and the 

ionization potentials, it is possible to recalculate the corresponding CrO+/Cr+ ratios, and the results 

are overall consistent with the thermodynamic calculations (Figure 7).  

 If one assumes that the isotope fractionation during analysis is controlled by evaporation, it is 

possible to calculate the instantaneous isotope ratio in the vapor over the course of an analysis. For 

the sake of simplification, we shall assume that the equilibrium isotope fractionation factor is equal 

to 1 during Cr oxide and Cr metal vaporization and that the local partial pressure in Cr, CrO and 

CrO2 is negligible relative to the vapor pressure. In this case, the isotope fractionation factor given 

in equation 81 is equal to:  
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𝛽 =

1

√2𝜋𝑚𝑖
1𝑘𝑇

+
𝑘(𝑇)

√2𝜋𝑚𝑖
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1

√2𝜋𝑚𝑗
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+
𝑘(𝑇)
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√𝑚𝑖
1
+

𝑘(𝑇)

√𝑚𝑖
2

1

√𝑚𝑗
1

+
𝑘(𝑇)

√𝑚𝑗
2

                     (88) 

In this case, the expression for the isotope ratios for Cr can be simply written as: 

𝑟𝑖𝑗

𝑟𝑖𝑗
𝑇 = 𝛼 (

𝑛𝑗

𝑛𝑗
0)

𝛼−1

                                    (89) 

 

where rij and 𝑟𝑖𝑗
𝑇 represent the measured and true isotope ratios, respectively. If the Cr isotope 

ratios are normalized to a given value of the reference isotope ratio, then the isotope ratios 

corrected for mass fractionation using the exponential law are: 

𝑟𝑖𝑗

𝑅𝑖𝑗
= (

𝑚𝑖

𝑚𝑗
)

𝛾

                        (90) 

 

where  is a fractionation factor and Rij represents the corrected (in principle true) ratio. If the 

isotope ratios have been fractionated due to the presence of two or three evaporating species, then 

the isotope fractionation pattern is slightly different from what it is if a single species evaporates. 

Thus, the correction induces a deviation from the true ratio and the offset depends directly on the 

ratio of CrO to Cr in the vapor, k(T). Using a series of measured Cr isotope standards run at a 

temperature of 1300°C approximately using the procedure described in 95, one observes, after mass 

fractionation correction using the exponential law and a reference value for the 50Cr/52Cr ratio, that 

there is a residual trend in the 54Cr/52Cr versus 53Cr/52Cr diagram (Figure 8). Using the formalism 

derived above, it is possible to calculate the variations in corrected Cr isotope ratios obtained for 

the measured range of k(T) (Figure 8). The calculated variations match the observed range in 
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54Cr/52Cr and 53Cr/52Cr ratios. Thus, the measured CrO+/Cr+ and the predicted Cr speciation are 

consistent with the proposed fractionation law with two or three vapor species. Our observations 

may explain that in some cases, the exponential law by itself does not properly correct instrumental 

fractionation, leading to residual variations after mass fractionation correction. This could be the 

case of high precision 142Nd TIMS analysis where both Nd and NdO are observed. Similar 

considerations we made by Caro et al.96 who showed that when normalizing Nd isotopes to a 

standard ratio could lead to residual correlations in a diagram showing isotope ratios corrected for 

mass fractionation (see also ref 97). This situation could also take place in natural settings with two 

or more evaporating species, in which case there could be deviations in isotope ratios after 

normalization to a given isotope ratio.   

 

8. Conclusions. 

While there is abundant literature focusing on evaporation and condensation of solids and 

liquids, there is far less information about isotope fractionation associated with these processes, in 

particular with respect to geologically relevant materials. As high precision isotope data 

accumulate on volatile and refractory elements, it will become relevant to have a better 

understanding of the controls of isotope fractionation linked with evaporation/condensation in the 

early Solar System. 

Our study shows that a better knowledge of evaporation coefficients would be extremely helpful 

to model more accurately the thermodynamical conditions of evaporation or condensation. The 

evaporation coefficients that are a function of the energetic barrier to evaporation depend directly 

on chemical composition and temperature. A smaller evaporation coefficient seems associated 

with greater isotope fractionation. Given their similarity with kinetic isotope fractionation factors, 
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the ratio of evaporation coefficients should go to 1 at infinite temperature. We also have illustrated 

that several kinetic parameters control the overall isotope fractionation during evaporation: kinetic 

fractionation due to diffusion, kinetic fractionation linked with the evaporation itself and kinetics 

of detachment from the surface.  

Second, we have reemphasized the fact that evaporation or condensation operates with an 

ambient pressure and that this tends to limit isotope fractionation. Being able to precisely model 

the local pressure near a reactive surface will be a challenge for future studies. As the purely 

diffusive case has already been modeled successfully, it may be more desirable to include an 

advective component.  

Our study also illustrates that the pattern of fractionation need not be always described by a 

simple Rayleigh fractionation. Rather, we show there are many different patterns of isotope 

fractionation associated with evaporation or condensation and that these patterns may be used as 

a diagnostic for the type of process. This study has extended the number of models in particular 

with respect to closed system evolution. Furthermore we have shown that the effective isotope 

fractionation factor may be different from the classical used kinetic isotope fractionation factor. 

Our modeling approach is probably simplistic compared with real cases and should be considered 

as illustrative.  

 

FIGURES  

Figure 1. The relationship between the ratio of evaporation coefficients, 𝛾 𝑆𝑖30 /𝛾 𝑆𝑖28  and bond 

lengths for silicates. Data source: Knight et al. 72; Davis et al. 17; Wang et al. 19. The longer bond 

length correspond to a smaller energetic barrier to evaporation, associated with a weaker Si isotope 

fractionation. References for bond lengths are Haring98 and Guillot and Sator99. 
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Figure 2. Mg isotope fractionation factor for Type B CAI-like material, determined 

experimentally plotted as a function of temperature showing a convergence towards the theoretical 

kinetic isotope fractionation factor √24/26 at high temperature, as predicted with equation (16). 

Data source compiled by Richter et al. 21.  

 

Figure 3. Theoretical curves in a 66Zn versus fraction condensed, showing the effect of 

condensation in a finite volume in the case of Zn isotopes. The curves are labeled with the initial 

degree of oversaturation as defined in main text. 66Zn is defined as 

(( 𝑍𝑛66 𝑍𝑛64⁄ )
𝑠𝑎𝑚𝑝𝑙𝑒

( 𝑍𝑛66 𝑍𝑛64⁄ )
𝑠𝑡𝑑

⁄ − 1) × 1000 in ‰. Note that the shapes of these model 

curves differ markedly from the classical Rayleigh curves for condensation.  

 

Figure 4. Zn isotope variations in ordinary chondrites (data from Luck et al. 26).  A best-fit model 

curve obtained with a condensation model in a finite volume is also shown, using the equations in 

section 4 (β=0.85). 

 

Figure 5. Theoretical curve showing the pattern of Mg isotope fractionation as a function of Mg 

depletion for evaporation in a finite volume. The Mg isotope fractionation factor decreases as 
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saturation increases, which yields a concave shape for the model curves. The model curves are 

calculated for various values of the undersaturation defined as Pi,0/Pi,sat as labeled on the curves.  

 

Figure 6. Diagram showing model curves for 66Zn (where 64Zn is used in the denominator) in the 

condensed phases during closed system evaporation from a collection of olivine spheres in a fixed 

volume. The temperature of vaporization was 2000 K. The density of grains per cubic meter is 

labeled on the model curves. The initial Zn concentration was 300 ppm and the initial radius of 

each grain was 1 mm.  

 

Figure 7. (a) Predicted PCrO/PCr in the vapor during emission from a TIMS filament with an SiO2, 

B2O3 and Al2O3 activator. (b) Comparison between the predicted and the observed CrO+/Cr+ 

during TIMS emission. The assumed ionization potentials for CrO and Cr are 6.8 and 7.7 eV 

respectively. 

 

Figure 8. Cr isotope composition of NIST SRM 979 standards reported as 53Cr versus 54Cr 

using 52Cr/50Cr as a normalizing ratio. All the data was measured with a TRITON TIMS using the 

procedure described in ref. 95 and corrected with the exponential law. The red circle represents 

individual Cr standard measurements and the solid line is the predicted trend using the 

fractionation law involving two evaporating species (see text for details).  
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Cr isotope NIST SRM 979 standard measurements by TIMS normalized to 50Cr/52Cr ratios 

 µ53Cr (ppm) ± µ52Cr (ppm) ± 

     

Cr1 8.474679942 2.2021565 21.9554544 4.6255275 

Cr2 2.427300466 1.81971524 3.27835795 3.48396271 

Cr3 0.089084006 2.25567627 5.76769471 4.23498935 

Cr4 4.384464512 1.77778781 14.7910523 3.50348298 

Cr5 1.121793074 1.14398448 1.16837641 2.39983482 

Cr6 -0.274792922 1.51403698 0.47036042 3.0149698 

Cr7 -3.080305903 1.64345427 -12.2742442 3.23392704 

Cr8 1.763301204 1.63659357 5.89165824 3.29136982 

Cr9 6.381529468 1.39241548 18.0149991 2.83108471 

Cr10 0.832672634 1.31757605 5.07520872 2.56331776 

Cr11 3.973717065 1.21971726 7.45698304 2.5218697 

Cr12 7.043058485 1.86692693 20.3312122 3.68571318 

Cr13 -1.794713401 1.7046754 -5.46161468 3.34133553 

Cr14 4.48331664 1.51363019 8.25521434 3.19678548 

Cr15 5.648057219 1.65527865 11.5297808 3.41079564 

Cr16 0.511821039 1.58854808 1.17344104 3.3259614 

Cr17 -2.484169041 1.48418741 -6.52088358 3.32102485 

Cr18 2.146175526 1.88549067 4.5935873 3.99219481 

Cr19 -0.930206482 1.76038451 4.22497107 3.53291415 

Cr20 2.027901823 1.24179881 2.46908018 2.42637096 

Cr21 1.586801011 1.39961523 3.01843291 2.82068239 

Cr22 1.53301733 1.42766085 1.29782145 2.69269106 

Cr23 -4.724548746 1.1761779 -14.218361 2.34337966 

Cr24 -5.355044294 1.20686449 -14.5553509 2.42699068 

Cr25 2.101088322 2.64963892 4.50865271 5.38879352 

Cr26 -0.176044741 2.09828258 0.95241318 4.30612787 

Cr27 -3.940180426 2.86047856 -9.41887443 5.810652 

Cr28 -15.54549623 5.99130928 -30.444806 14.6580426 

Cr29 -6.958810135 4.028339 -16.6329952 9.23081816 

Cr30 2.835018635 1.64216503 6.87800198 3.39523838 

Cr31 -4.323311201 2.53369778 -13.5206161 5.25783126 

Cr32 1.726889894 1.95446067 10.4112542 3.68900034 

Cr33 -1.341706982 4.36776016 -8.18337524 9.80940369 

Cr34 -3.054556198 2.90379082 -4.42544306 6.15725233 

Cr35 -3.181153336 2.88572317 -11.6973283 6.2019936 

Cr36 -8.468347088 2.46002168 -19.074081 5.32536287 

Cr37 -2.267020295 3.37505364 -6.40340096 8.02132214 

Cr38 6.901343534 2.19144264 12.9271474 4.56646529 

Cr39 -1.793500957 3.54673195 -6.25383598 7.81938212 

Cr40 2.998082015 2.55811645 11.7579298 5.67884564 

Cr41 0.009387322 2.69450774 -3.23866402 5.8795187 

Cr42 -4.993330368 3.87265717 -12.13695 8.60305039 

Cr43 8.129857841 2.51627332 6.30170606 5.27339293 

Cr44 -8.053449875 5.61605149 -4.48279632 13.1087888 



Cr45 -0.995342829 3.92196686 -4.28707662 7.89487311 

Cr46 3.519561672 7.89046579 6.76617199 20.3888278 

Cr47 -2.509704386 3.81396142 5.67736798 9.18284739 

Cr48 1.874367843 1.92115258 4.21850153 4.36536969 

Cr49 1.72144733 3.20971366 -7.93213596 6.68687137 

Normalizing ratio : 50Cr/52Cr= 0.05185853 

 

 




