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ABSTRACT 12 

Tektites are glasses derived from near-surface continental crustal rocks that were 13 

molten and ejected from the Earth's surface during hypervelocity meteorite impacts. They are 14 

among the driest terrestrial samples, although the exact mechanism of water loss and the 15 

behaviour of other volatile species during these processes are debated. Based on the 16 

difference in magnitude of the Cu and Zn isotopic fractionations in tektites, and the difference 17 

of diffusivity between these elements, it was suggested that volatile loss was diffusion-18 

limited. Tin is potentially well suited to testing this model, as it has a lower diffusivity in 19 

silicate melts than both Cu and Zn, but a similar volatility to Zn. Here, we analysed the Sn 20 

stable isotopic composition in a suite of seven tektites, representing three of the four known 21 

tektite strewn fields, for which Zn and Cu isotopes were previously reported. Tin is enriched 22 

in the heavier isotopes (≥2.5‰ on the 122Sn/118Sn ratio) in tektites, correlated with the degree 23 

of Sn elemental depletion in their respective samples as well as with Cu and Zn isotope ratios, 24 

implying a common control. While the isotope fractionation of Sn, Cu and Zn is a result of 25 
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volatility, the magnitude of isotope fractionation is strongly moderated by their relative rates 26 

of diffusion in the molten tektite droplets. An Australasian Muong Nong-type tektite analysed 27 

has the least Sn depletion and Sn isotope fractionation, consistent with these samples being 28 

more proximal to the source and experiencing a shorter time at high temperatures. 29 

Keywords: tektites; volatiles; tin; stable isotopes; impacts 30 

INTRODUCTION 31 

Tektites are distal impact glasses, typically up to a few cm in size, formed by rapid 32 

melting of terrestrial upper crustal rocks during hypervelocity impacts on the Earth's surface 33 

(e.g., Shaw and Wasserburg, 1982; Koeberl, 1986, 1990, 1994; Koeberl et al., 1996; Melosh 34 

and Artemieva, 2004). Tektites have chemical and isotopic compositions similar to that of the 35 

terrestrial upper crust, and thus are thought to have formed by fusion of the target 36 

rocks/sediments rather than from the impactor itself (e.g., Shaw and Wasserburg, 1982; 37 

Koeberl, 1986, 1994). 38 

Although tektites are generally chemically and isotopically similar to the upper crust, 39 

they are characterized by extremely low water contents (Beran and Koeberl, 2010; 0.002–0.02 40 

wt.%; Koeberl, 1994), indicating a depletion of water (and potentially other volatiles) from 41 

their precursor rocks (typically sediments, with >1% water) while the tektites were molten. 42 

The mechanism for this depletion and, more broadly, the behaviour of volatile elements and 43 

molecules during tektite formation is not well understood. Volatilization is known to 44 

fractionate elemental and isotopic abundances of volatile elements, and isotopic fractionation 45 

of moderately volatile elements has been recorded, for example, in lunar samples (e.g., Cl, 46 

Ga, K, Zn, Rb; Sharp et al., 2010; Paniello et al., 2012; Kato et al., 2015; Boyce et al., 2015; 47 

Kato and Moynier, 2017; Pringle and Moynier, 2017; Wang and Jacobsen, 2016). Recently, 48 

even relatively refractory elements (e.g., Mg, Si, Ca, Ti) have been shown to have isotopic 49 

variations that are attributed to high-temperature volatility-related processes in the early Solar 50 

System (e.g., Richter et al., 2009; Pringle et al., 2014; Hin et al., 2017; Davis et al., 2018). As 51 



 

 

such, developments of additional tools to investigate such processes are timely. Given that 52 

tektites were rapidly heated, molten, and quenched over timescales that are likely to capture 53 

kinetic effects related to volatility, stable isotopes of volatile elements are well-suited to 54 

studying tektite formation and the isotopic effects thereof. 55 

So far, studies of isotopic fractionation in tektites have yielded equivocal results. 56 

Studies of Mg (Esat and Taylor, 1987, 1986), K (Herzog et al., 2008; Humayun and Koeberl, 57 

2004; Jiang et al., 2019), B (Chaussidon and Koeberl, 1995), and Li (Magna et al., 2011) in 58 

tektites found that vapour fractionation (at least for those elements) did not play an important 59 

role during tektite formation, and that isotope ratios reflect the compositions of their source 60 

materials. However, those elements lie towards the more refractory end of the moderately 61 

volatile elements. Among the more volatile of the moderately volatile elements, Cd is 62 

enriched in the heavy isotopes in one Muong Nong-type Australasian tektite, which could 63 

reflect evaporative loss of light Cd isotopes (Wombacher et al. 2003), although with only one 64 

sample, this finding is inconclusive. Moynier et al. (2010, 2009) reported Zn and Cu isotope 65 

compositions, respectively, for a suite of tektites from all strewn fields. These results were 66 

reaffirmed by a study of moldavites and sediments of the Ries crater (Rodovská et al., 2017). 67 

Both Cu and Zn show significant isotopic fractionation that correlates with their elemental 68 

depletions, consistent with preferential evaporative loss of light isotopes (Moynier et al., 69 

2010, 2009), and the larger isotopic fractionation in Cu was attributed to the greater chemical 70 

diffusivity of Cu over Zn due to their differences in ionic charge (i.e., Zn2+ vs. Cu+; Moynier 71 

et al. 2010). However, this model is based on only two elements, and further testing is 72 

required to validate this hypothesis. 73 

Tin is amongst the more volatile of the moderately volatile elements, and is potentially 74 

more volatile than both Cu and Zn. No quantitative estimates exist for the temperature of 75 

volatilization of these elements in conditions relevant to tektite formation. Cosmochemical 76 

condensation temperatures, based on condensation from a gas of solar nebular composition at 77 



 

 

a partial pressure of ~10-4 atm. (Lodders, 2003), are often used as a first order estimate of 78 

volatility. These would suggest the relative volatilities of these elements increase in the order 79 

Cu << Zn ≲ Sn. Recent vaporization experiments of basalts at higher oxygen fugacities 80 

suggest that the relative volatilities of these elements increase in the order Zn<Cu<Sn (Zn is 81 

getting relatively less volatile under oxidizing conditions, while Sn stays the most volatile 82 

element; Norris and Wood, 2017). However, another recent vaporization study under more 83 

oxidising conditions suggests that Zn remains more volatile than Cu (Sossi et al., 2019), 84 

although unfortunately Sossi et al. (2019) do not provide data for Sn. Here, we assume an 85 

order of volatility is maintained under tektite forming conditions whereby Sn and Zn have 86 

similar volatility, and Cu is less volatile than Sn and Zn.  87 

Understanding the isotopic behaviour of Sn during evaporation will be central to 88 

understanding isotopic data in planetary materials and in impact-related samples. Tin isotope 89 

cosmochemistry is a new field, and so far, published data have been limited to conference 90 

abstracts (Bourdon et al., 2017; Creech and Moynier, 2017; Fitoussi et al., 2017) and one 91 

paper (Creech and Moynier, 2019). However, the discovery of a light isotopic composition of 92 

Sn in lunar samples compared to the Earth (Fitoussi et al., 2017) is unique amongst isotopic 93 

systems analysed so far. Tektites can be used as natural experiments to test the behaviour of 94 

Sn during evaporation. 95 

Here, we report the first Sn stable isotope data in a suite of tektites from three of the 96 

four major tektite strewn fields in which Cu and Zn isotopic composition had been previously 97 

reported (Moynier et al., 2009, 2010). We use these data to investigate the processes leading 98 

to the chemical and isotopic compositions of tektites, and, in turn, the effect of volatility 99 

related processes on the isotopic composition of tin. By comparing the isotope fractionations 100 

of Cu, Zn, and Sn, as well as their relative diffusivities, we test the previous model of 101 

Moynier et al. (2009) of volatile loss in a diffusion-limited regime. These constraints on the 102 

isotopic behaviour of Sn during evaporation will be central to understanding isotopic data in 103 



 

 

planetary materials and in impact-derived samples, and will assist in interpretation of future 104 

analyses of other cosmochemical samples, such as lunar rocks and chondrites. 105 

MATERIALS AND METHODS 106 

Sample descriptions 107 

The Sn isotopic composition of a total of seven tektites were analysed in this study, 108 

comprising all samples from previous Zn and Cu work with sufficient remaining sample 109 

material for Sn isotope analysis. Details of the samples are summarized in Table 1. These 110 

tektite samples represent three of the four identified tektite strewn fields, comprising: 111 

Central European tektites: Four moldavite tektites were studied, three of which are 112 

from the vicinity of Jankov (Jankov 1, Jankov 2, Jankov 3) and one is from the vicinity of 113 

Chlum (Chlum). Of these samples, three have been previously analysed for Zn isotope ratios 114 

by Moynier et al. (2009), and three for Cu isotope ratios by Moynier et al. (2010) – see Table 115 

1.  116 

North American tektites: One North American tektite (BED 8402), which is from the 117 

bediasite sub-strewn field (Texas). This sample has been previously described in Weinke and 118 

Koeberl (1985), and analysed for Zn and Cu isotope ratios by Moynier et al. (2010, 2009).   119 

Australasian tektites: Two Australasian tektites, both indochinites, were analysed in 120 

this study. These comprise one Muong Nong type tektite from Thailand (MN 8309) and one 121 

splash-form tektite from Hainan, China (HSF1). Both of the Australasian tektites have been 122 

analysed for major and trace element compositions by Koeberl (1992) or Moynier et al. 123 

(2009); Cu and Zn isotope data have also been published by Moynier et al. (2009, 2010).   124 

For comparison with terrestrial compositions, isotopic and concentration data for four 125 

commonly used USGS terrestrial reference materials are also given in Table 1. Note that in 126 

the following discussion, a generic terrestrial upper crust δ122/118Sn (the per mil deviation of 127 

the 122Sn/118Sn ratio from the IPGP_Sn standard) composition is approximated as 0.00–128 

0.50‰, with [Sn] of 0.65–2.50 µg g–1, based on data from Creech et al. (2017) and 129 



 

 

Badullovich et al. (2017); the exact composition of the tektite source rocks may be further 130 

constrained in the future as Sn isotope data for more geological materials become available. 131 

Analytical methods 132 

Tin purification and isotopic analysis were conducted using the same methods as 133 

described by Creech et al. (2017; 2019). Powders comprising 55–380 mg of tektite samples 134 

were digested in a mixture of concentrated HF:HNO3 in closed teflon beakers on a hotplate at 135 

120 ˚C. Dissolved tektite samples were evaporated to incipient dryness at 100 ˚C, taken up in 136 

a small volume of concentrated HCl and dried down again before being taken up in 2 mL of 137 

0.5 M HCl for loading on to columns. Biorad columns were prepared with 1.5 mL per column 138 

of TRU resin and cleaned prior to sample loading by repeated rinsing with 0.5 M HNO3, 0.5 139 

M HCl and milli-Q water. After loading, matrix was rinsed off the column with 4 mL of 0.5 140 

M HCl and 7 mL of 0.25 M HCl, and Sn was subsequently eluted in 10 mL of 0.5 M HNO3. 141 

 Prior to sample digestion, samples were doped with a 117Sn–122Sn double-spike to 142 

give approximate proportions of 40% Sn from the double-spike and 60% from the sample, as 143 

detailed by Creech et al. (2017). Tin stable isotope measurements were carried out using a 144 

Thermo-Scientific Neptune Plus MC-ICPMS at the Institut de Physique du Globe de Paris, 145 

France, under analytical conditions identical to those described by Creech et al. (2017). 146 

Isotope results are reported in δ122/118Sn notation. Sufficient material was only available to 147 

measure each tektite sample once. Creech et al. (2017) reported an external reproducibility for 148 

this technique of (conservatively) ±0.065‰ on δ122/118Sn, or ca. 0.016‰ on a per amu basis. 149 

Uncertainties on figures represent either the internal error of the respective analysis or the 150 

external reproducibility, whichever is larger. 151 

Data reduction was conducted offline using the freely available double-spike data 152 

reduction tool IsoSpike (www.isospike.org; Creech and Paul, 2015).  153 



 

 

RESULTS 154 

Tin isotopic and concentration data for tektites are presented in Table 1, along with 155 

literature data for Zn and Cu for the same tektite samples. Tektites are strongly fractionated 156 

towards heavy Sn isotopic compositions relative to those of terrestrial upper crust samples 157 

(Table 1; Fig. 1). Overall, the tektites span a range in δ122/118Sn of ca. 2 ‰, which is 158 

significantly larger than any natural Sn isotopic variation so far reported for geological 159 

samples. The single North American tektite has a δ122/118Sn = 1.40 ± 0.18‰, whereas the 160 

Central European tektites span a range from δ122/118Sn = 1.35 ± 0.03‰ (Jankov 1) to 2.53 ± 161 

0.15‰ (Chlum). The Australasian tektites are more variable; the splash form tektite from 162 

Hainan (HSF1) has a similar isotopic composition to the North American and Central 163 

European tektites (δ122/118Sn = 1.60 ± 0.10‰), while the Muong Nong-type tektite MN8309 is 164 

less fractionated, with a composition more similar to terrestrial upper crust (δ122/118Sn = 0.46 ± 165 

0.18‰; basalt, Badullovich et al., 2017). 166 

DISCUSSION 167 

We observe a general shift towards heavy isotope compositions in tektites that is 168 

correlated with decreasing Sn content (Table 1, Fig. 1). This observation is consistent with 169 

evaporative loss of the light Sn isotopes during the molten phase of tektite formation, as 170 

previously observed for Cu and Zn (Moynier et al., 2010, 2009; Rodovská et al., 2017). In 171 

Figure 1 we show calculated isotopic compositions based on mass-dependent fractionation by 172 

Rayleigh distillation, which describes the isotopic evolution of a system from which a phase 173 

is continuously extracted. The isotopic composition of the tektites is well reproduced by a 174 

Rayleigh distillation, following a fractional distillation relationship for Sn as given in 175 

equation (1): 176 

 
����� /�����
����� /������ = 
 [��][��]


�
���

   (1)  177 

where α is the isotope fractionation factor, and the subscript 0 indicates initial values. The 178 

initial composition is an assumed terrestrial upper crust composition (note: on the scale of 179 



 

 

isotopic fractionation observed in tektites, varying the initial composition within the range 180 

observed in terrestrial samples has little effect on the shape of projection, although it does 181 

change the relative position). In an ideal case, the kinetic fractionation factor, α, is dependent 182 

on the square root of the ratio of the masses involved (i.e., ������ = ��������/�������, 183 

where M118Sn and M122Sn are the masses of 118Sn and 122Sn, respectively; in the case of Sn, 184 

αideal = 0.983), although in natural samples fractionation factors are found to deviate from this 185 

ideal case (e.g., Moynier et al., 2009, 2010; Day and Moynier, 2014; Wimpenny et al., 2019). 186 

Suitable natural samples can thus be used to derive empirical kinetic fractionation factors that 187 

may be useful in interpreting volatility related isotope effects in other settings (with the caveat 188 

that additional factors/reactions may also affect isotopic fractionation). Tektites are well 189 

suited for this purpose. 190 

As shown in Figure 1, the Sn isotopic compositions of most tektites are very close to 191 

predicted compositions from fractional distillation, for α values of 0.998 (Central European 192 

and North American tektites) or 0.999 (Australasian), and an initial composition of 193 

δ122/118Sn0 = 0.13‰ and [Sn]0 = 1.6 µg g–1. This match between observed and predicted 194 

isotope fractionation behaviour supports that during kinetic evaporation of a silicate melt the 195 

lighter isotopes of Sn are preferentially lost in the vapour. 196 

The Muong Nong-type tektite MN8309 is closest in composition to terrestrial upper 197 

crust. This is consistent with previous observations that these tektites are less depleted in 198 

volatiles than splash form tektites, contain mineral remnants of the target, and were possibly 199 

deposited closer to the site of impact, having experienced lower formation temperatures 200 

(Glass and Barlow, 1979; Koeberl, 1994, 1992). Muong Nong-type tektites were also found to 201 

be less isotopically fractionated for Zn and Cu (Moynier et al., 2010, 2009). These results 202 

reflect the temperature–time regime (i.e., likely shorter periods of melting and evaporation) 203 

experienced by this group of tektites. 204 



 

 

The Sn isotope data from tektites show strong correlations with Cu and Zn isotope 205 

data (Table 1, Fig. 2). The correlations between these different isotope systems suggest that 206 

they have been fractionated by a common process. Linear regressions through the data yield 207 

R2 values of 0.94 and 0.73 for Sn vs. Cu and vs. Zn, respectively (note that the moldavite 208 

from Chlum appears to be an outlier in Cu isotope space, and was excluded from that 209 

regression). Considering the similar relative mass differences of the respective isotope ratios 210 

(i.e., 3.13% for 66Zn/64Zn, 3.17% for 65Cu/63Cu, and 3.39% for 122Sn/118Sn), the slopes of the 211 

regressions in Figure 1 represent the relative rate of isotope fractionation for each element, 212 

which may result from e.g., volatility or diffusion rates, as discussed below. We find that the 213 

rate of Sn isotope fractionation in tektites is ca. 94% that of Zn isotopes (i.e., not significantly 214 

distinguishable within uncertainties), and ca. 17% that of Cu isotopes. If we assume 215 

volatilities decrease as Sn ≥ Zn > Cu, as described above, this fractionation must be partially 216 

moderated by another factor.  217 

In the model of Moynier et al. (2010, 2009), molten tektite droplets are viscously 218 

stirred, with differential evaporation occurring at the surface. While the evaporation is 219 

controlled by volatility, the availability of elements at the surface for evaporation is governed 220 

by the rate of diffusion, which depends on many factors (e.g., T, melt composition, ionic 221 

radii). Where the diffusion rate of an element is slow, a diffusion-limited regime 222 

predominates, and evaporative loss of the element is restricted. Thus, elements that diffuse 223 

slowly in a melt are expected to be less isotopically fractionated, than elements that diffuse 224 

quickly, and for a fixed evaporation flux, the relative isotopic fractionation between volatile 225 

elements will be controlled by the diffusivity.  226 

In anhydrous melts, the relative diffusivities of these elements increase in the order Sn 227 

< Zn << K, Cu (Behrens and Hahn, 2009; Zhang et al., 2010; Yang et al., 2016; Ni et al., 228 

2017, 2018; see Supplementary Material for further discussion). Given the similar volatility 229 

of Sn relative to Zn, the larger relative fractionation in Zn is therefore likely a consequence of 230 



 

 

the slower diffusion of Sn in molten droplets. The relatively large isotope fractionation 231 

observed in Cu isotopes (Moynier et al., 2010), despite its lower volatility than Sn (and 232 

possibly Zn), is largely due to the greater availability of Cu resulting from the faster diffusion 233 

of Cu+. 234 

CONCLUSIONS 235 

Tektites are enriched in the heavier isotopes of Sn, and the isotopic composition 236 

correlates with the degree of elemental Sn depletion in these samples. This is consistent with 237 

evaporative loss of light Sn isotopes in to the vapour phase during tektite formation. The 238 

observed Sn isotopic fractionation in tektites is consistent with calculations of fractional 239 

distillation of Sn, with corresponding kinetic fractionation factors (α) of ca. 0.998–0.999. A 240 

relationship is observed isotopic fractionation in Sn, Zn and Cu, suggesting a common 241 

fractionation process. The smaller relative isotopic fractionation of Sn compared to Zn, 242 

despite similar volatility, and the much larger isotopic fractionation of Cu reflects the 243 

availability of these elements at the droplet surface, which is limited by the rate of diffusion. 244 
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FIGURE CAPTIONS 

Figure 1. Sn isotopic composition versus Sn content in tektites, showing predicted 

isotopic fractionation (calculated using equation 1) from an initial terrestrial upper crust 

composition as Sn is lost from the reservoir. The different colour lines represent calculations 

using different hypothetical fractionation factors (i.e., α values), as indicated. The half-filled 

symbol indicates the Muong Nong type tektite, MN8309. Error bars reflect the internal error 

or the external reproducibility, whichever is larger. Where error bars are not visible, 

uncertainties are smaller than the data point. 

Figure 2. Comparison between tektite data for Sn isotopes and a) Cu isotopes and b) 

Zn isotopes. Dashed lines represent linear regressions through the data, with R2 values as 

indicated on the figure. The half-filled symbol indicates the Muong Nong type tektite, 

MN8309. The upper-most symbol indicates the moldavite Chlum, which was excluded from 

the linear regression on plot (a) as it is an outlier in both Cu and Sn isotope space. Error bars 

reflect the internal error or the external reproducibility, whichever is larger. Where error bars 

are not visible, uncertainties are smaller than the data point. 

TABLE CAPTION 

Table 1. Tin, Cu, and Zn isotopic and concentration data for tektites and USGS 

reference materials. 

Table 1 footnote. Tin isotope and concentration data for USGS reference materials are 

from Creech et al. (2017). Zinc isotope data are from Moynier et al. (2009), with the 

exception of AGV-2, which is from Moynier et al. (2010), and all Zn isotope data are relative 

to JMC-Lyon. Copper isotope data from Moynier et al. (2010), with the exception of BCR-2 

which is from Chen et al. (2016), and all Cu isotope data are relative to NIST SRM 976. Cu 

and Zn concentration data for USGS reference materials are GeoReM recommended values. 
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